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1 Supplementary Notes
We face the problem of testing Goodness-Of-Fit (GOF) when the distribution of the test statistic de-
pends on fitted parameters, and we use a bootstrap procedure for that purpose. While this practice is
widespread, it is widely ignored beyond the theoretical literature that this may be incorrect, so we first
recall some theory and then consider corrections for this procedure.

We aim to assess whether the slope s = s(D) we estimate from the actual data D by the logistic
regression (model 3; see Methods) between the per-birth twinning probability and maternal total births
is consistent with the distribution φ(S = s(D);θ) of slopes expected for samples D drawn under a given
hypothetical scenario π (say “P”) with parameters θ. We do not know the θ vector so we estimate
it from the data, and the estimates depend on the assumed π (i.e., we obtain different estimates θ̂π
for π=“P”, “I”, and so on). Thus we use the slope as a GOF statistic for a model with parameters θ
estimated aside of the slope, on the same data.

For a GOF test, we can then simulate the distribution φ(S; θ̂π) and use this distribution as an ap-
proximation for φ(S;θ). That is, we can obtain by simulation an estimate ˆCDF(x; θ̂π) of the cumulative
distribution function (CDF) of S = s(D∗) for bootstrap samples D∗ generated under θ̂π, i.e., an estimate
of Pr(S ≤ x; θ̂π) for any x, and determine a unidirectional p-value as the value of the estimated CDF
value for observed slope, p = ˆCDF(s(D); θ̂π) (or 1− p, depending on context). This is what a naive use
of the bootstrap would provide.

However, we fitted parameters on the data, which means that the data tend to be more consistent
with the fitted model φ(S; θ̂π) than with the data-generating process φ(S;θ). This means that, if a GOF
test has controlled error rates (uniform p-values) when defined from CDF(x;θ), it may be conservative
when each sample is assessed against CDF(x; θ̂π), with parameters and CDF re-estimated on each sample
produced by the data-generating process.

Whether the test is conservative depends on the relationship between the GOF statistic (more gen-
erally denoted T = t(D)) and the estimated parameters. A toy example that captures this problem
considers that θ is reduced to a single scalar parameter θ, and that θ̂(D) follows jointly with T the
bivariate Gaussian model (
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independent of θ. The reason for considering this example is that it leads to a simple

linear regression of T to θ̂. Specifically, T |θ̂; θ ∼ N (βθ̂, σ2
t ),‡ from which some properties of the naive

bootstrap test can easily be deduced. For this test, T is compared to the distribution of T ∗ values for
bootstrap samples from the fitted model (i.e. with θ̂ as parameter). Therefore, for the test to be correct
(with a uniform distribution of p-values), the conditional distribution of T given θ̂ should be identical
to the simulated distribution of the T ∗s. But their variances are different: the conditional variance of T
is σ2

t (regression result), while the simulation variance is higher (σ2
t + β2σ2

θ̂
, this being the same as the

variance of T drawn from the distribution with parameter θ). Various forms of non-uniform distributions
of p-values may then result; the simplest one occurring when when β = 1 and σ2

t reduces to zero. In
that case the means of the two distributions are equal to θ̂, so the distribution of p-values concentrates
on 0.5. Since this is true irrespective of the θ̂ value, the p-value will be generally too close to 0.5.

Conservativeness is expected whenever the GOF statistic is positively correlated with one of the
parameter estimates. Ideally, one should use a GOF statistic whose distribution is (as least asymptoti-
cally) independent of the value of θ̂π, or, equivalently in practice, of the value of θ. In other words, the
bootstrap procedure is guaranteed to provide an asymptotically correct GOF test of a statistic T only if
T is asymptotically a pivotal statistic under the null model; a statistic being pivotal if its distribution is
independent of the value of θ. Using pivotal statistics is also a standard requirement for analytic GOF
tests (e.g., [1], §3.3).

