

Supplementary Figure 1. Deletion of *Ptpn21* promotes development and progression of *MLL-AF9*induced leukemia. Lin⁻ cells isolated from *Ptpn21^{+/-}* and *Ptpn21^{+/+}* mice were infected with *MSCV-MLL-AF9-IRES-GFP* retrovirus. Entire cell populations ($5x10^5$ cells/mouse) were transplanted into sublethally irradiated (700 rad with a cesium irradiator) BoyJ mice for *in vivo* expansion of leukemic cells. GFP⁺ leukemic cells sored from the recipient mice were transplanted into sublethally irradiated BoyJ mice. Twenty-five days after leukemic cell inoculation, recipient mice (n=5 mice per group) were sacrificed. Spleens were weighted (A), white blood cell counts in the peripheral blood were determined by a hematology analyzer (B), and leukemic cells (GFP⁺) in the peripheral blood, BM, and spleen were assessed by FACS analyses (C). Data shown are mean ± standard deviation of all mice examined. *** *P* < .001.

Supplementary Figure 2. Enhanced growth of *MLL-AF9-Ptpn21*^{-/-} leukemic cells *in vivo*. (A) Lin⁻ cells isolated from *Ptpn21*^{-/-} and *Ptpn21*^{+/+} mice were infected with *MSCV-MLL-AF9-IRES-GFP* retrovirus. GFP⁺ *MLL-AF9*-tranduced cells were sorted by FACS. 1x10⁶ GFP⁺ leukemia cells were transplanted into lethally irradiated (900 rad with an X-ray irradiator) BoyJ mice (n=6 mice per group). Seventeen hours after transplantation, BM cells were harvested and the frequency of homed GFP⁺ leukemia cells were measured by FACS. (B-D) Lin⁻ cells isolated from *Ptpn21*^{-/-} and *Ptpn21*^{+/+} mice were infected with *MSCV-MLL-AF9-IRES-GFP* retrovirus. GFP⁺ *MLL-AF9*-tranduced cells were sorted by FACS. 6.6x10⁴ GFP⁺ leukemia cells were transplanted into lethally irradiated BoyJ mice (n=6 mice per group). Seventeen days after leukemic cell inoculation, recipient mice (n=3 to 4 mice per group) were sacrificed. White blood cell counts in the peripheral blood were determined by a hematology analyzer (B). GFP⁺ leukemic cells in the peripheral blood, BM, and spleen (C) were assessed by FACS analyses (n=3 mice per group) (D). Data shown are mean ± standard deviation of all mice examined. * *P* < 0.05; ** *P* < 0.01.

Supplementary Figure 3. Correlation of *PTPN21* expression levels with prognosis in AML patients. Data mining was performed to determine the correlation between the expression levels of *PTPN21* and the survival of AML patients in the TCGA database. Overall survival rates of AML patients with high and low *PTPN21* expression levels are shown (Left, 10% cut-off threshold; Right, 20% cut-off threshold). The Logrank (Mantel-Cox) test was used to determine statistical significance.