Supplemental Online Content

Der Sarkissian S, Hessam S, Kirby JS, et al. Identification of biomarkers and critical evaluation of biomarker validation in hidradenitis suppurativa: a systematic review. *JAMA Dermatol*. Published online January 19, 2022. doi:10.1001/jamadermatol.2021.4926

eMethods.

eFigure. PRISMA Diagram of Search Strategy
eTable 1. Interpretation of the four levels of evidence used in the GRADE profile
eTable 2. Susceptibility/ Risk Biomarkers
eTable 3. Diagnostic Biomarkers
eTable 4. Monitoring Biomarkers
eTable 5. Predictive Biomarkers
eTable 6. Limitations and Proposed Future Directions of Biomarker Research in HS
eReferences.

This supplemental material has been provided by the authors to give readers additional information about their work.

<u>eMethods</u>

1) **Protocol and Registration:**

This Study was registered with PROSPERO (Registration 230830) and conducted in line with the PRISMA checklist.

2) Eligibility Criteria:

Eligibility criteria for this review included randomized controlled trials, uncontrolled clinical trials, cohort studies, case-control studies and other observational studies with no restrictions of patient age, sex, ethnicity or language of publication. Abstracts/conference presentations were included and are identified as such in the reference section.

Eligible studies included:

 \cdot Studies reporting the identification and/or evaluation of biomarkers in Hidradenitis Suppurativa / Acne Inversa.

 $\cdot\,$ Studies may include identification and/or evaluation of clinical/phenotypic; imaging-based; tissue and/or blood/serum biomarkers.

Studies deemed not eligible for inclusion included:

- Studies not pertaining to Hidradenitis Suppurativa/ Acne Inversa
- Studies regarding patient reported outcomes such as pain or quality of life.
- · Case Reports
- · In-vitro or molecular studies with no correlated clinical data

3) Information Sources:

- 1) Medline (1946-January 1 2021),
- 2) Embase (1980- January 1 2021)
- 3) Published Abstracts
- 5) Contact with Authors for abstracts without full text for clarification of data and methodology

4) <u>Search Strategy:</u>

((Hidradenitis Suppurativa OR Acne Inversa) AND (Biomarker OR subtype OR phenotype OR genotype OR endotype OR risk OR susceptibility OR diagnosis OR diagnostic OR monitoring OR activity OR severity OR prognosis OR progression OR predictive OR therapy OR therapeutic OR response OR safety OR pharmacodynamic))

5) <u>Study Selection:</u>

Period of the search was up to December 31, 2020. Data collection was performed independently by 2 authors (SDS and JWF) with any disagreements regarding inclusion of citations being referred to a third author for mediation. All results in the search strategy underwent title and abstract screening for relevance. Articles not meeting eligibility criteria were excluded. Full text screening of the remaining articles were undertaken by the same two independent authors. The information was collated using narrative synthesis classified by potential therapeutic target of interest.

6) Definitions of Biomarker types

Categorization of manuscripts into biomarker type was performed independently by 2 authors (SDS and JWF) with any disagreements regarding inclusion of citations being referred to a third author for mediation. Biomarkers were defined using the FDA FDA Biomarkers, EndpointS and other Tools (BEST) glossary (<u>https://www.ncbi.nlm.nih.gov/books/NBK338448/)</u>.

SUSCEPTIBILITY/RISK BIOMARKERS: A biomarker that indicates the potential for developing a disease or medical condition in an individual who does not currently have clinically apparent disease or the medical condition.

DIAGNOSTIC BIOMARKERS: A biomarker used to detect or confirm presence of a disease or condition of interest or to identify individuals with a subtype of the disease.

MONITORING BIOMARKERS: A biomarker measured repeatedly for assessing status of a disease or medical condition or for evidence of exposure to (or effect of) a medical product or an environmental agent.

PREDICTIVE BIOMARKERS: A biomarker used to identify individuals who are more likely than similar individuals without the biomarker to experience a favorable or unfavorable effect from exposure to a medical product or an environmental agent.

PROGNOSTIC BIOMARKERS: A biomarker used to identify likelihood of a clinical event, disease recurrence or progression in patients who have the disease or medical condition of interest.

PHARMACODYNAMIC/RESPONSE BIOMARKER: A biomarker used to show that a biological response has occurred in an individual who has been exposed to a medical product or an environmental agent.

SAFETY BIOMARKERS: A biomarker measured before or after an exposure to a medical product or an environmental agent to indicate the likelihood, presence, or extent of toxicity as an adverse effect.

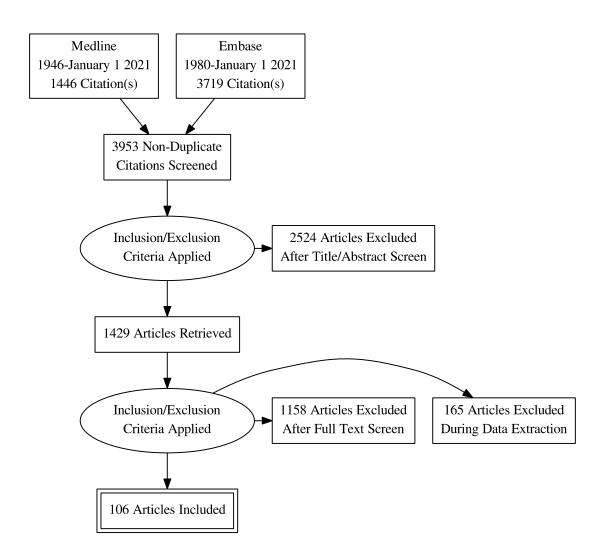
6) Critical Evaluation of Biomarker Validation

Assessment of each identified biomarker was undertaken in line with the FDA and EMA guidelines for the validation of proposed biomarkers. Any biomarker able to answer 'Yes' to the questions under each section below was said to have met the referenced criterion. These criteria consisted of:

- 1) Univariate Correlation
 - a. Has the biomarker been studied in a single cohort or at a single site using univariate association with clinical outcomes (HISCR, Sartorius) and PROs (Pain, DLQI) compared to healthy control participants?
- 2) External Dataset Validation ("External Validation")
 - a. Has the biomarker been identified as statistically significant in an independent study?
- 3) Analytical Validity Assessment ("Analytical Validation") (Only 2 of the 3 questions below need to be answered in the positive in order to meet the criteria)
 - a. Pre-Analytical Validity- were the samples from disease and control consistent? Were they age and BMI matched?
 - b. Analytical Validity Has the test for measuring biomarker levels undergone technical validation?
 - c. Post-Analytical Validity- Evaluation of dichotomous cutoffs for data interpretation
- 4) Clinical Validity Assessment ("Clinical Validation")
 - a. Has the biomarker been used in the setting of a prospective clinical trial?
- 5) Clinical Utility Assessment ("Clinical Utility")
 - a. Has the biomarker been shown to be clinical useful/meaningful in directing patient management?