Pivotal statistics are not generally available for use in one-step bootstrap procedures. In that case,
double bootstrap procedures have been developed (e.g., [2]; [3], p. 177). The basic idea of such proce-
dures is that, for each sample D∗b from the first bootstrap step, a second bootstrap is performed using
bootstrap samples D∗∗bc generated given the estimates θ̂π(D∗b ) (with b = 1, . . . , B) from the model fit
to D∗b , and t(D∗b ) can be compared to the distribution of t(D∗∗bc ) (with c = 1, . . . , C) providing a value

‡From standard regression theory for gaussian variables: T |θ has mean E[T ] + Σ12Σ−1
22 (θ̂ − E(θ̂)) and variance Σ11 −

Σ12Σ−1
22 Σ12

2



p∗b = ˆCDF(t(D∗b ); θ̂π(D∗b )) for each D∗b . The distribution of p∗b would be uniform if T were pivotal;
instead of assuming that, one considers that the non-uniform distribution of p = ˆCDF(t(D); θ̂π(D)) is
asymptotically pivotal, and obtains an estimate of this distribution as that of p∗b over different D∗b , by
the double bootstrap calculation.

Double-bootstrap computations are computer intensive, and indeed not practically applicable as
described above to the present problem. For such reasons, various simplifications of the above procedure
have been discussed in the literature ([3], ch. 9). We apply here the notion of control variates, previously
applied for bias correction in non-parametric bootstrap (ibid, Section 9.3; [4]), as follows. A control
variate is a variable correlated with T , which can be used to predict its value. The control variate that
we consider here is (an estimator of) E[S∗; θ̂π(D)], the expected value of the slope from samples drawn
under the model fitted to D. The test statistic of the corrected bootstrap test is then the residual of
the prediction of the slope s(D) by the mean value of S∗ under θ̂π(D); the latter mean being obtained
by performing a single-level bootstrap simulation. In the literature, simpler control variates have been
considered, not requiring a bootstrap simulation; but these previous works considered non-parametric
bootstrap simulations, which involve additional assumptions not valid here. In some of these previous
works, parameter estimates (elements of θ̂π) clearly correlated with T have been used, in contrast to the
present case.

More specifically, we apply the following procedure, which would be exact (apart from finite simulation
error) under the toy model. Under the tested model, we draw B replicates of D∗ given θ̂π(D) and C

replicates of D∗∗ given θ̂π(D∗). We then perform a calibration fit to construct a predictor of s(D∗b )
from the average value of s(D∗∗bc ), by simple regression with intercept and slope. We use the residuals of
prediction as GOF statistics. We use B = 200 and C = 49. We also performed validation simulations
that demonstrated the need for correcting the single-level bootstrap procedure and the effectiveness of
our correction. For this validation, under each of the sixteen scenarios, we simulated Bv = 200 samples
under the fitted model and applied to them both the single-level bootstrap test and the testing procedure
with control variate. The resulting distributions are shown in Supplementary Figure 7, which confirms
the need for a correction for models including mechanisms P and S.

Computationally, the main benefits of using a control variate over the raw double-bootstrap appear
(a) when performing a single test, as fewer simulations may be needed to reach a given degree of accuracy
in p-value determination; (b) when assessing the performance of the GOF test of an hypothesis π0 under
an alternative model π1 (and in particular for the validation simulations, where π0 = π1). We first
perform a double bootstrap simulation to obtain a calibration fit under π0. Then, for each new sample
D generated under π1, we do not need to perform a new double-bootstrap simulation. Instead, we need
only to compute s(D), θ̂π0(D), and values of s(D∗) for C replicates of D∗ simulated given θ̂π0(D),
to obtain the residual of prediction of s(D) from mean s(D∗) and to compare it to the distribution of
residuals from the single double bootstrap simulation on the original D.

