

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202106029

Robust Porous WC-Based Self-Supported Ceramic Electrodes for High Current Density Hydrogen Evolution Reaction

Feihong Wang, Yutong Wu, Binbin Dong, Kai Lv, Yangyang Shi, Nianwang Ke, Luyuan Hao, Liangjun Yin, Yu Bai, Xin Xu*, Yuxi Xian* and Simeon Agathopoulos

Supporting Information

Robust Porous WC-based Self-Supported Ceramic Electrodes for High Current Density Hydrogen Evolution Reaction

Feihong Wang^{1,+}, Yutong Wu^{1,+}, Binbin Dong², Kai Lv¹, Yangyang Shi¹, Nianwang Ke¹, Luyuan Hao¹, Liangjun Yin³, Yu Bai⁴, Xin Xu^{1,*}, Yuxi Xian^{5,*}, and Simeon Agathopoulos⁶

- ¹ CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
- ² School of Materials Science and Engineering, Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, PR China
- ³ School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu, PR China.
- ⁴ School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
- ⁵ CAS Key Laboratory of Mechanical Behaviors and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
- ⁶ Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina, Greece.

*: Corresponding author: Tel.: +86 551 3600824, Fax: +86 551 3601592

E-mail address: xuxin@ustc.edu.cn (Prof. Xin Xu)

[+] These authors contributed equally to this work.

Figure S1. Microstructure of the cross-section of ceramic membranes, a) the green sample, and b-d) after heat treatment at 1600 $^{\circ}$ C in Ar atmosphere at various magnifications.

Figure S2. Microstructure of the skin layer surface of WC-N/W-1200 electrode at a) low and b) high magnification.

Figure S3. a) Pore size distribution and b) BET isotherms of WC-N/W-1200 electrode.

Figure S4. XPS full-spectrum of WC-N/W-1200 electrode.

Figure S5. High resolution XPS spectra of W 4f of a) WC, b) WC-N/W-1100, c) WC-N/W-1200, d) WC-N/W-1300, and e) WC-N/W-1400.

Figure S6. High resolution XPS spectra of W 4f in W, WC, WC-N/W-1200 and WC/W.

Figure S7. Mott-Schottky plots of WC-N/W-1200 electrode.

Figure S8. Electron paramagnetic resonance (EPR) spectra of WC and WC-N/W-1200 electrodes.

Figure S9. (a) Electrochemical test device and (b) H_2 evolved from the electrode in acidic media.

Figure S10. X-ray diffractograms of WC and WC electrodes after heat treatment in CO₂ and Ar-H₂ atmosphere (the inset illustrates the HRTEM image).

Figure S11. Comparison of a) LSV and b) Tafel curves of WC, WC/W and WC-N/W-1200 electrodes in $0.5 \text{ M H}_2\text{SO}_4$.

Figure S12. Exchange current density (j_0) of the WC and the WC-N/W-*T* electrodes calculated by applying extrapolation method for HER in 0.5 M H₂SO₄.

Figure S13. The CV curves of a) WC, b) WC-N/W-1100, c) WC-N/W-1200, d) WC-N/W-1300, and e) WC-N/W-1400 electrodes in 0.5 M H_2SO_4 for evaluating the C_{dl} .

Figure S14. ECSA normalized LSV curves of the prepared electrodes in 0.5 M H₂SO₄.

Figure S15. Faraday efficiency of WC-N/W-1200 in 0.5 M H₂SO₄.

Figure S16. Microstructure of the WC-N/W-1200 electrode after cycling in a) 0.5 M H₂SO₄

and b) 1 M KOH.

Figure S17. HRTEM images of the WC-N/W-1200 electrode after cycling in a) $0.5 \text{ M H}_2\text{SO}_4$ and b) 1 M KOH.

Figure S18. XPS spectra of the WC-N/W-1200 membrane after cycling in $0.5 \text{ M H}_2\text{SO}_4$ and 1 M KOH.

Figure S19. X-ray diffractograms of the WC-N/W-1200 membrane after cycling in 0.5 M H_2SO_4 and 1 M KOH.

Figure S20. Water permeability of a) the encapsulation membrane, b) the test device, c) water permeability curve, and d) LSV curves of the WC-N/W-1200 electrode before and after 4 h penetration test in $0.5 \text{ M H}_2\text{SO}_4$.