Evaluation was undertaken independently by 2 authors (SDS and JWF) with any disagreements discussed between the authors and/or referred to a third author for mediation until consensus achieved. Across the 128 biomarkers identified, consensus was achieved between the two initial raters in 124/128 biomarkers (96.9%). Clarification of the criteria needed to achieve Analytical validity (achieving two out of three analytic criteria) increased the consensus rate to 100%. A roundtable discussion involving all authors was undertaken to ensure that consensus was achieved across the ratings of all identified biomarkers.

7) GRADE Assessment


The GRADE approach offers a system for rating quality of evidence, with a structured process for developing and presenting evidence summary and grading the strength of the overall published data. We included any identified biomarkers with one or more statistically significant

finding in individuals with HS. The following process was used to develop the GRADE ratings of identified biomarkers:

- 1) Data from observational studies were commenced at a "low" default rating, whilst data from randomized trials begin with a "high" default rating as per GRADE recommendations.
- 2) The decision to upgrade or downgrade an assessment level was made independently by 2 authors (SDS and JWF) with any disagreements regarding inclusion of citations being referred to a third author for mediation until consensus achieved. Reasons for upgrading or downgrading a rating include:
 - a. Reason for Upgrade:
 - i. Achieving 'External Validation'
 - ii. Achieving 'Analytical Validation'
 - iii. Achieving 'Clinical Utility'

NB: Achieving 'Clinical Validation' was not considered a reason to upgrade GRADE rating as studies achieving this criterion begin at a default 'high' GRADE rating

- b. Reasons for Downgrade:
 - i. Broad ranges in effect size not explainable by inconsistent methodology or techniques
 - ii. Within-study bias (eg Abstract or Case Report)

<u>eFigure: PRISMA Diagram of Search Strategy.</u> Figure describes the search search strategy and articles included and excluded.

eTable 1: Interpretation of the four levels of evidence used in the GRADE profile

Grade	Definition
High	We are very confident that the true effect lies close to that of the estimate of the effect.
Moderate	We are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low	Our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.
Very Low	We have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect

eTable 2: Susceptibility/ Risk Biomarkers

Biomarker	Biomarke	er Level	Type of Study Interpretation			Critical E	GRADE	References		
	HS	OR			External Validation	Analytical Validation	Clinical Validation	Clinical Utility		
Serum Epigenetic Markers	Differentially Expressed	NR	Case-Control Study	Association but no analysis of predictive power or potential	N	N	N	N	Low	Ref 10
Tissue Epigenetic Markers	Differentially Expressed	NR	Case-Control Study	Association but no analysis of predictive power or potential	N	N	N	N	Low	Ref 11
Serum RBP4	Increased	OR = 3.86 (P < 0.001)	Case-Control Regression Modelling	High serum RBP4 and levels were associated with an increased risk for HS	N	N	N	N	Low	Ref 22
Serum Ghrelin	Decreased	OR = 3.86 (P < 0.001)	Case-Control Regression Modelling	Low ghrelin levels were associated with an increased risk for HS	N	N	N	N	Low	Ref 22
Serum Visfatin	Increased	OR = 1.56 (P = 0.003)	Case Control Regression Modelling	Increased serum visfatin increases the risk of HS	N	N	N	N	Low	Ref 12
BMI (Newborn)	increased	HR = 1.36 (lightest) - 1.39 (heaveiest) babies (p = 0.04)	Regression modelling	Both babies with lightest and heaviest weight are at increased risk of developing HS	N	N	N	N	Low	Ref 24
	Decreased	HR = 1.36 (p = 0.04)			N	N	N	N	Low	
BMI (Children)	Increased	HR = 1.32 at 7 years to 1.50 at 13 years	Regression modelling	Increasing BMI in childhood is associated with a greater risk of developing HS	N	N	N	N	Low	Ref 24
Depression, Type 1 diabetes, asthma, disease of vagina/vulva	Increased	NR	Retrospective cohort	The high preceding prevalence noted in this study suggests predictive potential	N	N	N	N	Low	Ref 25
TLR 10 single nucleotide polymorphisms	Not given	NR	Case control	Association	N	N	N	N	Low	Ref 23

