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6. Supplementary Material

6.1. CMBs per TBI case
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Fig. 7: Illustration of how many definite and possible CMBs were identified in cases of our dataset. A case is a single SWI
of an individual.
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6.2. CMB Morphology

6.2.1. Metric Definitions

• Diamatermax is the length (in mm) of the longest line which can be drawn between any two voxels of the same
CMB.

• Voxel size is nearly isotropic [0.98×0.98×1.00]. Therefore, Volume (in mm3) is simply calculated as the number
of voxels in any given CMB.

• We define the metric Sphericalness as a measure of how spherical an ellipsoid, in our case CMB, is. This is a
simplified assumption of CMB shapes. It measures how much volume the CMB occupies in relation to a perfect
sphere with Diamatermax. Linear CMBs tend to 0, while a perfectly spherical CMB has a Sphericalness of 1.0.
Equation:

Sphericalness= Volume
4π
3 ∗( size
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6) CMB Volume-to-Sphericalness Ratio
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5) CMB Size-to-Sphericalness Ratio
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Fig. 8: 1.) Distribution of (definite) CMB sizes in the reference standard. 2.) Distribution of (definite) CMB volumes. 3.) Distribution of
sphericalness of (definite) CMBs. 4.) Volume-to-size ratio of (definite) CMBs. 5.) Size-to-sphericalness ratio of (definite) CMBs. 6.) Volume-to-
sphericalness ratio of (definite) CMBs.
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6.3. Majority Vote

In Van den Heuvel et al. (2016), if ≥ 3 observers agreed on a lesion as definite it was considered a definite CMB.
Alternatively, if ≥ 3 observers considered a focus definite or at least possible, it was considered a possible CMB in the
majority vote. This thresholding was possible by automatically region-growing the annotated CMBs with their point
annotations as seed.
For this study, we assigned each region-grown lesion a numerical value:

• definite = 1.0

• possible = 0.5.

Then the six individual maps were summed and thresholded. Since we used a majority vote of 6 for model evaluation,
and a majority vote of 5 to rate the observers the thresholds were different. The lesion assessment was

• definite, if
P ≥ 4.0 and

• possible, if
P ≥ 2.0 in the case of the majority vote for model evaluation;

• definite, if
P ≥ 3.0 and

• possible, if
P ≥ 1.5 in the case of the majority vote for observer evaluation.

A problem with summing region-grown maps is that clusters of CMBs can “bleed” into each other, i.e., 2 or more
nearby CMBs would appear as a single entity in the reference standard. Therefore we compared the clustered compo-
nents with the summation map, and manually separated CMBs if the underlying summation map suggested multiple
lesions.
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6.4. Normalization
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Fig. 9: Signal intensity distribution of an exemplary SWI scan, displayed on a log-scale. Only voxels within the brain mask
were considered. The main body of the histogram corresponds to the brain parenchyma.
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Fig. 10: Value distribution of the normalised SWI scan, displayed on a log-scale. Histogram peak is assigned the value
−0.5, lower bound is −1.0, there is no upper bound.
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6.5. Model Architectures

Table 4: Architecture of the Patch-CNN classification model - ev-
ery CONV block consists of a 3D convolution layer, followed by
3D batch normalization layer.

Layer Kernel Stride Output Feature Activation
size Stride size volumes Function

INPUT - - 213 1 -
CONV-1 33 1 193 64 ReLU
CONV-2 33 1 173 64 ReLU
CONV-3 33 1 153 64 ReLU
CONV-4 33 1 133 128 ReLU
CONV-5 33 1 113 128 ReLU
CONV-6 33 1 93 128 ReLU
CONV-7 33 1 73 256 ReLU
CONV-8 33 1 53 256 ReLU
CONV-9 33 1 33 256 ReLU
DROPOUT - - - 50% -
CONV-10 33 1 13 2 Softmax

Table 5: Architecture of the Segmentation-CNN segmentation
model - every CONV block consists of a 3D convolution layer,
followed by 3D batch normalization layer.