Despite the huge savings in computing brought by the control variate approach over a basic double
bootstrap, our GOF tests of the different simulation scenarios still have large CPU and memory re-
quirements. Such computations were performed both on a Linux computer with 128 cores and 254 GB
of RAM from the Department of Evolutionary Genetics at the Leibniz Institute for Zoo and Wildlife
Research (Berlin, Germany), as well as on a Linux cluster node with 112 cores and 3To of RAM of the
Meso@LR cluster of the University of Montpellier, requiring a computation time of the order of 10,000
core CPU hours (about half of them for the validation).
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2 Supplementary Figures
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Supplementary Figure 1: Relationship between lifetime twinning status, maternal total births and the
age at first birth (n=21,290 mothers in total, from 8 populations; see Table 1 in main text). The age at
first birth was significantly higher for twinners with one (AFBtwinners = 31.6 years; 95% CI: 30.2, 33.0;
AFBnon-twinners = 29.3 years; 95% CI 28.6, 30.0; delay for twinners = 27.5 months; 95% CI: 11.9, 43.7)
or two maternal total births (AFBtwinners = 29.7 years; 95% CI: 28.6, 30.8; AFBnon-twinners = 28.2 years;
95% CI: 27.5, 28.8; delay for twinners = 17.9 months; 95% CI: 6.55, 29.4). Marginal predictions for the
age at first reproduction are shown in black with open symbols. Their values are provided by the left
y-axis. The distribution of maternal total births for both twinners and non-twinners is shown by the
grey lines with filled symbols, with the numerical value given by the log-scaled y-axis on the right of the
figure. 95% CIs are shown as error bars and are based on 1000 parametric bootstrap replicates for each
depicted category of maternal total births.
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Supplementary Figure 2: Relationships between the random effects for the three life history traits.
Top row (A-C) shows the relationship between the random effect from the fit of model 4 (the full
model predicting parity progression; see Methods) and 6 (the full model predicting per-birth twinning
probability). Bottom row (D-F) shows the relationship between the random effect from the fit of model 5
(the full model predicting the interbirth interval) and 6. Left column (A & D) shows the relationship for
mothers that did not produce any twins during their life. Middle column (B & E) shows the relationship
for mothers that produced twins once during their life. Right column (C & F) shows the relationship for
mothers that produced twins twice during their life. All axes are represented on the scale of the linear
predictor of the corresponding models. Relationships for mothers that produced twins more than twice
during their life are not displayed but follow similar patterns.
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Supplementary Figure 3: Hypothetical mechanisms tested by the simulation of alternative scenarios built
around models predicting three life history events: parity progression (PP), interbirth interval (IBI) and
twinning status of a given birth (T). The bubble on the left shows how the three life history models that
were included in all simulation scenarios were modified to test each of the four hypothetical mechanisms
(P, I, S, H; see section Results in main text for description). Each life history model describes the effect
of predictors on a particular life history event. By default, each life history model includes an intercept
and a random effect referring to the population. All models for PP and IBI also consider the effect of
age/parity and maternal identity (see Methods). The bubble on the right shows the comprehensive set
of combinations of the four mechanisms that were tested to produce simulation scenarios.
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Supplementary Figure 4: Representation of the four mechanisms (row 1) used as the basis for 16 simu-
lation scenarios evaluated (all rows). Circles represent the three life history events we considered: parity
progression (PP), probability of twinning (T) and interbirth interval (IBI). The rectangles represent the
variables potentially shaping these life history events — maternal age and parity at a given birth (re-
ferred to as Age + Parity here; and as poly(cbind(age, parity), best_order) in model formulas) and
whether the last birth was a twin birth or not (Twin here; twin in model formulas) — as well as a random
effect capturing other sources of heterogeneity between mothers (Maternal identity here; maternal_id
in model formulas). Black arrows represent relationships assumed in all simulation scenarios. Another
random effect capturing differences between populations was also considered for all life history events
and all mechanisms (not shown). Red arrows represent relationships used to activate the mechanisms
required by each simulation scenario.
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Supplementary Figure 5: Relationship between the per-birth twinning probability and maternal total
births (n=23,281 mothers in total, from 9 populations; see Supplementary Table 14). This figure repro-
duces the relationship shown in main text Fig. 2 (solid line for the regression line and grey area for the
95% CI) but additionally plots the relationship with the inclusion of data from families with missing
birth month information (including the entire Norway dataset). This latter relationship is illustrated by
the dashed regression line with an estimated slope β′ of -0.0346 (95% CI: -0.0511, -0.0183), as well as
with the dotted lines showing the location of the 95% CI.