eTable 3: Diagnostic Biomarkers

Biomarker	Statis	stical Association	Type of Study	Interpretation		Critical Evaluation of	Biomarkers		GRADE	References
	Populati on of Compari son	Significance			External Validation	Analytical Validation	Clinical Validation	Clinical Utility		
Tissue / Serum Lipocalin-2	HC	P < 0.001	Observational Case Control	Elevation associated with HS and severity of HS	N	N Matched only for gender	N	N	Low	Ref 98
Plasma Grehlin	HC	OR = 3.86 P = 0.013	Observational Case Control	Decreased levels associated with HS	N	N	N	N	Low	Ref 22
Plasma RBP4	HC	OR = 14.5 P < 0.0001		Elevation associated with HS	N	N	N	N	Low	
Serum Ferritin	HC	P < 0.001	Observational Case Control	Decreased levels associated with HS	N	N Insufficient info on controls in Ref 34.	N	N	Low	Ref 34
Serum Transferrin saturation	HC	P < 0.001	Observational Case Control	Decreased levels associated with HS	N	N Insufficient info on controls in Ref 34.	N	N	Low	Ref 34
Serum Iron	HC	P<0.001	Observational Case Control	Decreased levels associated with HS	N	N Insufficient info on controls in Ref 34.	N	N	Low	Ref 34
Tissue S100A4	HC	P = 0.02	Observational Case Control	Elevation associated with HS	N	N N	N	N	Low	Ref 39
Serum sTNF-R1	HC	P < 0.01	Observational Case Control	Elevation associated with HS	N	N	N	N	Low	Ref 37
Serum Visfatin	HC	P =0.02	Observational Case Control	Elevation associated with HS	N	N	N	N	Low	Ref 12
Serum ASCA	HC	P <0.001	Observational	Elevation associated with	N	N	N	N	Low	Ref 100
(IgG and IgA) Serum MMP8	HC	P < 0.01	Case Control Observational Case Control	HS Elevation associated with HS	N	N	N	N	Low	Ref 101
Tissue MMP8	HC	P < 0.01	Observational	Observational Study	N	N	N	N	Low	Ref 101
Salivary Infrared Signatures	HC HC	P=0.00014 P <0.0001	Observational Case Control Univariate and	Observational Study High fat percentage, low	N N	N	N	N N	Low	Ref 102 Ref 103
Fat percentage Muscle	HC	P < 0.0001	Regression	muscle percentage and	N	N	N N	N	Low	Rel 103
percentage Bone mass	НС	P < 0.0001	Modelling	higher basal metabolic rate are associated with HS	N	N	N	N	Low	
percentage Waist	HC	P < 0.0001		10	N	N	N	N		
circumference									Low	
Waist/ hip ratio BMR	HC HC	P < 0.0001 P < 0.0001			N	N N	N N	N	Low Low	
Serum natural T-	HC	P = 0.0012	Observational	Decreased levels	N	N	N	N	Low	Ref 104
regs Serum T-cells	HC	Naïve T-cells (P = 0.0347) Memory T-cells (P = 0.0264)	Case Control Observational Case Control	associated with HS Decreased levels associated with HS	N	N	N	N	Low	Ref 104
Tissue CCL-26	HC	P = 0.004	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 106
Leukotriene B4	HC	P <0.001	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 107
	Acinetob acter / Moraxell a (HC)	P = 0.1			Y	N	N	N	Moderate	
	Staph Epidermi s	Not given			Y	N	N	N	Moderate	
	Porphyro monas Peptonip hilus (HC)	P = 0.02			Y	N	N	N	Moderate	
	Propioni bacteriu m acnes	P < 0.001			Y	N	N	N	Moderate	
Tissue IL-1RA	(NLT) Non- Lesional Tissue	1.5 fold increase P=0.0112	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 55
Tissue IL-1B	HC	31 fold increase P=0.0028	Observational Case Control	Elevation Associated with HS	Y	N	N	N	Moderate	Ref 31
	Non- Lesional	P<0.001								Ref 30
	Tissue	P<0.001								Ref 55
Tissue IL-6	Non- Lesional Tissue	P=0.05	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 38
Serum IL-6R	HC	3.7 fold increase P=0.0028	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 48
Serum IL-10	Non- Lesional Tissue	34 fold increase P=0.05	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 38
Tissue IL-11	Non- Lesional Tissue	11 fold increase P=0.0056	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 113
Tissue IL-16	Non- Lesional Tissue	5.3 fold increase P=0.0028	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 113
Tissue IL-17C	Non- Lesional Tissue	P<0.01	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 56
Serum IL-32	HC	P=0.01	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 114

Tissue IL-32a	Non- Lesional	P=0.01	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 114
Tissue IL-32 B	Tissue	P=0.0001	Observational	Elevation Associated with	N	Ν	N	N	Low	
		P=0.0161	Case Control Observational	HS Elevation Associated with	N	N	N	N	Low	-
Tissue IL32g Serum IL-36a			Case Control Observational	HS Elevation Associated with	N	N	N	N	Low	Ref 115
Serum IL-36B Serum IL-36 g Serum IL-36RA	HC		Case Control	HS		N		N .	2011	Nor Ho
Tissue IL-36a	HC	P = 0.0174	Observational Case Control	Elevation Associated with HS	N	Ν	N	N	Low	Ref 116
		P = 0.0001	Case Control	по						
Tissue IL-36B		P = 0.0161								
Tissue IL36g		P = 0.0001								
Tissue IL36RA Tissue IL37	110	P = 0.0001	Observational	Eleventice encoded and with	N	N	N	N	1	Ref 116
TISSUE IL37	HC	P = 0.0001	Observational Case Control	Elevation associated with HS Tissue	N	Ν	N	N	Low	Rei I lo
Tissue IL38	HC	P = 0.0069	Observational Case Control	Elevation associated with HS Tissue	N	Ν	N	N	Low	Ref 116
Serum TNF-a	Non- Lesional Tissue	P=0.02	Observational Case Control	Elevation Associated with HS	N	Ν	N	N	Low	Ref 47
Serum total monocytes	HC	HC vs. Hurley Stage	Observational Case Control	Elevation associated with HS Tissue	N	Ν	N	N	Low	Ref 47
(absolute count) Serum	HC	P = 0.004 HC vs. Hurley Stage	Observational	Elevation associated with	N	N	N	N	Low	Ref 47
CD14 ^{bright} /CD16 ^{di} ^m (absolute count)	nc	III: P = 0.001	Case Control	HS Tissue	N	N	N	IN IN	LOW	Rei 47
Serum patrolling monocytes (absolute count)	HC	HC vs. Hurley Stage III: P = 0.037	Observational Case Control	Elevation associated with HS Tissue	Ν	Ν	N	N	Low	Ref 47
Tissue TNF-a	Non- Lesional	P=0.01	Observational Case Control	Elevation Associated with HS	N	Ν	N	N	Low	Ref 31
	Tissue	P<0.01		110						Ref 32
		P<0.001								Ref 33
		P<0.05								Ref 55
		NS								Ref 40
Serum TNFR2	HC	P=0.0028	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 32
Tissue hBD3	HC	P = 0.004	Observational	Elevation Associated with	Ν	Ν	N	N	Low	Ref 31
Tissue hBD1	HC	P = 0.014	Case Control Observational	HS Elevation Associated with	N	N	N	N	Low	Ref 31
Tissue hBD2	HC	P < 0.001	Case Control Observational	HS Elevation Associated with	N	N	N	N	Low	Ref 31
Serum s100A7	HC	P<0.001	Case Control Observational	HS Elevation Associated with	N	N	N	N	Low	Ref 41
Tissue LL37	Non-	P<0.05	Case Control Observational	HS Elevation Associated with	N	N	N	N	Low	Ref 41
	Lesional Tissue		Case Control	HS						
Tissue a-MSH	Non- Lesional	P<0.01	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 41
Tissue CCL3	Tissue Non- Lesional Tissue	P=0.0196	Observational Case Control	Elevation Associated with HS	N	Ν	N	N	Low	Ref 32
Tissue CCL5	Non- Lesional Tissue	P =0.0112	Observational Case Control	Elevation Associated with HS	N	N	N	N	Low	Ref 32
Tissue CCI20	Non- Lesional Tissue	P<0.05	Observational Case Control	Elevation Associated with HS	Y	Ν	N	N	Low	Ref 31 Ref 40
Tissue CCL27	Non- Lesional Tissue	P<0.05	Observational Case Control	Elevation Associated with HS	N	Ν	N	N	Low	Ref 40
Serum ESR	HC	P<0.001	Observational Case Control	Elevation Associated with HS	Ν	N	N	N	Low	Ref 37
0		P<0.01	Multivariate Logistic Regression							Ref 45
Serum IFNg	HC	P=0.027	Observational Case Control	Elevation Associated with HS	Y	Ν	N	N	Low	Ref 31
Serum MMP2	HC	p-=NS P<0.05	Observational	Elevation Associated with	N	N	N	N	Low	Ref 40 Ref 31
Tissue BLC	Non-	10.5 fold increase	Case Control Observational	HS Elevation Associated with	N	N	N	N	Low	Ref 30
	Lesional Tissue	P=0.0056	Case Control	HS Elevation Associated with	N	N	N	N		
Tissue ICAM1 Tissue CXCL9	Non- Lesional Tissue	3.1 fold increase P=0.0028 16 fold increase	Observational Case Control Observational	HS	N	N N	N	N	Low	Ref 115 Ref 30
LISSUE GAGLE	Non- Lesional Tissue	P=0.0028	Case Control	Elevation Associated with HS	IN	N	IN	IN	Low	rtei 30