Layer Kernel Stride Output Feature Activation
size Stride size volumes Function

INPUT - - 213 1 -
CONV-1 33 1 193 64 ReLU
CONV-2 33 1 173 64 ReLU
CONV-3 33 1 153 64 ReLU
CONV-4 33 1 133 128 ReLU
CONV-5 33 1 113 128 ReLU
CONV-6 33 1 93 128 ReLU
CONV-7 33 1 73 256 ReLU
CONV-8 33 1 53 256 ReLU
CONV-9 33 1 33 256 ReLU
CONV-10 33 1 13 2 Softmax

Table 6: Architecture of the U-Net segmentation model - every CONV block consists of a 3D convolution layer, followed by 3D batch normalization
layer.

Pathway Layer Input Kernel Stride Input size Output Feature Activation
Input size Stride ⊗ features size volumes Function

INPUT - - - 683 ⊗ 1 683 1 -

Encoding CONV-1 INPUT 33 1 683 ⊗ 1 663 32 ReLU
CONV-2 CONV-1 33 1 663 ⊗ 32 643 32 ReLU
CONV-3 CONV-2 33 1 643 ⊗ 32 623 64 ReLU
CONV-4 CONV-3 33 1 623 ⊗ 64 603 64 ReLU
POOL-4 CONV-4 33 1 603 ⊗ 64 303 64 -
CONV-5 POOL-4 33 2 303 ⊗ 64 283 128 ReLU
CONV-6 CONV-5 33 1 283 ⊗ 128 263 128 ReLU
POOL-6 CONV-6 33 2 263 ⊗ 128 133 128 -
CONV-7 POOL-6 33 1 133 ⊗ 128 113 128 ReLU
CONV-8 CONV-7 33 1 113 ⊗ 128 93 128 ReLU

Skip Connections CONV-4-SKIP CONV-4 (cropped) 13 1 283 ⊗ 64 283 64 ReLU
CONV-6-SKIP CONV-6 (cropped) 13 1 183 ⊗ 128 183 128 ReLU

Decoding UPSAMPLE-1 CONV-8 23 - 93 ⊗ 1 183 128 -
CONV-9 UPSAMPLE-1 ⊗ CONV-6-SKIP 33 1 183 ⊗ 256 163 128 ReLU
CONV-10 CONV-9 33 1 163 ⊗ 128 143 128 ReLU
UPSAMPLE-2 CONV-10 23 - 143 ⊗ 128 283 128 -
CONV-11 UPSAMPLE-2 ⊗ CONV-4-SKIP 33 1 283 ⊗ 196 263 128 ReLU
CONV-12 CONV-9 33 1 263 ⊗ 128 243 128 ReLU
CONV-13 CONV-12 33 1 243 ⊗ 128 223 128 ReLU
CONV-14 CONV-13 33 1 223 ⊗ 128 203 2 Softmax
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6.6. Patient Demographics

Table 7: Patient demographics and counts of definite and possible CMBs in the Full Segmentation for the training and validation
datasets.

Scan 1 Scan 2
Patient Sex Age Set #def CMBFS #pos CMBFS #def CMBFS #pos CMBFS

TBI#01 F 27 TRAINING 26 2 30 3
TBI#02 M 22 TRAINING 154 14 149 0
TBI#03 M 27 TRAINING 9 0 N.U. N.U.
TBI#05 F 23 TRAINING 38 0 26 1
TBI#09 F 38 TRAINING 12 5 9 5
TBI#13 F 20 TRAINING 24 3 25 5
TBI#15 M 50 TRAINING 10 7 7 5
TBI#16 M 25 TRAINING 41 26 43 26
TBI#17 F 46 TRAINING 22 5 19 5
TBI#18 M 60 TRAINING 46 7 33 6
TBI#19 M 61 TRAINING 10 8 N.U. N.U.
TBI#22 M 43 TRAINING 33 6 28 11
TBI#23 M 48 TRAINING 112 9 N.U. N.U.
TBI#24 M 18 TRAINING 57 9 80 16
TBI#26 M 19 TRAINING 26 4 37 0
TBI#28 M 31 TRAINING 21 2 16 6
TBI#29 M 57 TRAINING 69 9 N.U. N.U.
TBI#30 F 22 TRAINING 70 4 13 4
TBI#33 F 69 TRAINING 12 0 N.U. N.U.
TBI#35 F 61 TRAINING 18 0 14 2
TBI#37 M 58 TRAINING 6 2 N.U. N.U.
TBI#41 M 26 TRAINING 93 17 103 13
TBI#43 F 21 TRAINING N.U. N.U. 146 7
TBI#44 M 21 TRAINING 11 4 15 3
CONTROL#04 F 24 TRAINING 0 0 - -
CONTROL#08 M 21 TRAINING 0 0 - -
CONTROL#11 F 45 TRAINING 0 0 - -
CONTROL#17 M 18 TRAINING 0 0 - -