1

10

100

1000

10000

1 5 10 15 18
Maternal total births

N
um

be
r 

of
 o

bs
er

va
tio

ns

non−twinner

twinner

data observed

data simulated (PIS)

a

1

10

100

1000

10000

Non−twinner Twinner
Lifetime twin. status

N
um

be
r 

of
 o

bs
er

va
tio

ns

b

0.00

0.02

0.04

0.06

20 30 40 50 60
Maternal age at birth

D
en

si
ty

c

1

10

100

1000

10000

100000

Singleton Twin
Birth outcome

N
um

be
r 

of
 o

bs
er

va
tio

ns

d

Supplementary Figure 6: Comparison of different metrics between the real data and a dataset simulated
under scenario PIS. A: distribution of maternal total births; B: number of twinners and non-twinners;
C: distribution of maternal age at birth; D: number of singleton and twin births. The first row (A &
B) represents metrics computed at the level of mothers. The second row (C & D) represents metrics
computed at the level of births. All these plots show that the simulation scenario PIS produced fertility
and twinning data similar to actual observations.
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Supplementary Figure 7: Evaluation of the validity of the goodness-of-fit testing procedure. Each plot
shows the empirical cumulative distribution of p-values for each tested simulation scenario when the
data were simulated under the same scenario. In such a case, the goodness-of-fit test corresponds to
the test of the null hypothesis when the null hypothesis is true. Therefore, the probability density of
p-values should be uniform and the cumulative distribution should appear close to the straight diagonal
line depicted on the plots. However, the empirical cumulative distribution of p-values for the single-level
bootstrap (shown in red) clearly departs from this expectation for scenarios including mechanisms P or
S, showing that a correction is required. The empirical distributions of the double-bootstrap procedure
(shown in blue) corrects this and show that the latter procedure can be applied for all scenarios.
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3 Supplementary Tables

Supplementary Table 1: Summary of the fit of model 1. The model fit corresponds to the fit of a model
with the following formula: births_total ∼ 1 + twinner + (1|pop). In all tables showing the summary of
fits, values given in column 3 for fixed effects, random effects (if applicable) and the parameters of the
response family (if applicable) are estimates. Other values are the results of computations.

Type Variable Value Cond. SE t-value

fixed effects β1 1.54 0.0319 48.1
βtwinner 0.279 0.0162 17.3

random effects variance between pop 0.00785
response family truncated negative binomial with log

link
shape parameter 4.73

fit info number of model parameters 4
marginal log Likelihood -50929
marginal AIC 101866
conditional AIC (cAIC) 101841

data info number of fitted observations (N) 21290

Supplementary Table 2: Summary of the fit of model 2. The model fit corresponds to the fit of a model
with the following formula: twinner ∼ 1 + births_total + (1|pop). See legend of Supplementary Table 1
for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 -3.35 0.112 -30
βbirths_total 0.162 0.00855 18.9

random effects variance between pop 0.0697
response family binomial with logit link
fit info number of model parameters 3

marginal log Likelihood -5548
marginal AIC 11102
conditional AIC (cAIC) 11086

data info number of fitted observations (N) 21290

Supplementary Table 3: Summary of the fit of model 3. The model fit corresponds to the fit of a model
with the following formula: cbind(twin_total, singleton_total) ∼ 1 + births_total + (1|pop). See leg-
end of Supplementary Table 1 for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 -3.83 0.104 -36.7
βbirths_total -0.0338 0.00864 -3.92