Legend: *Abstract Only

eTable 4: Monitoring Biomarkers

<u>Biomarker</u>	Disea	se Severity Association	Type of Study	udy Interpretation		Critical Ev	GRADE Evidence	Reference		
	Disease Severity Index	Significance			External Validation	Analytical Validation	Clinical Validation	Clinical Utility	Profile	
Serum Lipocalin 2	Sartorius Score	R= 0.65 P < 0.001	Observational Case Control	Correlation with Disease Severity	N	N	N	N	Low	Ref 98
Serum Retinol binding protein 4 (RBP4)	HS PGA	R = 0.639 P < 0.0001	Observational Case Control	Correlation with Disease Severity	N	N	N	N	Low	Ref 22
Serum IL-17 (Stimulated PBMCs)	Hurley Stage	Heat-killed Candida albicans (HKCA)-Stimulation: Hurley I and II vs. III: P = 0.008 Heat-killed Staphylococcus aureus (HKSA)-Stimulation: Hurley I and II vs. III:	Observational Case Control	Decreased with Disease Severity	N	N	N	N	Low	Ref 47**
0		P = 0.026								
Serum IL-10 (Stimulated PBMCs)	Hurley Stage	Heat-killed Staphylococcus aureus (HKSA)-Stimulation: Hurley I and II vs. III: P = 0.048	Observational Case Control	Decreased with Disease Severity	N	N	N	N	Low	Ref 47**
Serum total monocytes (absolute count)	Hurley Stage	Hurley Stage I vs. III: P = 0.026	Observational Case Control	Correlation with Disease Severity	N	Ν	N	N	Low	Ref 47
	Sartorius Score	R = 0.361 P = 0.003								
Serum CD14 ^{bright} /CD1 6 ^{dim} (absolute count)	Hurley Stage	Hurley Stage I vs. III: P = 0.012 Hurley II vs. III:	Observational Case Control	Correlation with Disease Severity	N	N	N	N	Low	Ref 47
Serum IL-1B	HS PGA	P = 0.008 R = 0.28	Observational	Correlation with	N	N	N	N	Low	Ref 37
Plasma YLK-	Hurley Stage	P= 0.016 P < 0.001	Case Control Observational	Disease Severity Correlation with	N	N	N	N	Low	Ref 36
40 /Chitinase 3	, ,	P=0.03	Case Control	Disease Severity			N			Ref 35
Serum Hepcidin	HS-PGA		Observational Case Control	Correlation with Disease Severity	N	N	N	N N	Low	Ref 99
Serum IL-2R	Hurley Stage	Hurley I vs. II: P = 0.005 Hurley I vs. II: P < 0.0001 Hurley II vs. I: P = 0.005 Hurley II vs. II: P < 0.001 Hurley III vs. I: P < 0.0001	Observational Case Control	Correlation with Disease Severity	N	N	N	N	Low	Kei 55
WBC	Hurley Stage	Hurley III vs. II: P < 0.001 Hurley I vs. II: P = 0.03	Observational	Correlation with	N	N	N	N	Low	Ref 99
Serum IL-6	HS-PGA	R = 0.53 P<0.001	Case Control Observational Case Control	Disease Severity Correlation with Disease Severity	N	N	N	N	Low	Ref 37
	Hurley Stage	Kruskal-Wallis: P < 0.001								
Serum IL-10	HS-PGA	R = 0.34 P = 0.0034	Observational Case Control	Correlation with Disease Severity	N	Ν	N	N	Low	Ref 37
Serum IL-10 (Stimulated PBMCs)	Hurley Stage	Heat-killed Staphylococcus aureus (HKSA)-Stimulation: Hurley I and II vs. III: P = 0.026		Decreased with Disease Severity	N	Ν	N	N	Low	Ref 47
Serum IL12p70	HS-PGA	R = 0.30 P = 0.008	Observational Case Control	Correlation with Disease Severity	N	Ν	N	N	Low	Ref 37
Soluble TNF receptor II	HS-PGA Hurley Stage	R = 0.008 R = 0.4 P < 0.001 Kruskal-Wallis:	Observational Case Control	Correlation with Disease Severity	N	N	N	N	Low	Ref 37
Soluble TNF	Hurley Stage	P = 0.001 Kruskal-Wallis:	Observational	Correlation with	N	N	N	N	Low	Ref 37
receptor I		P < 0.001	Case Control	Disease Severity						
Serum TNF-a	HS-PGA	One-Unit increase in TNF-a level: 9.74 times (CI 1.1-107.8) higher risk of severe disease (HS-PGA 4 or 5) vs. (HS-PGA 1 or 2)	Observational Case Control and ordinal regression modelling	Correlation with Disease Severity	N	N	N	N	Low	Ref 108
Sonographic Hurley staging	Hurley Stage	Higher number of nodules found by clinical examination vs. sonographic: P < 0.01 Higher number of abscesses found by sonographic vs. clinical examination: P < 0.01	Observational Case Control	44.7% of patients with Hurley stage I as determined by clinical examination changed to a more severe stage after sonographic examination	N	N	N	N	Low	Ref 61
Sonographic Scoring of HS based on no. of fluid collections, no. of fistulous tracts and no. of affected localizations	Hurley Stage	Fleiss' kappa test: (K = 0.27; P = 0.02)	Observational Case Control	Correlation with Disease Severity	N	N	N	N	Low	Ref 60
MRI Dilatation of dermal tunnels	Hurley Stage	Descriptive	Descriptive	Correlation with Disease Severity	N	N	N	N	Low	Ref 109***
Medical infrared thermography	Skin inflammation	Descriptive	Observational Case Control	Correlation with skin inflammation	N	Ν	N	N	Low	Ref 110