TBI#04 F 58 VALIDATION 7 0 N.U. N.U.
TBI#07 M 19 VALIDATION 140 15 N.U. N.U.
TBI#10 M 47 VALIDATION 8 2 N.U. N.U.
TBI#11 M 27 VALIDATION N.U. N.U. 8 1
TBI#12 M 20 VALIDATION 43 10 N.U. N.U.
TBI#14 M 30 VALIDATION 1 1 N.U. N.U.
TBI#21 F 60 VALIDATION 9 2 N.U. N.U.
TBI#27 F 21 VALIDATION 3 0 N.U. N.U.
TBI#32 M 47 VALIDATION N.U. N.U. 44 9
TBI#36 M 50 VALIDATION 26 22 N.U. N.U.
TBI#40 M 66 VALIDATION N.U. N.U. 16 4
TBI#40 M 26 VALIDATION 75 10 N.U. N.U.
CONTROL#02 M 50 VALIDATION 0 0 - -
CONTROL#05 M 31 VALIDATION 0 0 - -
CONTROL#09 M 28 VALIDATION 0 0 - -
CONTROL#15 M 62 VALIDATION 0 0 - -

CMB: Cerebral Microbleed, #def: number of definite CMBs, #pos: number of possible CMBs, FS: Full Segmentation, N.U.: Not
used in this study.
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Table 8: Patient demographics and counts of definite and possible CMBs in the Full Segmentation and the Reference Standard for
the test dataset.

Patient Sex Age Set #def CMBFS #pos CMBFS #def CMBRS #pos CMBRS

TBI#06 M 54 TEST 17 2 2 10
TBI#08 M 48 TEST 28 2 19 25
TBI#20 F 40 TEST 64 18 30 38
TBI#25 M 23 TEST 27 4 5 15
TBI#31 M 22 TEST 62 10 19 37
TBI#35 M 21 TEST 33 9 14 18
TBI#38 M 38 TEST 24 1 7 12
TBI#39 F 19 TEST 36 2 15 22
TBI#42 M 20 TEST 17 4 5 6
TBI#45 F 25 TEST 36 5 22 23
CONTROL#01 F 22 TEST 0 0 0 0
CONTROL#03 M 30 TEST 0 0 0 0
CONTROL#06 M 49 TEST 0 0 0 0
CONTROL#07 F 22 TEST 0 0 0 0
CONTROL#10 F 26 TEST 0 0 0 0
CONTROL#12 M 62 TEST 0 0 0 0
CONTROL#13 F 53 TEST 0 0 0 0
CONTROL#14 M 34 TEST 0 0 0 0
CONTROL#15 M 62 TEST 0 0 0 0
CONTROL#18 M 21 TEST 0 0 0 0

CMB: Cerebral Microbleed, #def: number of definite CMBs, #pos: number of possible CMBs, FS: Full Segmentation, RS: Refer-
ence Standard.
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6.7. Post-processing

Figure 11 illustrates that our segmentation methods (Segmentation-CNN, U-Net) predict border gradients which allows
for separation of close CMBs, instead polarized/binary predictions. This is due to the inclusion of boundary loss in
their training.
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Fig. 11: Illustration of how post-processing separates large predictions with uneven probability distributions into individual lesions.