Figure S21. Comparison of a) LSV and b) Tafel curves of WC, WC/W, and WC-N/W-1200 electrodes in 1 M KOH.

Figure S22. The CV curves of a) WC, b) WC-N/W-1100, c) WC-N/W-1200, d) WC-N/W-1300, and e) WC-N/W-1400 electrodes in 1 M KOH for evaluating the C_{dl} .

Figure S23. C_{dl} values at the potential of 0.51 V (vs. RHE) of WC and WC-N/W-T membrane electrodes in 1 M KOH.

Figure S24. Exchange current density (j_0) of WC and WC-N/W electrodes calculated by applying extrapolation method for HER in 1 M KOH.

Figure S25. ECSA normalized LSV curves of prepared electrodes in 1 M KOH.

Figure S26. Faraday efficiency of WC-N/W-1200 in 1 M KOH.

Figure S27. Water contact angle evolution over time for the WC-N/W-1200 membrane in a) H_2SO_4 and b) KOH.

Figure S28. The density of states (DOS) for W and C atoms in WC (100).

Figure S29. a) Side and b) bottom view of the WC (100) /W (110) heterostructure model.

Figure S30. The density of states (DOS) for W and C atoms in WC (100) /W (110) heterostructure.

Figure S31. Slice of charge density difference at the W/WC interface in WC (100)/W(110) heterostructure.

Figure S32. Optimized structure of adsorbed H on the WC (100) model surface.

Figure S33. a) HRTEM image of WC (100) $/W_2N$ (111) heterostructure, and b) side and c) bottom view of the WC (100) $/W_2N$ (111) heterostructure model.

Figure S34. Slice of charge density difference at the W_2N/WC interface in WC (100) $/W_2N$ (111) heterostructure.

Figure S35. The density of states (DOS) for W, N, and C atoms in WC (100) $/W_2N$ (111) heterostructure.

Figure S36. Optimized structure of adsorbed H on the WC (100) $/W_2N$ (111) heterostructure model.

Figure S37. a) Schematic representation of the model of WC-N (100) /W (110) (N replaced 1/12 C) heterostructure with vacancy, and b) optimized structure of adsorbed H on the heterostructure models.

Figure S38. Structure of WC(100) twin adsorption of H.

Composition	WC Slurry	Graphite Slurry
N-methyl-2-pyrrolidone (NMP)	16.8	55.0
Polyethersulfone (PESf)	4.9	11.0
Polyvinylpyrrolidone (PVP)	1.0	1.7
WC powder	73.6	None
WO ₃ powder	3.7	None
Graphite powder	None	32.3

Table S1. Composition of WC and graphite slurries (in wt.%).

Table S2. HER performance of the prepared WC and WC-N/W-T membrane electrodes in 0.5 M H_2SO_4 media.

Samples	Overpotenti al (mV)	Tafel slope (mV/dec)	Cdl (mF cm ⁻²)	j ₀ (mA cm ⁻²)	R _{ct} (Ω)
WC	213	112.2	39.4	0.046	4.618
WC-N/W-1100	126	56.8	81.7	0.083	0.817
WC-N/W-1200	87	44.9	125.3	0.192	0.557
WC-N/W-1300	111	47.8	100.3	0.096	0.586
WC-N/W-1400	152	73.7	49.7	0.066	2.330

Table S3. ECSA of the prepared WC and WC-N/W-T membrane electrodes in 0.5 M H_2SO_4 and 1 M KOH.

Samples	A _{ECSA} (cm ²) 0.5 M H ₂ SO ₄	A _{ECSA} (cm ²) 1 M KOH
WC	985.0	547.5
WC-N/W-1100	2042.5	1947.5
WC-N/W-1200	3132.5	2727.5
WC-N/W-1300	2507.5	2177.5
WC-N/W-1400	1242.2	1570.0

Samples	Over potential (mV)	Tafel slope (mV/dec)	C_{dl} (mF cm ⁻²)	j ₀ (mA cm ⁻²)	R _{ct} (Ω)
WC	232	139.7	21.9	0.080	6.923
WC-N/W-1100	168	79.4	77.9	0.122	1.123
WC-N/W-1200	104	62.2	109.1	0.311	0.514
WC-N/W-1300	126	75.9	87.1	0.229	0.861
WC-N/W-1400	186	103.2	62.8	0.103	2.361

Table S4. HER performance of the prepared WC and WC-N/W-T membrane electrodes in 1 M KOH media.

