Supplementary Information for

Biofilms as agents of Ediacara-style fossilization

Silvina Slagter*, Weiduo Hao, Noah J. Planavsky, Kurt O. Konhauser and Lidya G. Tarhan

*Corresponding author. Email: <u>silvina.slagter@yale.edu</u>

This PDF file includes:

- Fig. S1. Representative photographs of the fossilization experiments.
- Fig. S2. SEM-SE images of experiments associated with biofilms.
- Fig. S3. Acid-base titration curves.
- Fig. S4. Modeled functional groups.
- Table S1. Time series of dissolved silica concentrations.
- Table S2. Carbon content of experimental substrates through time.
- Table S3. Silica sorbed normalized to biomass.
- Table S4. Acid-base titration results and surface complexation model.
- Table S5. Artificial seawater solution.

Table S6. Dissolved silica concentration in experiments with and without biofilms.

Fig. S1. Representative experimental photographs. a-d, Images of experiments after 48 hours and initial 2 mM DSi associated with *Fischerella* (experiment 4; a), *Spirogyra* (experiment 7; b), and *Anabaena* (experiment 5; c). Arrows denote examples of biofilm colonies; d-f, Images of experiments after removing *Phymanthus* (150 h), control experiment without DSi (experiment 2; d), initial 2 mM DSi (experiment 8; e) and initial 2 mM DSi and biofilms (experiment 11; f) where silica precipitates are visible in the 'proto-fossil' mold.

Fig. S2. SEM-SE images of experiments associated with biofilms. Images showing silica precipitation (examples indicated with arrows) associated with *Fischerella* (a; 150 h), *Anabaena* (b; 48 h), *Vaucheria* (c and d; 120 h), and *Spirogyra* (e and f; 96 h).

Fig. S3. Acid-base titration curves. Example of acid-base titration curves for Fischerella.

Fig. S4. Modeled functional groups, identified as ligands \equiv LH, \equiv XH, and \equiv MH, of each experimental organism, plotted as density of deprotonated sites (excess charge) *Phymanthus* data from ref. 1.

]	DSi (mM))		
	Experiment	8 h	26 h	48 h	72 h	120 h	138 h	150 h
3	DSi, Sa	2.000	1.999	1.999	1.959	1.987	2.016	1.999
4	DSi, F,Sa	1.550	0.630	0.589	0.525	0.515	0.450	0.439
5	DSi, A,Sa	1.690	0.433	0.433	0.433	0.528	0.510	0.447
6	DSi, V,Sa	1.849	0.442	0.531	0.348	0.584	0.784	0.436
7	DSi, S,Sa	1.529	1.485	1.375	1.350	1.200	0.629	0.684
8	DSi, P	1.014	0.880	0.665	0.699	0.631	0.753	0.677
9	DSi, P, Sa	1.318	0.870	0.876	0.685	0.773	0.793	0.788
10	DSi, Sa, B	1.234	0.702	0.746	0.782	0.699	0.552	0.518
11	DSi, <i>P</i> , B, Sa	1.230	0.784	0.584	0.426	0.342	0.325	0.206
DC:	DC: 1 and 1 all a D. Dhannada a D. Li films Consent C. Circle and							

Table S1. Time series of dissolved silica concentrations (means of three replicates)

DSi: dissolved silica; *P: Phymanthus*, B: biofilms, Sa: sand, *F: Fischerella A: Anabaena, V: Vaucheria*, and *S: Spirogyra*. Experiments 1 and 2 are control experiments performed without DSi (see Main Text Table 1).

With biofilms	Without biofilms	
(experiments 10 and 11)	(experiments 8 and 9)	
0.875	1.014	
0.784	0.880	
0.584	0.665	
0.426	0.589	
0.342	0.631	
0.325	0.753	
0.204	0.677	
0.023	1.014	
0.784	0.980	
0.584	0.665	
0.444	0.589	
0.342	0.631	
0.329	1.753	
0.106	0.477	
0.230	0.114	
0.641	1.180	
0.311	1.565	
0.426	0.789	
0.942	0.611	
0.625	0.753	
0.206	0.671	
0.875	1.014	
0.812	0.967	
0.581	0.665	
0.426	0.699	
0.356	0.231	
0.355	0.743	
0.121	0.617	
0.023	1.001	
0.784	1.000	
0.554	0.632	
0.426	0.765	
0.686	0.636	
0.325	1.753	
1.106	0.456	
0.366	0.114	
0.640	1.180	
0.384	1.678	
0.426	0.656	
0.342	0.351	
0.325	0.749	
0.200	0.687	