random effects variance between pop 0.0556
response family binomial with logit link
fit info number of model parameters 3

marginal log Likelihood -5993
marginal AIC 11992
conditional AIC (cAIC) 11976

data info number of fitted observations (N) 21290
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Supplementary Table 4: Summary of the fit of model 4. The model fit corresponds to the fit of a model
with the following formula: PP ∼ 1 + twin + poly(cbind(age, parity), 5) + (1|maternal_id) + (1|pop). See
legend of Supplementary Table 1 for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 1.57 0.179 8.74
βtwin -0.412 0.0636 -6.47
βage -420 59.7 -7.04
βage2 -185 51.7 -3.57
βage3 -43.7 32.6 -1.34
βage4 -15.7 14.3 -1.09
βage5 2.47 9.7 0.255
βparity 49.1 97.6 0.502
βage×parity 12922 39528 0.327
βage2×parity -33721 30550 -1.1
βage3×parity -395 14752 -0.0268
βage4×parity -3270 6413 -0.51
βparity2 -18.3 105 -0.175
βage×parity2 23609 38306 0.616
βage2×parity2 -5967 22834 -0.261
βage3×parity2 10602 8890 1.19
βparity3 27 64.7 0.417
βage×parity3 -15417 19086 -0.808
βage2×parity3 1259 8611 0.146
βparity4 24.5 21.4 1.14
βage×parity4 -1816 5027 -0.361
βparity5 -4.69 4.84 -0.97

random effects variance between maternal_id 0.465
variance between pop 0.104

response family binomial with logit link
fit info number of model parameters 24

marginal log Likelihood -40429
marginal AIC 80905
conditional AIC (cAIC) 80276

data info number of fitted observations (N) 105833
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Supplementary Table 5: Summary of the fit of model 5. The model fit corresponds to the fit of a model
with the following formula: IBI ∼ 1 + twin + poly(cbind(age, parity), 6) + (1|maternal_id) + (1|pop). Note
that the variable IBI fitted in the model actually corresponds to the duration of interbirth interval minus
six months. This rescaling prevents numerical issues during the simulations. When this fitted model
is used for predictions (in plots or to compute effect sizes), the missing six months are reintroduced to
produce correct results. See legend of Supplementary Table 1 for other details.

Type Variable Value Cond. SE t-value

fixed effects β1 3.44 0.0579 59.5
βtwin -0.0328 0.015 -2.18
βage -63.6 21.9 -2.9
βage2 39.7 19.6 2.02
βage3 -31.3 13 -2.41
βage4 15 6.31 2.38
βage5 -5 2.42 -2.07
βage6 4.01 1.01 3.95
βparity 121 40.7 2.96
βage×parity -29804 15604 -1.91
βage2×parity 26630 12833 2.08
βage3×parity -15687 7263 -2.16
βage4×parity 5901 2912 2.03
βage5×parity -2056 883 -2.33
βparity2 75.7 54.5 1.39
βage×parity2 -30418 19139 -1.59
βage2×parity2 24308 13414 1.81
βage3×parity2 -11197 5960 -1.88
βage4×parity2 3100 1618 1.92
βparity3 53 42.1 1.26
βage×parity3 -17528 12996 -1.35
βage2×parity3 9735 7207 1.35
βage3×parity3 -2955 2067 -1.43
βparity4 19 19 1
βage×parity4 -4658 4824 -0.966
βage2×parity4 1902 1773 1.07
βparity5 7.84 5.26 1.49
βage×parity5 -1418 970 -1.46
βparity6 1.68 1.04 1.61

random effects variance between maternal_id 0.163
variance between pop 0.00375

response family negative binomial with log link
shape parameter 5.2

fit info number of model parameters 32
marginal log Likelihood -337275
marginal AIC 674614
conditional AIC (cAIC) 663067