Table S5. Comparison of the HER performance of the electrodes prepared in the present study with previously reported values for various tungsten carbide-based catalysts in 0.5 M H_2SO_4 .

Materials	Electrolyte	Overpotential	Tafel slope	Ref
	Licenolyte	(mV)	(mV dec ⁻¹)	itel.
WC-CNTs	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	145	72	[1]
2D WC	0.5 M H ₂ SO ₄	120	38	[2]
N-doped WC	0.5 M H ₂ SO ₄	113	75	[3]
ES-WC/W ₂ C	0.5 M H ₂ SO ₄	159	45	[4]
WC/W ₂ C	0.5 M H ₂ SO ₄	69	52	[5]
Cu@WC	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	92	50.5	[6]
P-W ₂ C@NC	0.5 M H ₂ SO ₄	89	53	[7]
W ₂ C/MWNT	0.5 M H ₂ SO ₄	123	45	[8]
WCN	0.5 M H ₂ SO ₄	128	65	[9]
WC-N/W-1200	$0.5 \ M \ H_2 SO_4$	87	44.9	This work

Materials	Electrolyte	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
WC-CNTs	1 M KOH	137	106	[1]
Cu@WC	1 M KOH	119	88.7	[6]
Co ₂ P/WC@NC	1 M KOH	180	90	[10]
W ₂ N/WC	1 M KOH	148.5	47.4	[11]
p-WC _x NWs	1 M KOH	122	56	[12]
(M0 ₂ C) _{0.34} - (WC) _{0.32} /NG	1 М КОН	93	54	[13]
W-W ₂ C	1 M KOH	147	51	[14]
C-CWC	1 M KOH	73	25	[15]
Mo ₂ C/W ₂ C	1 M KOH	132	76	[16]
WC-N/W-1200	1 М КОН	104	62.2	This work

Table S6. Comparison of the HER performance of the electrodes prepared in the present study with previously reported values for various tungsten carbide-based catalysts in 1 M KOH.

Table S7. Comparison of the HER performance of the electrodes prepared in the present study with previously reported values for metal carbide catalysts in $0.5 \text{ M H}_2\text{SO}_4$.

Materials	Electrolyte	Overpoten tial (mV)	Tafel slope (mV dec ⁻¹)	Syn- thesis	electrod e type	Ref.
MoC- Mo ₂ C-790	0.5 M H ₂ SO ₄	114	62	Electrolytic deposition (in situ)	Self- supporte d	[17]
Mo ₂ N– Mo ₂ C/HGr	0.5 M H ₂ SO ₄	157	55	Catalytic etching (ex-situ)	Powder	[18]
Mo _x C-0.4	0.5 M H ₂ SO ₄	155	48	Template method (ex-situ)	Powder	[19]
W-SiC	0.5 M	286	/	PDC	Self-	[20]

	H_2SO_4			(in situ)	supporte	
					d	
SiMoCP	0.5 M H ₂ SO ₄	88	37	Hydrothermal, annealing (ex-situ)	Powder	[21]
Ti ₂ CT _x	0.5 M H ₂ SO ₄	170	100	Liquid etching (ex-situ)	Powder	[22]
Ti ₃ C ₂	0.5 M H ₂ SO ₄	169	97	Liquid etching (ex-situ)	Powder	[23]
MoCN-3D	0.5 M H ₂ SO ₄	87	51.4	Hydrothermal annealing (ex-situ)	Powder	[24]
Mo ₁₀ /Ti	0.5 M H ₂ SO ₄	180	91	Liquid etching, Hydrothermal (ex-situ)	Powder	[25]
WC-N/W- 1200	0.5 M H ₂ SO ₄	87	44.9	Atmosphere sintering (in-situ)	Self- supporte d	This work

Table S8. Comparison of the HER performance of the electrodes prepared in the present study with previously reported values for metal carbide catalysts in 1 M KOH.