Table S2. Final dissolved silica concentration (mM) in experiments conducted both with and without biofilms

Experiment	Time (h)	Weight (g)	% C
	24	1.73	7.23
1	48	1.08	2.43
1	120	1.65	10.26
	144	0.45	17.54
	72	0.31	33.79
	96	1.33	12.31
2	120	0.76	9.41
	144	3.05	8.67
	150	3.8	5.4
	24	4.8	5
	72	0.79	9.9
4	96	2.9	6.5
	144	3.1	1.7
	150	3.3	0.6
	24	2.8	5.2
5	48	4.4	7.2
3	120	1.2	3
	150	3.4	0.6
	96	2.8	5
0	150	5.5	2
	48	2.19	12.1
/	150	0.9	9
8	48	2.28	12.14
0	24	1.5	9.84
9	150	2.7	1.8
	48	1.2	7.23
10	150	5	1.3
	24	2.03	28.69
11	72	2.29	12.75
	150	1	3.63

Table S3. Carbon content of experimental substrates through time

Experiment	Final DSi (mM)	Initial biomass (g)	Silica sorbed (mM)	Silica sorbed per gram of biomass
4	0.439	10	1.561	0.156
5	0.447	10	1.553	0.155
6	0.436	10	1.564	0.156
7	0.684	10	1.316	0.132
8	0.677	15.23	1.323	0.087
9	0.788	12.33	1.212	0.098
10	0.518	10	1.482	0.148
11	0.206	14.22	1.794	0.126

Table S4. Silica sorbed normalized to biomass

Samula	Log(Ka)*			Site density (mol/L)**		
Sample	Kal	Ka2	Ka3	LH	XH	MH
Vaucheria	4.04	8.38	10.83	3.04E- 04	1.30E- 04	8.02E-04
	(carboxyl)	(carboxyl or phosphoryl)	(hydroxyl or amino)			
Fischerella	4.62	8.24	10.8	2.52E-	2.97E-	9.80E-04
	(carboxyl)	(carboxyl or phosphoryl)	(hydroxyl or amino)	04	04	
Anabaena	4.2	7.75	10.61	2.61E- 04	1.22E- 04	9.49E-04
	(carboxyl or	(carboxyl or	(hydroxyl			
	phosphoryl)	phosphoryl)	or amino)			
Spirogyra	4.09	7.97	10.36	2.22E-	1.66E-	7.03E-04
	(carboxyl)	(carboxyl or phosphoryl)	(hydroxyl or amino)	04	04	
Phymanthus	5.31	7.64	9.24	1.25E-	4.86E-	1.48E-04
***	(carboxyl or phosphoryl)	carboxyl or phosphoryl)	(hydroxyl or amino)	04	05	
*Iden **Site dens	ntification of fun ity and pKa (i.e.	ctional groups is , Log(Ka)) value ***Phymanthus	based on com s represent the data from ref.	parison w e mean va 1	vith literat lues of al	ture ² . l replicates.

Table S5. Acid-base titration and surface complexation model results

Component	Concentration (g/kg)		
NaCl	23.7034		
$NaSO_4$	4.008		
KC1	0.865		
NaHCO ₃	0.296		
Na ₂ SiO ₃ .9H ₂ O	0.568		
H_20	970.48		

Table S6. Artificial seawater solution

Supplementary references

- 1. Slagter, S., Tarhan, L. G., Hao, W., Planavsky, N. J. & Konhauser, K. O. Experimental evidence supports early silica cementation of the Ediacara Biota. *Geology* **49**, 51–55 (2021).
- Fein, J. B., Boily J.-F., Yee N., Gorman-Lewis, D. & Turner, B. F. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. *Geochim. Cosmochim. Acta* 69, 1123-1132 (2005).