Figure 13 show the benefit of the proposed post-processing procedure on the performance of the Segmentation-CNN
and U-Net. The separation of predictions into individual lesions improves the sensitivity.
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Fig. 12: Performance (bootstrapped at 1000 random samples of the available test set) of individual models in comparison with observers using
FROC curve of Sensitivity over average FPs per TBI case.
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6.8. Possible CMBs

Figure 3 illustrates how true positives (TPs) and FPs were counted for the FROC given the presence of possible CMBs
in the reference standard, and in the case of multiple model predictions within a single reference lesion mask.
If we change how possible CMBs are treated with regard to evaluation, performance is changed.

Option 1:. All possible CMBs are removed from evaluation. Any prediction that would fall in the space of a possible
CMB is counted as a FP. This also means that designated possible CMBs by the observers were not counted to their
metrics.
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Fig. 13: Performance (bootstrapped at 1000 random samples of the available test set) of individual models in comparison with observers using
FROC curve of Sensitivity over average FPs per TBI case.

Given option 1, sensitivity of all models decreases by 5-8% at the operating point of 10 FPs due to the increase in
FPs re-aligning the prediction confidence threshold. The U-Net is less prone to identify possible CMBs (with high
confidence). Of note, there is no measurable difference for the segmentation models at 15 FPs between the regular
evaluation method and option 1. Metrics for the observers are changed as well: loss of sensitivity ranges from 1-6%
with an increase of 3-6 FPs (except for one outlier).

Option 2:. All possible CMBs are considered definite CMBs. Any not-predicted CMB would count as a false
negative. This also means that designated possible CMBs were counted as definite CMBs.
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Fig. 14: Performance (bootstrapped at 1000 random samples of the available test set) of individual models in comparison with observers using
FROC curve of Sensitivity over average FPs per TBI case.

Assuming option 2, all models score 21-23% lower sensitivity. This shows that all models tend to predict possible
CMBs with lower confidence. FP counts of observers are unaffected in this case, but their sensitivity is 5-11% lower
compared to our regular method (with the previous outlier only losing 2.9%).
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6.9. nnUNet

We performed preliminary experiments to investigate the potential of the nnUnet Isensee et al. (2018, 2019a) in the
detection of CMBs in moderate-to-severe TBI. The nnUnet has garnered a lot of attention in recent years as an out-of-
the-box solution to many image analysis problems in both domains: natural and medical images. During training, the
nnUnet optimises its own structure and loss function, tasks which usually fall on the researcher.

Methods. The nnUnet follows a different training approach to our models. For our models, training and validation
data was split (41+4 TBI and healthy SWI scans for training, 12+4 SWI scans for validation), and a single model was
trained.
On the other hand, for the nnUnet several folds were trained, in our case 4 folds, on a combination of our training and
validation data. Each fold has a validation set of 2 healthy and 13 − 14 TBI scans. As a result, every scan is used both
as training and validation for the eventual nnUnet-ensemble.
For the predictions of the nnUnet on the test data, an ensemble (averaged prediction) was calculated of the 4 folds.

Results. The nnUnet-ensemble achieved similar sensitivity to our proposed models in the target range of 10FPs (see
Figure 15. Compared to our models, it maintains most of its sensitivity at lower FPs counts.
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Fig. 15: Performance (bootstrapped at 1000 random samples of the available test set) of the nnUnet ensemble
in comparison with the other models and observers using FROC curve of Sensitivity over average FPs per TBI
case.

Discussion. The nnUnet shows a lot of promise for the CMB detection in moderate-to-severe TBI patients. It achieves
similar sensitivity and better precision than our proposed models. However, it has to be acknowledged that the nnUnet
ensemble has a significantly higher computational complexity and therefore capability than our models. Each nnUnet
(4 folds) in the ensemble has 10 times the parameter count compared to our models. An important aspect of our
analysis was to maintain similar computational power between the models. Under this constraint, the comparison off
the nnUnet with any of our models would not be fair.
On the other hand, we proposed certain methods, e.g. boundary loss, that were not available in our nnUnet implemen-
tation. Boundary loss enabled more gradual predictions, while the individual nnUnet folds predicted binary outcomes
(over-fitting). Adding these to the nnUnet would present an interesting avenue of further research.


