Physico chemical studies of resveratrol, methyl-jasmonate and cyclodextrins interactions: an approach to resveratrol bioproduction optimization

E. Oliva^{a,b,e}, D. Mathiron^{b,e}, E. Bertaut^{c,e}, D. Landy^{c,e}, D. Cailleu^{b,e}, S. Pilard^{b,e}, C. Clément^{d,e}, E. Courot^{d,e}, V. Bonnet^{a,e} and F. Djedaïni-Pilard^{a,e*}

^{a.} Laboratoire de Glycochimie des Antimicrobiens et des Agroressources UMR 7378 CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France.

^{b.} Plateforme-analytique, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France.
 ^{c.} Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO, F-59140

Dunkerque, France.

^{d.} URVVC EA 4707, Université de Reims Champagne-Ardenne, Moulin de la Housse, 51687 Reims, France.

^{e.} SFR Condorcet "Agrosciences Environnement et Développement Durable" FR CNRS 3417, UFR Sciences Exactes et Naturelles, BP 1039 Moulin de la Housse - Bâtiment 18 - 51687 Reims Cedex 02, France.

Supplementary Information

Figure S1: ESI (+) MS Spectra corresponding to RSV with maltoheptaose (a) and RSV with β -CD (b) in the same experimental conditions.

Figure S2: dedicated Job plots of (a) β -CD (up)/resveratrol (down) and (b) DIMEB (up)/resveratrol (down)

Figure S3: Plot of the relative intensity of each complex between CD and MeJA versus cone voltage.

Figure S4: Fit between experimental RSV solubility data (β -CD \blacksquare , and RAMEB \times) and theoretical values predicted by formation constants obtained by ITC (red line and blue line, respectively).

Figure S5: Fit between experimental MEJA solubility data (β -CD \blacksquare ,and RAMEB ×) and theoretical values predicted by formation constants obtained by ITC (red line and blue line, respectively).

Table SI : Association constant values, K (M⁻¹) calculated from solubility data

Figure S6: Enlarged contour plot of a T-ROESY experiment (spin lock: 300 ms, 22 dB) performed at 600 MHz on a β -CD/RSV/MeJA mixture (4.6 mM of β -CD with RSV and MeJA at saturation in D₂O). Rectangles represent the absence of a correlation between RSV and MeJA and ovals the presence of correlations between β -CD/ RSV on one hand and β -CD/MeJA on the other hand

Figure S1: ESI (+) MS Spectra corresponding to RSV with maltoheptaose (a) and RSV with β -CD (b) in the same experimental conditions.

Figure S2: dedicated Job plots of (a) β -CD (up)/resveratrol (down) and (b) DIMEB (up)/resveratrol (down)

b

Figure S3: Plot of the relative intensity of each complex between CD and MeJA versus cone voltage.

The solubility of a guest G in the presence of CD (leading to a CD-G complex with a formation constant K), can be calculated as follows:

$[G]_{T} = [G] + [CD-G]$	(1)
$[CD]_{T} = [CD] + [CD-G]$	(2)
K = [CD-G] / ([CD]*[G])	(3)
Combining equation (3) with equation (2):	
[CD-G] = K * ([CD] _T - [CD-G]) * [G]	(4)
In phase solubility experiments, [G] is equal to the intrinsic G solubility S_0 , thus:	
$[CD-G] = (K^*[CD]_T^*S_0) / (1+K^*S_0)$	(5)

As a result, the total guest concentration (ie. its solubility in the presence of CD) is equal to:

$$[G]_{T} = [G] + [CD-G] = S_{0} + (K^{*}[CD]_{T}^{*}S_{0}) / (1+K^{*}S_{0})$$
(6)

Accordingly, formation constants obtained by ITC were used to simulate the RSV and MEJA solubility in the presence of β -CD and RAMEB. Least square fitting between experimental and theoretical data were then realized (Figure S4 and S5, for RSV and MEJA, respectively), with a floating value for the intrinsic guest solubility.

Figure S4: Fit between experimental RSV solubility data (β -CD \blacksquare and RAMEB ×) and theoretical values predicted by formation constants obtained by ITC (red line and blue line, respectively).

Figure S5: Fit between experimental MeJA solubility data (β -CD \blacksquare and RAMEB ×) and theoretical values predicted by formation constants obtained by ITC (red line and blue line, respectively).

	RSV	MeJA
β-CD	3 053	481
RAMEB	10 700	570

Table SI : Association constant values, K (M^{-1}) calculated from solubility data

Figure S6: Enlarged contour plot of a T-ROESY experiment (spin lock: 300 ms, 22 dB) performed at 600 MHz on a β -CD/RSV/MeJA mixture (4.6 mM of β -CD with RSV and MeJA at saturation in D₂O). Rectangles represent the absence of a correlation between RSV and MeJA and ovals the presence of correlations between β -CD/RSV on one hand and β -CD/MeJA on the other hand