Materials	Electrolyte	Overpoten tial (mV)	Tafel slope (mV dec ⁻¹)	Syn- thesis	electrode type	Ref.
MoC- Mo ₂ C-790	1 М КОН	98.2	59	Electrolytic deposition (in situ)	Self- supported	[17]
Mo ₂ N– Mo ₂ C/HG r	1 M KOH	154	68	Catalytic etching (ex-situ)	Powder	[18]
CoMoC/Ti 3C2-NC	1 M KOH	75	43	Liquid etching, annealing (ex-situ)	Powder	[26]
BCF/Mo ₂ C-0.4	1 M KOH	71	52.4	Hydrothermal carbonization (ex-situ)	Self- supported	[27]

CNTs/Ti ₃ C ₂ T _x	1 M KOH	93	128	Liquid etching, annealing (ex-situ)	Powder	[28]
Ni-GF/VC	1 M KOH	128	80	Hydrothermal annealing (in-situ)	Self- supported	[29]
Ni ₃ C/CNT	1 M KOH	132	49	ALD (ex-situ)	Self- supported	[30]
Fe-Ni ₃ C	1 М КОН	292	41.3	Precursor method, annealing (ex-situ)	Powder	[31]
Ni-VC@C	1 М КОН	146	105	Chemical vapour carbonization reaction (ex-situ)	Powder	[32]
WC-N/W- 1200	1 M KOH	104	62.2	Atmosphere sintering (in-situ)	Self- supported	This work

Table S9. C and N element content in WC-N/W-1200 electrode obtained by EPMA.

Point	C (mol%)	N (mol%)	C/N
1	50.8	4.3	11.8
2	51.6	4.6	11.3
3	51.4	4.6	11.2
4	51.2	4.3	11.8
5	52.7	4.1	12.9
6	51.6	4.7	10.9
7	52.5	4.4	12.0
8	50.8	4.9	10.4
9	50.4	4.5	11.1
10	51.0	4.5	11.5
	Average value		11.5

Lattice constants	W	WC	WC-N/W	WC/W ₂ N
a (Å)	3.20795	2.92871	5.99355	5.9501
b (Å)	3.20795	2.92871	5.81150	5.8823
c (Å)	3.20795	2.84987	13.3208	19.1059
α (°)	90	90	90.0084	90
β (°)	90	90	90.0122	90
γ (°)	90	120	90.0016	105
c (Å) α (°) β (°) γ (°)	3.20795 3.20795 90 90 90	2.92871 2.84987 90 90 120	5.81150 13.3208 90.0084 90.0122 90.0016	19.1059 90 90 105

Table S10. Lattice constants of W, WC, WC-N/W and WC/W $_2$ N heterostructure.

References

[1] X. Fan, H. Zhou, X. Guo, ACS Nano 2015, 9, 5125.

[2] M. Zeng, Y. Chen, J. Li, H. Xue, R. G. Mendes, J. Liu, T. Zhang, M. H. Rümmeli, L.
 Fu, *Nano Energy* 2017, 33, 356.

[3] N. Han, K. R. Yang, Z. Lu, Y. Li, W. Xu, T. Gao, Z. Cai, Y. Zhang, V. S. Batista, W. Liu, X. Sun, *Nat. Commun.* 2018, 9, 924.

[4] Z. Chen, W. Gong, S. Cong, Z. Wang, G. Song, T. Pan, X. Tang, J. Chen, W. Lu, Z. Zhao, *Nano Energy* 2020, 68, 104335.

[5] L.-N. Zhang, Y.-Y. Ma, Z.-L. Lang, Y.-H. Wang, S. U. Khan, G. Yan, H.-Q. Tan, H.-Y. Zang, Y.-g. Li, *J. Mater. Chem. A* 2018, 6, 15395.

[6] M. Yao, B. Wang, B. Sun, L. Luo, Y. Chen, J. Wang, N. Wang, S. Komarneni, X. Niu,
W. Hu, *Appl.Catal. B: Environ.* 2021, 280, 119451.

[7] G. Yan, C. Wu, H. Tan, X. Feng, L. Yan, H. Zang, Y. Li, J. Mater. Chem. A 2017, 5, 765.

[8] Q. Gong, Y. Wang, Q. Hu, J. Zhou, R. Feng, P. N. Duchesne, P. Zhang, F. Chen, N.
 Han, Y. Li, C. Jin, Y. Li, S. T. Lee, *Nat. Commun.* 2016, 7, 13216.