Echocardiogra	Hurley Stage	R = 0.432	Multivariate	Correlation with	N	N	N	N	Low	Ref 111
phy (epicardial fat thickness)	, ,	P = 0.001 For EFT ≥ 5.9 mm:	analysis and regression modelling	Disease Severity						
		Hurley III vs. I and II: OR = 1.876 P = 0.018	modeling							
Serum MMP8	mHSS	R = 0.454	Observational	Correlation with	N	N	N	N	Low	Ref 101
		P = 0.039	Case Control	Disease Severity						
	Number of affected areas with inflammatory nodes	R = 0.514 P = 0.017								
	Number of areas with fistulas	R = 0.486 P = 0.026								
Serum ASCA (IgG and IgA)	Hurley Stage	P < 0.001 For Hurley III: OR = 3.54 P = 0.003	Univariate and Multivariate analysis	Correlation with Disease Severity	N	N	N	N	Low	Ref 100
Serum Neutrophil	Hurley Stage	Kruskal-Wallis: P = 0.002	Multivariate analysis and	Correlation with Disease Severity	N	N	N	N	Low	Ref 67
Count	mHSS	R = 0.33 P = 0.0009	regression modelling							
Smoking pack- years	Hurley Stage	Hurley III and II vs. I: OR = 1.02 P = 0.001	Multivariate analysis and regression modelling	Correlation with Disease Severity	N	N	N	N	Low	Ref 16
Disease duration	Hurley Stage	Hurley III and II vs. I: OR = 1.03 P < 0.001	Multivariate analysis and regression modelling	Correlation with Disease Severity	N	N	N	N	Low	Ref 16
Localization	Hurley Stage	Hurley III and II vs. I: Axillary OR = 2.24 P < 0.001								
		perianal OR = 1.92 P < 0.001								
		Mammary OR = 1.48 P = 0.03								
Tissue Citrullinated H3 Protein	Hurley Stage	R = 0.75 P < 0.0001	Observational Case Control	Correlation with Disease Severity	N	N	N	N	Low	Ref 64

Legend: **This study involved stimulation of PBMCs compared to other observational studies.

*** Case Report only

eTable 5: Predictive Biomarkers

Biomarker Response		Response to Therapy Type of Study		Interpretation		Critical Ev	aluation	GRADE Evidence	Reference	
	Treatment	Outcome Measure (Significance)			External Validation	Analytical Validation	Clinical Validation	Clinical Utility	Profile	
Serum CRP	Infliximab	PGA (P=0.0112)	Multivariate analysis and regression modelling Prospective pilot	Higher levels of CRP correlate with lower response to infliximab	Ν	N	Ν	N	Low	Ref 75
	Adalimumab	mHSS (P=0.04								Ref 38
Serum IL-6	Infliximab	PGA (p=0.02064)	Multivariate analysis and regression modelling Prospective pilot	Higher IL-6 correlate to lower response to infliximab	Ν	N	N	N	Low	Ref 75
	Adalimumab	mHSS (p=0.003)								Ref 38
Serum IL-1B	Etanercept	mHSS (p=0.022)	Multivariate analysis and regression modelling Case Control	Clinical Improvement correlated with increased IL-1B	Ν	N	Ν	N	Low	Ref 47
Serum IL-17	Etanercept	mHSS (p=0.022)	Multivariate analysis and regression modelling Case Control	Clinical Improvement correlated with increased IL17	Ν	N	N	N	Low	Ref 47
Serum IL-8	Adalimumab	mHSS (R=0.52) (P=0.024)	Regression Analysis Case Control	Decreasing IL-8 correlated with treatment response	Ν	N	Ν	N	Low	Ref 38
sTNF-RI	Adalimumab	mHSS (R=0.55) (p=0.015)	Linear Correlations		Ν	N	N	N	Low	Ref 38
Serum Anti- Adalimumab antibody Level;	Adalimumab	HiSCR (P=0.0006)	Multivariate analysis and regression modelling Retrospective case series (no control arm)	Correlation between serum adalimumab levels, anti-adalimumab antibodies and clinical response.	N	N	N	N	Low	Ref 112
Tissue Cell Counts CXCL6	Adalimumab	R vs NR (P=0.046)	Multivariate analysis and regression	Higher tissue cell counts associated	N	N	N	N	Low	Ref 65
Tissue Cell Counts CXCR1	Adalimumab	R vs NR (p=0.009)	modelling Observational Mechanistic Study	with non- responders to Adalimumab						
Tissue Cell Counts IL-1a	Adalimumab	R vs NR (p=0.0009)	Mechanistic Study	therapy						
Tissue Cell Counts CCL 17	Adalimumab	R vs NR (p=0.027)								
Tissue Cell Counts CCR7	Adalimumab	R vs NR (p=0.004)								
Tissue Cell Counts CXCR4	Adalimumab	R vs NR (p=0.01)								
TISSUE Cell Counts CD19	Adalimumab	R vs NR (p=0.003)								
Tissue Cell Counts CXCR5	Adalimumab	R vs NR (p=0.008)								
Tissue Cell Counts BAFF	Adalimumab	R vs NR (p=0.005)								

eTable 6: Limitations and Proposed Future Directions of Biomarker Research in HS

Limitation(s)	Proposed Solution(s)
Lack of Independent Validation of HS	Biomarker-Specific, Multicentre, Independent Validation
Biomarkers	Studies
Biomarker Identification Based on	Assumption-Free 'omics' biomarker feature selection studies
Pre-selected targets only	and methodologies
Lack of co-linearity assessments in	Directed assessment of co-linearity in currently identified
existing range of biomarkers	biomarkers
	Identify HS-specific biomarkers in assumption-free datasets
Deficiencies in existing Clinical	Development of Validated, Reliable Clinical Outcome
Outcomes for validation of monitoring	Measures
and predictive biomarkers	Development of Treat-to-target outcome measures
Need for biomarker integration into	Involvement of stakeholders in development in priorities and
clinical trials	goals for biomarker development in HS
High variability in biopsy techniques	International Consensus Agreement on Biopsy sites and
and definitions	techniques