data info number of fitted observations (N) 84543
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Supplementary Table 6: Summary of the fit of model 6. The model fit corresponds to the fit of a model
with the following formula: T ∼ 1 + poly(cbind(age, parity), 3) + (1|maternal_id) + (1|pop). See legend of
Supplementary Table 1 for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 -4.1 0.113 -36.4
βage 73.7 31.1 2.37
βage2 -61.2 17.2 -3.55
βage3 -47.1 16.4 -2.87
βparity -0.936 40.1 -0.0233
βage×parity -4006 11890 -0.337
βage2×parity 7710 8669 0.889
βparity2 19 27.3 0.694
βage×parity2 -4380 8121 -0.539
βparity3 -18.6 14.1 -1.32

random effects variance between maternal_id 0.485
variance between pop 0.0571

response family binomial with logit link
fit info number of model parameters 12

marginal log Likelihood -8828
marginal AIC 17681
conditional AIC (cAIC) 17644

data info number of fitted observations (N) 105833

Supplementary Table 7: Summary of the fit of model 7. The model fit corresponds to the fit of a model
with the following formula: AFB ∼ 1 + twinner ∗ births_total_fac + (1|pop). See legend of Supplementary
Table 1 for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 5.86 0.0123 479
βtwinner 0.0752 0.0207 3.63
βbirths_total_fac2 -0.0396 0.00461 -8.6
βbirths_total_fac3 -0.0686 0.00462 -14.8
βbirths_total_fac4 -0.0977 0.00465 -21
βbirths_total_fac5 -0.122 0.00477 -25.6
βbirths_total_fac6 -0.156 0.00486 -32.1
βbirths_total_fac7 -0.182 0.00513 -35.5
βbirths_total_fac8 -0.217 0.00536 -40.5
βbirths_total_fac9 -0.244 0.00601 -40.7
βbirths_total_fac10+ -0.29 0.00551 -52.6
βtwinner:births_total_fac2 -0.0236 0.0264 -0.894
βtwinner:births_total_fac3 -0.086 0.0258 -3.34
βtwinner:births_total_fac4 -0.0676 0.0246 -2.75
βtwinner:births_total_fac5 -0.0688 0.0239 -2.87
βtwinner:births_total_fac6 -0.0643 0.024 -2.68
βtwinner:births_total_fac7 -0.06 0.0239 -2.52
βtwinner:births_total_fac8 -0.081 0.0245 -3.31
βtwinner:births_total_fac9 -0.0893 0.0255 -3.5
βtwinner:births_total_fac10+ -0.0719 0.024 -3

random effects variance between pop 0.00111
response family negative binomial with log link

shape parameter 41.5
fit info number of model parameters 22

marginal log Likelihood -113839
marginal AIC 227722
conditional AIC (cAIC) 227691

data info number of fitted observations (N) 21290
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Supplementary Table 8: Summary of the fit of model 8. The model fit corresponds to the fit of a model
with the following formula: PP ∼ 1 + poly(cbind(age, parity), 5) + (1|maternal_id) + (1|pop). See legend
of Supplementary Table 1 for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 1.56 0.179 8.67
βage -421 59.7 -7.04
βage2 -185 51.8 -3.57
βage3 -43.4 32.6 -1.33
βage4 -15.8 14.4 -1.1
βage5 2.3 9.7 0.237
βparity 48 97.7 0.491
βage×parity 13240 39545 0.335
βage2×parity -34019 30565 -1.11
βage3×parity -330 14760 -0.0224
βage4×parity -3263 6416 -0.509
βparity2 -19.8 105 -0.188
βage×parity2 24157 38317 0.63
βage2×parity2 -6236 22842 -0.273
βage3×parity2 10729 8894 1.21
βparity3 25.9 64.7 0.4
βage×parity3 -15049 19092 -0.788
βage2×parity3 1073 8613 0.125
βparity4 24 21.4 1.12
βage×parity4 -1749 5030 -0.348
βparity5 -4.66 4.84 -0.962