Z. Kou, T. Wang, H. Wu, L. Zheng, S. Mu, Z. Pan, Z. Lyu, W. Zang, S. J. Pennycook,
 J. Wang, *Small* 2019, 15, e1900248.

[10] Y. Gao, Z. Lang, F. Yu, H. Tan, G. Yan, Y. Wang, Y. Ma, Y. Li, *ChemSusChem* 2018, 11, 1082.

[11] J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, *Adv. Mater*.2020, 32, e1905679.

[12] B. Ren, D. Li, Q. Jin, H. Cui, C. Wang, J. Mater. Chem. A 2017, 5, 13196.

[13] L. Huo, B. Liu, Z. Gao, J. Zhang, J. Mater. Chem. A 2017, 5, 18494.

[14] Y. Hu, B. Yu, M. Ramadoss, W. Li, D. Yang, B. Wang, Y. Chen, *ACS Sustain. Chem. Eng.* **2019**, 7, 10016.

[15] Y. Liu, G. D. Li, L. Yuan, L. Ge, H. Ding, D. Wang, X. Zou, *Nanoscale* 2015, 7, 3130.

[16] Y. Ling, F. M. D. Kazim, Q. Zhang, S. Xiao, M. Li, Z. Yang, *J. Hydrogen Energy* 2021, 46, 9699.

[17] W. Liu, X. Wang, F. Wang, K. Du, Z. Zhang, Y. Guo, H. Yin, D. Wang, *Nat. Commun.***2021**, 12, 6776.

[18] H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang, H. Fu, *Adv. Mater.* 2018, 30, 1704156.

[19] X. Zhang, J. Wang, T. Guo, T. Liu, Z. Wu, L. Cavallo, Z. Cao, D. Wang, Appl. Catal. B:

Environ. 2019, 247, 78.

[20] Z. Yu, K. Mao, Y. Feng, J. Adv. Ceram. 2021, 10, 1338.

[21] R. Kumar, A. Gaur, T. Maruyama, C. Bera, V. Bagchi, *ACS Appl. Mater. Interfaces* **2020**, 12, 57898.

[22] S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu, J. Bao, B. Pan, Y. Xie, *Nano Energy* 2018, 47, 512.

[23] W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao, X. Fan, X. Guo, *ACS Sustain. Chem. Eng.***2018**, 6, 8976.

[24] H. Zhang, Z. Ma, G. Liu, L. Shi, J. Tang, H. Pang, K. Wu, T. Takei, J. Zhang, Y. Yamauchi, J. Ye, *NPG Asia Mater.* **2016**, 8, e293.

[25] J. J. Huang, X. Q. Liu, F. F. Meng, L. Q. He, J. X. Wang, J. C. Wu, X. H. Lu, Y. X. Tong, P. P. Fang, J. Electroanal. Chem. 2020, 856, 113727.

[26] X. Wu, S. Zhou, Z. Wang, J. Liu, W. Pei, P. Yang, J. Zhao, J. Qiu, *Adv. Energy Mater*.**2019**, 9, 1901333.

[27] J. Xiao, Y. Zhang, Z. Zhang, Q. Lv, F. Jing, K. Chi, S. Wang, ACS Appl. Mater. Interfaces 2017, 9, 22604.

[28] X. Wang, S. Wang, J. Qin, X. Xie, R. Yang, M. Cao, *Inorg. Chem.* 2019, 58, 16524.

[29] C. Yang, R. Zhao, H. Xiang, J. Wu, W. Zhong, W. Li, Q. Zhang, N. Yang, X. Li, Adv. Energy Mater. 2020, 10, 2070152.

[30] W. Xiong, Q. Guo, Z. Guo, H. Li, R. Zhao, Q. Chen, Z. Liu, X. Wang, *J. Mater. Chem. A* **2018**, 6, 4297.

[31] H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, *Angew. Chem. Int. Ed.* **2017**, 56, 12566.

[32] L. Peng, J. Shen, L. Zhang, Y. Wang, R. Xiang, J. Li, L. Li, Z. Wei, *J. Mater. Chem. A* **2017**, 5, 23028.