eReferences

- Goldburg SR, Strober BE, Payette MJ. Hidradenitis suppurativa: Epidemiology, clinical presentation, and pathogenesis. *J Am Acad Dermatol*. 2020 May;82(5):1045-1058.
- Sabat R, Jemec GBE, Matusiak L, Kimball AB, Prens E Wolk K Hidradenitis Suppurativa Nat Rev Dis Prim 2020; 6:18
- Kohorst JJ, Kimball AB, Davis MD. Systemic associations of hidradenitis suppurativa. J Am Acad Dermatol. 2015 Nov;73(5 Suppl 1):S27-35.
- Frew JW, Marzano AV, Wolk K, Join-Lambert O, Alavi A, Lowes MA, Piguet V. A Systematic Review of Promising Therapeutic Targets in Hidradenitis Suppurativa: A Critical Evaluation of Mechanistic and Clinical Relevance. *J Invest Dermatol* 2021;141(2):316-324.e2
- Byrd AS, Dina Y, Okoh UJ, Quartey QQ, Carmona-Rivera C, Williams DW et al Specimen Collection for translational studies in Hidradenitis Suppurativa. *Sci Rep* 2019;9:12207
- Amur A. Biomarker Terminology: speaking the same language. United States Food and Drug Administration. [cited 10/12/2020] Available from: <u>https://www.fda.gov/files/BIOMARKER-TERMINOLOGY--SPEAKING-THE-SAME-LANGUAGE.pdf</u>
- Biomarker. European Medicines Agency. [cited 10/12/2020/. Available from: <u>https://www.ema.europa.eu/en/glossary/biomarker#:~:text=A%20biological%20molecule%20fou</u> <u>nd%20in,European%20Medicines%20Agency</u>
- Renert-Yuval Y, Thyssen JP, Bissonnette R, Bieber T, Kabashima K, Hijnen D, Guttman-Yassky E, Biomarkers in atopic dermatitis a review on behalf of the international eczema council, Journal of Allergy and Clinical Immunology (2021), doi:

https://doi.org/10.1016/j.jaci.2021.01.013.

 Guyatt G, Oxman AD, Sultan S, Brozek J, Glasziou P, Alonso-Coello P, et al. GRADE guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. Journal of clinical epidemiology. 2013;66(2):151-7.

- Radhakrishna U, Vishweswaraiah S, Ratnamala U, Bahado-Singh R, Saiyed N DNA Methylation and microRNA biomarkers for non-invasive detection of hidradenitis suppurativa. Exp Dermatol 2019; 8th European Hidradenitis Suppurativa Foundation Conference. EHSF 2019. Poland. 29(S2):6-7
- 11. <u>H</u>essam, S., M. Sand, M. Skrygan, T. Gambichler, and F. G. Bechara. 2017. 'Expression of MiRNA-155, MiRNA-223, MiRNA-31, MiRNA-21, MiRNA-125b, and MiRNA-146a in the Inflammatory Pathway of Hidradenitis Suppurativa'. *Inflammation* 40 (2): 464–72. https://doi.org/10.1007/s10753-016-0492-2.
- Akdogan, Neslihan, Nuran Alli, Pinar Incel Uysal, Canan Topcuoglu, Tuba Candar, and Turan Turhan. 2018. 'Visfatin and Insulin Levels and Cigarette Smoking Are Independent Risk Factors for Hidradenitis Suppurativa: A Case-Control Study'. *Archives of Dermatological Research* 310 (10): 785–93. https://doi.org/10.1007/s00403-018-1867z.
- Vilanova I, Hernandez JL, Mata C, Duran C, Garcia-Unzueta MT, Portilla V Insulin resistance in hidradenitis suppurativa: A Case-control study. *J Eur Acad Dermatol Venereol* 2018;32(5):820-824
- Garg A, Papagermanos V, Midura M, Strunk Incidence of hidradenitis suppurartiva among tobacco smokers. A population-based retrospective analysis in the U.S.A. Br J Dermatol 2018;178(3): 709-714
- van Straalen KR, Prens EP, Willemsen G, Boomsma DI, van der Zee HH. Contribution of Genetics to the Susceptibility to Hidradenitis Suppurativa in a Large, Cross-sectional Dutch Twin Cohort. JAMA Dermatol. 2020;156(12):1359–1362.
- 16. Schraeder AMR, Deckers IE, van der Zee HH, Boer J Prens EP. Hidradenitis Suppurativa: A retrospective analysis of 846 Dutch patients to identify factors associated with disease severity. J Am Acad Dermatol 2014;71(3):460-7

- Molina-Leyva A, Cuenca-Barrales. Adolescent-Onset Hidradenitis Suppurativa: Prevalence, risk factors and disease features. *Dermatology* 2019;235(1):45-50
- Frew JW, Vekic DA, Woods J, Cains GD A systematic review and critical evaluation of reported sequence variants in hidradenitis suppurativa. Br J Dermatol 2017;177(4):987-998
- Frew J, AH, O'Brien EA, Litvinov IV, Alavi A, Netchiporouk E Hidradenitis Suppurativa: Comprehensive Review of Predisposing Genetic Mutations and Changes J Cutan Med Surg 2019;23(5):619-527
- 20. Duchalet S, Miskinyte S, Delage M, Ungeheuer MN, Lam T, Benhadou F et al Low prevalence of GSC mutations in a large cohort of predominantly Caucasian patients with hidradenitis suppurativa. J Invest Dermatol 2020; 140(10):2085-208.e14
- Frew JW Differential profiles of gamma secretase-notch signaling in Hidradenitis Suppurativa: The Need for Genotype-Endotype-Phenotype Analysis. Br J Dermatol 2021; doi:10.1111/bjd.19805
- 22. González-López, MA., Ocejo-Viñals JG, Mata C, Vilanova I, Guiral S, Virginia Portilla, Ricardo Blanco, and José L. Hernández. 2020. 'Association of Retinol Binding Protein4 (RBP4) and Ghrelin Plasma Levels with Insulin Resistance and Disease Severity in Non-Diabetic Patients with Hidradenitis Suppurativa'. *Experimental Dermatology*, June. https://doi.org/10.1111/exd.14132.
- 23. Ocejo-Vinyals JG, Irure-Ventura J, Guiterrez-Larranaga M et al Associartion of TLR Polymorphisms with susceptibility to Hidradenitis Suppurativa in a Spanish Caucasian population. 34th European Immunogenetics and Histocompatibility and 31st British Society for Histocompatibility and Immunogenetics Conference. United Kingdom. 95 (4):410-411
- Jørgensen AR Aarestrup J, Baker JL, Thomsen SF Association of Birth Weight, Childhood Body Mass Index and Height with risk of Hidradenitis Suppurativa. JAMA Dermatol. 2020;156(7):746-753

