Supplementary Material

Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway

Shaobo Wang, Yin Chen, Songling Han, Yong Liu, Jining Gao, Yinghui Huang, Wei Sun, Junping Wang, Cheng Wang, Jinghong Zhao

Corresponding authors: E-mail: zhaojh@tmmu.edu.cn, wangctmmu@126.com, wangjunping@tmmu.edu.cn

Table of contents:

Table S1. Antibodies applied in the immunofluorescence staining

Table S2. Antibodies applied in the immunohistochemistry staining

Table S3. Sequences of primers used in q-PCR

Table S4. Antibodies applied in the Western blotting

Figure S1. SDS-PAGE determining the existence of BSA in the NPs

Figure S2. Zeta potential and particle size of different batches of Se@BSA NPs

Figure S3. Changes in body weight at day 7 post Se@BSA NP treatment

Figure S4. Changes in ALT and AST levels at day 7 post Se@BSA NP treatment

Figure S5. Changes in mouse hemogram at day 7 post Se@BSA NP treatment

Figure S6. ICP-MS detecting the Se contents in serum post Se@BSA NP treatment

Figure S7. ICP-MS detecting the Se contents in HK-2 cells post Se@BSA NP treatment

Figure S8. Tubular injury score of IRI-AKI mouse

Figure S9. NLRP3 mRNA expression in HK-2 cells

Figure S10. Induced expression of GPx-1 in HK-2 cells by Se@BSA NPs

Proteins	Primary Antibodies	Secondary Antibodies	
Mouse AQP1	1:100, sc-25287 (Santa Cruz, Shanghai, CHN)	Cy3, A0521 (Beyotime)	
NLRP3	1:200, bs-23722R (Bioss, Beijing, CHN)	Alexa Fluor 488, A0423 (Beyotime)	
GPx-1	1:100, AF7017 (Beyotime)	Cy3, A0516 (Beyotime)	
Fibronectin	1:100, ab2413 (Abcam, Shanghai, CHN)	Cy3, A0516 (Beyotime)	
α-Sma	1:200, 19245 (CST, Shanghai, CHN)	Cy3, A0516 (Beyotime)	

 Table S1. Antibodies applied in the immunofluorescence staining

Proteins	Primary Antibodies	Secondary Antibodies
Kim-1	1:100, ab78494 (Abcam)	ZLI-9019 (ZSGB-BIO, Beijing, CHN)
IL-1β	1:100, ab283818 (Abcam)	ZLI-9019 (ZSGB-BIO)
IL-18	1:100, ab191860 (Abcam)	ZLI-9019 (ZSGB-BIO)
Collagen I	1:1000, 81375 (CST)	ZLI-9019 (ZSGB-BIO)

Table S2. Antibodies applied in the immunohistochemistry staining

Species	Name	Sequence (5'-3')		Product length	
Mouse	Vim 1	Forward	CAGGGTCTCCTTCACAGCAG	172	
	K1111-1	Reverse	CCACCACCCCCTTTACTTCC		
	GPx-1	Forward	AATGTCGCGTCTCTCTGAGG	117	
		Reverse	TCCGAACTGATTGCACGGG		
	NLRP3	Forward	ATCAACAGGCGAGACCTCTG	96	
		Reverse	GTCCTCCTGGCATACCATAGA		
	TT 10	Forward	TTCAGGCAGGCAGTATCACTC	166	
	IL-Ip	Reverse	CCAGCAGGTTATCATCATCA		
	II 18	Forward	CCAGACCAGACTGATAATATAC	110	
	IL-18	Reverse	TCTTGTTCTTACAGGAGAGG		
	Bactin	Forward	CACTGTCGAGTCGCGTCC	89	
	p-actin	Reverse	TCATCCATGGCGAACTGGTG		
	Kim 1	Forward	CTTCTAACTAACCGGCTGATCC	244	
	KIIII-1	Reverse	TTCCGATAGGTGACGTGGGT		
	CP _v 1	Forward	CAGTCGGTGTATGCCTTCTCG	105	
	01 x-1	Reverse	GAGGGACGCCACATTCTCG		
	NI DD3	Forward	GATCTTCGCTGCGATCAACAG	G 81	
Human	NLKF 5	Reverse	CGTGCATTATCTGAACCCCAC		
	II 10	Forward	AGCCATGGCAGAAGTACCTG	116	
	IL-Ip	Reverse	CCTGGAAGGAGCACTTCATCT		
	IL-18	Forward	ATCGCTTCCTCTCGCAACAA	223	
		Reverse	GAGGCCGATTTCCTTGGTCA		
	R actin	Forward	GATTCCTATGTGGGCGACGA	229	
	p-acun	Reverse	AGGTCTCAAACATGATCTGGGT		