random effects variance between maternal_id 0.472
variance between pop 0.105

response family binomial with logit link
fit info number of model parameters 23

marginal log Likelihood -40450
marginal AIC 80946
conditional AIC (cAIC) 80301

data info number of fitted observations (N) 105833
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Supplementary Table 9: Summary of the fit of model 9. The model fit corresponds to the fit of a model
with the following formula: IBI ∼ 1 + poly(cbind(age, parity), 6) + (1|maternal_id) + (1|pop). Note that
the variable IBI fitted in the model actually corresponds to the duration of interbirth interval minus six
months. This rescaling prevents numerical issues during the simulations. When this fitted model is used
for predictions (in plots or to compute effect sizes), the missing six months are reintroduced to produce
correct results. See legend of Supplementary Table 1 for other details.

Type Variable Value Cond. SE t-value

fixed effects β1 3.44 0.0578 59.6
βage -63.4 21.9 -2.9
βage2 39.5 19.6 2.01
βage3 -31.2 13 -2.4
βage4 14.9 6.31 2.37
βage5 -4.98 2.42 -2.06
βage6 4.01 1.01 3.95
βparity 120 40.7 2.96
βage×parity -29655 15604 -1.9
βage2×parity 26491 12834 2.06
βage3×parity -15608 7263 -2.15
βage4×parity 5870 2912 2.02
βage5×parity -2048 883 -2.32
βparity2 75.2 54.5 1.38
βage×parity2 -30241 19139 -1.58
βage2×parity2 24178 13414 1.8
βage3×parity2 -11134 5960 -1.87
βage4×parity2 3084 1618 1.91
βparity3 52.6 42.1 1.25
βage×parity3 -17419 12995 -1.34
βage2×parity3 9676 7207 1.34
βage3×parity3 -2943 2067 -1.42
βparity4 18.9 19 0.993
βage×parity4 -4622 4824 -0.958
βage2×parity4 1891 1773 1.07
βparity5 7.79 5.26 1.48
βage×parity5 -1409 970 -1.45
βparity6 1.67 1.04 1.6

random effects variance between maternal_id 0.163
variance between pop 0.00369

response family negative binomial with log link
shape parameter 5.2

fit info number of model parameters 31
marginal log Likelihood -337277
marginal AIC 674616
conditional AIC (cAIC) 663064

data info number of fitted observations (N) 84543

Supplementary Table 10: Summary of the fit of model 10. The model fit corresponds to the fit of a
model with the following formula: T ∼ 1 + (1|maternal_id) + (1|pop). See legend of Supplementary Table
1 for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 -4.06 0.0922 -44
random effects variance between maternal_id 0.473

variance between pop 0.0607
response family binomial with logit link
fit info number of model parameters 3

marginal log Likelihood -8911
marginal AIC 17828
conditional AIC (cAIC) 17792

data info number of fitted observations (N) 105833
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Supplementary Table 11: Summary of the fit of model 11. The model fit corresponds to the fit of a
model with the following formula: T ∼ 1 + (1|pop). See legend of Supplementary Table 1 for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 -4.05 0.0911 -44.4
random effects variance between pop 0.0593
response family binomial with logit link
fit info number of model parameters 2

marginal log Likelihood -8927
marginal AIC 17857
conditional AIC (cAIC) 17841

data info number of fitted observations (N) 105833

Supplementary Table 12: Summary of the fit of model 12. The model fit corresponds to the fit of a model
with the following formula: T ∼ 1 + poly(cbind(age, parity), 3) + (1|pop). See legend of Supplementary
Table 1 for more details.