- 25. Kjærsgaard Ansdersen R, Jorgensen IF, Reguant R, Jemec GBE et al Disease Trajectories for Hidradenitis Suppurativa in the Danish Population. JAMA Dermatol. 2020;156(7):780-786
- 26. Althubaiti Informaiton bias in health research: definition, pitfalls and adjustment methods. J Multidiscip Healthc 2016;9:211-217
- Zouboulis CC, Del Marmol V, Mrowietz U, Prens EP, Tzellos T, Jemec GB. Hidradenitis Suppurativa/Acne Inversa: Criteria for Diagnosis, Severity Assessment, Classification and Disease Evaluation. *Dermatology*. 2015;231(2):184-90.
- Revuz JE, Jemec GBE Diagnosing Hidradenitis Suppurativsa. Dermatologic Clinics 2016;34(1):1-5
- 29. Argyropoulou M, Grundhuber M, Kanni T, Tzanetakou V et al A composite biomarker score for the diagnosis of hidradenitis suppurativa.8th EHSF 2019
- Kelly, G., R. Hughes, T. McGarry, M. van den Born, K. Adamzik, R. Fitzgerald, C. Lawlor, A. M. Tobin, C. M. Sweeney, and B. Kirby. 2015. 'Dysregulated Cytokine Expression in Lesional and Nonlesional Skin in Hidradenitis Suppurativa'. *British Journal of Dermatology* 173 (6): 1431–39. https://doi.org/10.1111/bjd.14075.
- 31. Wolk, Kerstin, Katarzyna Warszawska, Conny Hoeflich, Ellen Witte, Sylke Schneider-Burrus, Katrin Witte, Stefanie Kunz, et al. 2011. 'Deficiency of IL-22 Contributes to a Chronic Inflammatory Disease: Pathogenetic Mechanisms in Acne Inversa'. *Journal of Immunology (Baltimore, Md.: 1950)* 186 (2): 1228–39. https://doi.org/10.4049/jimmunol.0903907.
- Hessam S, Scholl S, Sand M, Schmitz L et al A Novel Severity Assessment Scoring System for Hidradenitis Suppurativa. *JAMA Dermatol* 2018;154(3):330-335. doi: 10.1001/jamadermatol.2017.5890
- 33. Witte-Händel, Ellen, Kerstin Wolk, Athanasia Tsaousi, Marie Luise Irmer, Rotraut Mößner, Orr Shomroni, Thomas Lingner, et al. 2019. 'The IL-1 Pathway Is Hyperactive

in Hidradenitis Suppurativa and Contributes to Skin Infiltration and Destruction'. *Journal of Investigative Dermatology* 139 (6): 1294–1305. https://doi.org/10.1016/j.jid.2018.11.018.

- Ponikowska, Malgorzata, Lukasz Matusiak, Monika Kasztura, Ewa A. Jankowska, and Jacek C. Szepietowski. 2020. 'Deranged Iron Status Evidenced by Iron Deficiency Characterizes Patients with Hidradenitis Suppurativa'. *Dermatology (Basel, Switzerland)* 236 (1): 52–58. https://doi.org/10.1159/000505184.
- 35. Ghias M, Cameron S, Shaw F, Soliman Y, Kutner A, Chaitowitz M et al. Anemia in Hidradenitis Suppurativa, Hepcidin as a Diagnostic Tool Am J Clin Pathol 2019;152(S1):S15
- Matusiak, Łukasz, Joanna Salomon, Danuta Nowicka-Suszko, Andrzej Bieniek, and Jacek C. Szepietowski. 2015. 'Chitinase-3-like Protein 1 (YKL-40): Novel Biomarker of Hidradenitis Suppurativa Disease Activity?' *Acta Dermato-Venereologica* 95 (6): 736– 37. https://doi.org/10.2340/00015555-2061.
- 37. Jiménez-Gallo D, de la Varga-Martínez R, Ossorio-García L, *et al.*: The Clinical Significance of Increased Serum Proinflammatory Cytokines, C-Reactive Protein, and Erythrocyte Sedimentation Rate in Patients with Hidradenitis Suppurativa. *Mediators Inflamm.* 2017; 2017: 2450401.
- 38. Jiménez-Gallo D, de la Varga-Martínez R, Ossorio-García L, et al.: Effects of adalimumab on Thelper-17 lymphocyte- and neutrophil-related inflammatory serum markers in patients with moderate-to-severe hidradenitis suppurativa. Cytokine. 2018; 103: 20–24.
- 39. Batycka-Baran, Aleksandra, Wojciech Baran, Danuta Nowicka-Suszko, Maria Koziol-Gałczyńska, Andrzej Bieniek, Łukasz Matusiak, Łukasz Łaczmański, and Jacek Cezary Szepietowski. 2020. 'Serum Concentration and Skin Expression of S100A7 (Psoriasin) in

Patients Suffering from Hidradenitis Suppurativa'. *Dermatology*, November, 1–7. https://doi.org/10.1159/000510689.

- 40. Hotz C, Boniotto M, Guguin A, *et al.*: Intrinsic Defect in Keratinocyte Function Leads to Inflammation in Hidradenitis Suppurativa. *J Invest Dermatol.* 2016; 136(9): 1768–1780.
- 41. Emelianov VU, Bechara FG, Gläser R, *et al.*: Immunohistological pointers to a possible role for excessive cathelicidin (LL-37) expression by apocrine sweat glands in the pathogenesis of hidradenitis suppurativa/acne inversa. *Br J Dermatol.* 2012; 166(5): 1023–1034.
- Lima AL, Karl I, Giner T, *et al.*: Keratinocytes and neutrophils are important sources of proinflammatory molecules in hidradenitis suppurativa. *Br J Dermatol.* 2016; 174(3): 514–521.
- 43. Eşer, Emel, Burhan Engin, Pelin Yüksel, Bekir Sami Kocazeybek, Zekayi Kutlubay, Server Serdaroğlu, and Özge Aşkın. 2020. 'Relationship between Fecal Calprotectin Level and Disease Activity in Patients with Hidradenitis Suppurativa'. *Dermatologic Therapy* 33 (2): e13232. <u>https://doi.org/10.1111/dth.13232</u>.
- 44. Lloyd-McLennan, Allison M., Sabina Ali, and Nicole W. Kittler. n.d. 'Prevalence of Inflammatory Bowel Disease among Pediatric Patients with Hidradenitis Suppurativa and the Potential Role of Screening with Fecal Calprotectin'. *Pediatric Dermatology* n/a (n/a). Accessed 19 February 2021. https://doi.org/10.1111/pde.14417.
- 45. Akdogan, Neslihan, Sibel Dogan, Pinar Incel-Uysal, Erdem Karabulut, Canan Topcuoglu, Basak Yalcin, and Nilgun Atakan. 2020. 'Serum Amyloid A and C-Reactive Protein Levels and Erythrocyte Sedimentation Rate Are Important Indicators in Hidradenitis Suppurativa'. *Archives* of Dermatological Research 312 (4): 255–62. https://doi.org/10.1007/s00403-019-02014-8.
- 46. Matusiak, Łukasz, Justyna Szczęch, Andrzej Bieniek, Danuta Nowicka-Suszko, and Jacek C. Szepietowski. 2017. 'Increased Interleukin (IL)-17 Serum Levels in Patients with Hidradenitis Suppurativa: Implications for Treatment with Anti-IL-17 Agents'.

