SUPPORTING INFORMATION

2-Aminoacrylate stress damages diverse PLP-dependent enzymes in vivo

Wangchen Shen, Andrew J. Borchert, and Diana M. Downs

Table S1

Figure S1

Figure S2

Figure S3

Literature Cited.

- 1. McKinney, J., et al., *Tightly regulated gene expression system in Salmonella enterica serovar Typhimurium.* J. Bacteriol., 2002. **184**(21): p. 6056-9.
- 2. Way, J.C., et al., New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene, 1984. **32**(3): p. 369-379.

TABLE S1. Bacterial strains, plasmids, and primers

Strain	Genotype			
DM10000	Salmonella enterica LT2 (Wildtype)			
DM13509 ¹	$aadA$:: $araC$ -P _{BAD} -T7 pol^+ xyL $rpsL$			
DM17050	$aadA::araC-P_{BAD}-T7pol^+ xyL rpsL ridAI::Tn10(d)^2$			
DM17051	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL ridA1::Tn10(d) / pDM1602			
DM17053	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL ridA1::Tn10(d) / pDM1507			
DM17181	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL pDM1507			
DM17182	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL pDM1504			
DM17183	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL ridA1::Tn10(d) / pDM1504			
DM17184	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL / pDM1505			
DM17185	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL ridA1::Tn10(d) / pDM1505			
DM17186	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL /pDM1506			
DM17187	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL ridA1::Tn10(d) / pDM1506			
DM17292	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL / pDM1579			
DM17293	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL ridA1::Tn10(d) / pDM1579			
DM17294	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL / pDM1577			
DM17295	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL ridA1::Tn10(d) / pDM1577			
DM17296	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL / pDM1578			
DM17297	aadA::araC-P _{BAD} -T7pol ⁺ xyL rpsL ridA1::Tn10(d) / pDM1578			
Plasmid	Description			
pDM1578	pET20b-ilvA			
pDM1602	pET20b-alr (wildtype)			
pDM1504	pET20b-alr57 (R209E)			
pDM1505	pET20b-alr56 (R209A)			
pDM1506	pET20b-alr55 (R209D)			
pDM1507	pET20b-alr54 (R209S)			
pDM1577	pET28b- <i>ilvE</i>			

Table S1 (cont)

Primer	Sequence
LT2_alr_R209D	5'-agteteaetttgaetgggegGATeegggeateattttgtatgg-3'
LT2_alr_R209A	5'-agteteaetttgaetgggegGCGcegggeateattttgtatgg-3'
LT2_alr_R209E	5'-agtet cactttg actgggcgGAAccgggcat cattttg tatgg-3'
LT2_alr_R209S	5'-agteteaetttgaetgggegAGCeegggeateattttgtatgg-3'

¹A His+ derivative of the SB300AI *S. enterica* strain harboring the chromosomally borne gene for T7 polymerase under control of the arabinose-inducible P_{BAD} promoter (*aadA::araC*-P_{BAD}-T7*pol*⁺) [1].

²Tn10(d) refers to the transposition-defective mini-Tn10 (Tn10Δ16Δ17) [2].

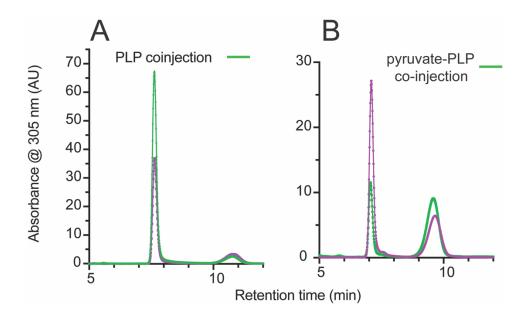
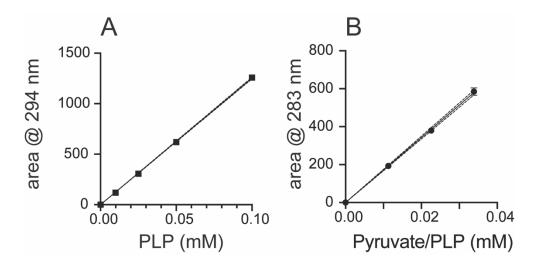
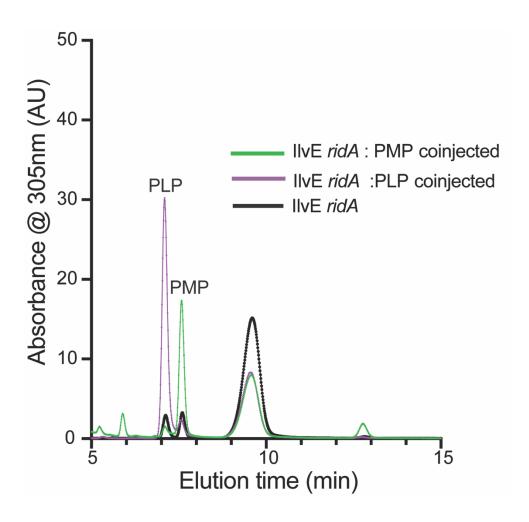




Figure S1. Assignment of peaks to PLP and pyruvate-PLP. Alr was purified from a *ridA* background, the cofactors were released from 0.4 mg of enzyme with base, and separated on HPLC as described (purple). Green chromatogram tracing shows the released cofactors with added PLP(A) or pyruvate-PLP (B). In each case the cofactors released from Alr took up half of the total volume and concentrated cofactor (PLP or PLP/pyruvate adduct) generated the other half of the volume.

Figure S2. Standard cure for PLP and pyruvate-PLP. The standard curves for (A) PLP and (b) pyruvate/PLP are plotted. The y axis is the area of each peak at a known concentration and the x axis are the corresponding concentrations. The area of PLP and PLP/pyruvate are monitored at their individual absorbance maximum, which for PLP is 294nm, and for PLP/pyruvate, 283nm. (The R square value for both is greater than 0.99).

Figure S3. Peak assignment for PMP. The chromatogram of the cofactors released from IlvE purified from a *ridA* strain(black). The same sample including PLP (purple) or PMP (green).