Type Variable Value Cond. SE t-value

fixed effects β1 -4.08 0.111 -36.8
βage 71 30.7 2.32
βage2 -60.7 17 -3.57
βage3 -47.2 16.3 -2.9
βparity 1.54 39.4 0.0392
βage×parity -4468 11667 -0.383
βage2×parity 7856 8568 0.917
βparity2 19.3 26.7 0.721
βage×parity2 -4441 7983 -0.556
βparity3 -18.8 13.9 -1.35

random effects variance between pop 0.0557
response family binomial with logit link
fit info number of model parameters 11

marginal log Likelihood -8844
marginal AIC 17711
conditional AIC (cAIC) 17695

data info number of fitted observations (N) 105833
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Supplementary Table 13: Results of the goodness-of-fit tests. P-values underlined denote scenario simu-
lations generating data for which the relationship between twinning propensity and fertility is similar to
the one estimated on the raw data, using a threshold of 0.05. The two columns for p-values correspond,
respectivelly from left to right, to p-values obtained in the case of the double-bootstrap or single-level
bootstrap procedure (see Supplementary Notes & Supplementary Figure 7).

Scenario GOF p-value Raw p-value

P 0.065 0.080
I 0.005 0.005
S 0.005 0.015
H 0.005 0.005
PI 0.070 0.090
PS 0.060 0.348
PH 0.045 0.060
IS 0.005 0.015
IH 0.005 0.005
SH 0.005 0.015
PIS 0.169 0.383
PIH 0.035 0.045
PSH 0.124 0.373
ISH 0.005 0.015
PISH 0.075 0.313
0 0.005 0.005
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Supplementary Table 14: Details of data used in the present study, for each population separately and for all populations combined. This table is the same as
Table 1 from main text, but here we also include data from families with missing birth month information. Therefore this table includes an entry for the Norway
dataset, in which birth month information was never available. All references are cited in main text.

Population Locations Maternal
birth period

Mothers Non-
twinners

Twinners Twinner
rate
(‰)

Offspring
birth period

Births Singleton
births

Twin
births

Twinning
rate
(‰)

Total
births
(min-

median-
max)

References

Finland East Jaakkima,
Rautu

1733-1899 911 815 96 105.38 1758-1940 4665 4562 103 22.08 1-7-17 Pettay et al.
2016; Pettay et
al. 2018

Finland
Lapland

Inari,
Enontekiö
and
Sodankylä

1700-1884 757 695 62 81.90 1725-1918 3548 3482 66 18.60 1-6-13 Helle 2019

Finland SW-
Archipelago

Hiittinen,
Kustavi,
Rymättylä

1709-1899 2795 2489 306 109.48 1732-1942 12458 12124 334 26.81 1-6-15 Haukioja et al.
1989; Lummaa et
al. 1998

Finland
West

Ikaalinen,
Pulkkila,
Tyrvää

1700-1899 5890 5396 494 83.87 1721-1943 32029 31495 534 16.67 1-7-18 Pettay et al.
2016; Pettay et
al. 2018

Krummhörn Lower
Saxony,
Germany

1705-1823 3739 3461 278 74.35 1725-1868 17634 17336 298 16.90 1-6-17 Gabler and
Voland 1994

Norway Smøla and
Soknedal

1670-1878 1672 1556 116 69.38 1700-1915 8410 8284 126 14.98 1-6-14 Skjœrvø et al.
2009

Sami
Lapland

Inari,
Enontekiö
and
Sodankylä

1703-1880 957 885 72 75.24 1729-1920 4858 4780 78 16.06 1-7-13 Helle et al. 2004;
Helle 2019

Sweden
Lapland

Karesuando,
Jukkasjärvi,
Jokkmok,
Vilhelmina
and
Jällivaara

1721-1878 1943 1797 146 75.14 1749-1902 11106 10946 160 14.41 1-8-17 Sköld and
Axelsson 2008;
Sköld et al. 2011;
Helle 2019

Switzerland Linthal, Elm 1700-1899 4617 4394 223 48.30 1720-1945 21374 21138 236 11.04 1-6-18 Evans et al. 2018

All the above All the above 1670-1899 23281 21488 1793 77.02 1700-1945 116082 114147 1935 16.67 1-7-18 This paper
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