 Table S3. Sequences of primers used in q-PCR

Proteins	Primary Antibodies	Secondary Antibodies	
β-actin	1:1000, AF50017 (Beyotime)	A0216 (Beyotime)	
Kim-1	1:1000, ab78494 (Abcam)	A0208 (Beyotime)	
NLRP3	1:1000, bs-23722R (Bioss)	A0208 (Beyotime)	
IL-1β	1:1000, ab283818 (Abcam)	A0208 (Beyotime)	
Mouse IL-18	1:1000, ab191860 (Abcam)	A0208 (Beyotime)	
Human IL-18	1:1000, ab243295 (Abcam)	A0208 (Beyotime)	
Caspase-1	1:1000, ab138483 (Abcam)	A0208 (Beyotime)	
GPx-1	1:1000, AF7017 (Beyotime)	A0208 (Beyotime)	
Fibronectin	1:1000, ab2413 (Abcam)	A0208 (Beyotime)	
α-Sma	1:1000, 19245 (CST)	A0208 (Beyotime)	
Collagen I	1:1000, 81375 (CST)	A0208 (Beyotime)	

 Table S4. Antibodies applied in the Western blotting

Figure S1. SDS-PAGE determining the existence of BSA in the NPs. A total of 200 μ g of Se@BSA NPs was dissolved in 25 μ L PBS. After a high speed centrifugation at 12 000 g for 15 min, the supernatant was collected. The precipitate was further dissolved in 25 μ L PBS and heated for denaturation. Proteins were resolved by 10% SDS-PAGE and stained with Coomassie brilliant blue. BSA (5 μ g) was employed as the positive control.

Figure S2. Zeta potential and particle size of different batches of Se@BSA NPs. (A) Zeta potential determination. (B) DLS detection of the hydrodynamic diameters of Se@BSA NPs. The results are presented as the mean \pm SD.

Figure S3. Changes in body weight at day 7 post Se@BSA NP treatment. Intravenous injection of 20 mg/kg Se@BSA NPs was innocuous to C57 mice. Mice in the sham group were treated with sterile PBS. n.s., not significantly.

Figure S4. Changes in ALT and AST levels at day 7 post Se@BSA NP treatment. ALT and AST contents in mouse blood were determined by ELISA (SEA207Mu and SEB214Mu, CLOUD-CLONE CORP., Katy, TX, USA). n.s., not significantly.

Figure S5. Changes in mouse hemogram at day 7 post Se@BSA NP treatment. Mouse blood was obtained at day 7 post Se@BSA NP (20 mg/kg, I.V.) treatment. Shown are the changes of (A) red blood cells, (B) white blood cells, (C) platelets, and (D) hemoglobin. n.s., not significantly.

Figure S6. ICP-MS detecting the Se contents in serum post Se@BSA NP treatment. Mouse blood (20 μ L) was obtained at 3, 6, 12, and 24 h post Se@BSA NP (1 mg/kg, I.V.) treatment. Samples were processed with 0.5 mL nitrohydrochloric acid for 24 h and adjusted to 1 mL, in which the Se contents were determined by ICP-MS. The results are presented as the mean \pm SD.

Figure S7. ICP-MS detecting the Se contents in HK-2 cells post Se@BSA NP treatment. Se@BSA NPs (50 µg/mL) were coincubated with 2×10^8 CFU HK-2 cells at 37 °C for 6 h. The cells were collected and processed with 2 mL nitrohydrochloric acid for 24 h. After dilution to 5 mL with 2% salpeter solution, the Se contents in the samples were determined by ICP-MS. The results are presented as the mean \pm SD. ^{***}, *P* < 0.001.

Figure S8. Tubular injury score of IRI-AKI mouse. The results are shown as the mean \pm SD. ****, P < 0.001.

Figure S9. NLRP3 mRNA expression in HK-2 cells. H/R cells were exposed to different concentrations of NPs for 6 h. β -actin was used as the reference. The results are shown as the mean \pm SD. *, P < 0.05; ***, P < 0.001.

Figure S10. Induced expression of GPx-1 in HK-2 cells by Se@BSA NPs. (A) q-PCR detecting the mRNA expression of GPx-1. The results are shown as the mean \pm SD. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001. (B) Western blotting revealing the dose-dependent modulation of Se@BSA NPs on GPx-1 expression in HK-2 cells. β -actin was used as the reference.