Journal of the American Academy of Dermatology 76 (4): 670–75. https://doi.org/10.1016/j.jaad.2016.10.042.

- Kanni T, Tzanetakou V, Savva A, *et al.*: Compartmentalized Cytokine Responses in Hidradenitis Suppurativa. *PLoS One.* 2015; 10(6): e0130522.
- 48. Thomi R, Schlapbach C, Yawalkar N, *et al.*: Elevated levels of the antimicrobial peptide LL-37 in hidradenitis suppurativa are associated with a Th1/Th17 immune response. *Exp Dermatol.* 2018; 27(2): 172–177.
- 49. Ten Oever J, van de Veerdonk FL, Joosten LA, *et al.*: Cytokine Production Assays Reveal Discriminatory Immune Defects in Adults with Recurrent Infections and Noninfectious Inflammation. *Clin Vacc Immunol.* 2014: 21(8): 1061–1069.
- 50. Ring HC, Thorsen J, Saunte DM, Lilje B, Bay L et al. The follicular skin microbiome in patients with Hidradenitis Suppurativa and Healthy Controls. JAMA Derm 2017;153(9):897-905
- 51. Guet Revillet H, Jais JP, Ungeheuer MN, Coignard-Biehler H, Duchatelet S et al The Microbiological landscape of anaerobic infections in hidradenitis suppurativa: A prospective metagenomic study Clin Infect Dis 2017;65(2):282-291
- 52. Naik HB, Nassif A, Ramesh MS, Schultz G et al Are Bacteria infectious pathogens in Hidradenitis Suppurativa? Debate at the Symposium for Hidradenitis Suppurativa Advances Meeting. J Invest Dermatrol 2019;139(1):13-16
- 53. Ring HC, Sigsgaard V, Thorsen J, Fuursted K, Fabricus S, Saunte DM, Jemec GBE The microbiome of tunnels in hidradenitis suppurativa patients. J Eur Acad Dermatol Venereol 2019;33(9):1775-1780
- 54. Schneider AM, Cook LC, Zhan X, Banerjee K, Cong Z et al Loss of Skin Microbial Diversity in Alteration of Bacterial Metabolic Functions in Hidradenitis Suppurativa. J Invest Dermatol 2020;140(3):716-720

- 55. Van der zee HH, de Ruiter L, van den Broecke DG, Dik WA, Laman JD, Prens EP Elevated levels of tumour necrosis factor (TNF)-a, interleukin (IL) 1B and IL-10 in Hidradenitis Suppurativa Skin: A rationale for targeting TNF-a and IL-1b. Br J Dermatol 2011; 164(6):1292-1298
- 56. Navrazhina K, Frew JW, Krueger JG Interleukin 17C is elevated in lesional tissue of hidradenitis suppurativa. Br J Dermatol 2020;182(4):1045-1047
- 57. van der Zee HH, Laman JD, de Ruiter L, *et al.*: Adalimumab (antitumour necrosis factor-α) treatment of hidradenitis suppurativa ameliorates skin inflammation: an *in situ* and *ex vivo* study. *Br J Dermatol.* 2012; 166(2): 298–305.
- 58. Grand D, Navrazhina K, Frew JW A Scoping review of non-invasive imaging modalities in Dermatological Disease: Potential Novel Biomarkers for Hidradenitis Suppurativa. Front Med (Lausanne) 2019;6:253.
- 59. Grand D, Frew JW, Navrazhina K, Krueger JG Doppler ultrasound-based noninvasive biomarkers in hidradenitis suppurativa: evaluation of analytical and clinical validity. Br J Dermatol 2020 doi:10.1111/bjd.19343
- 60. Wortsman X, Moreno C, Soto R, Arellano J, Pezo C, Worstman J Ultrasound in depth characterization and staging of hidradenitis suppurativa. Dermatol Surg 2013;39(12):1835-1842
- 61. Martorell A, Alfageme Roldan F, Vilarrasa Rull E, Ruiz-Villaverde R, Romani de Gabriel J et al Ultrasound as a diagnostic and management tool in hidradenitis suppurativa patients: a multicentre study. J Eur Acad Dermatol Venereol 2019;33(11);2137-2142
- 62. Nazzaro G, Passoni E, Calzari P, Barbareschi M, Muratori S, Veraldi S, Marzano AV Color Doppler as a tool for correlating vascularisation and pain in Hidradenitis Suppurativa lesions. Skin Res Techol 2019;25(6):830-834

- Caposiena Caro RD, Solivetti FM, Bianchi L Power doppler ultrasound assessment of vascularization in hidradenitis suppurativa lesions. J Eur Acad Dermatol Venereol 2018;32(8):1360-1367
- 64. Byrd AS, Carmona-Rivera C, O'Neil LJ, Carlucci PM et al Neutrophil extracellular traps, B cells and type I interferons contribute to immune dysregulation in hidradenitis suppurativa. Sci Trans Med 2019;11(508):eaav5908
- 65. Lowe MM, Naik HB, Clancy S, Pauli M, Smith KM, Bi Y, Dunstan R, Gudjonsson JE et al Immunopathogenesis of hidradenitis suppurativa nad eresponse to anti-TNF-alpha therapy. JCI Insight 2020;5(19):e139932
- 66. Theut Riis P, Saunte DM, Benhadou F, Del Marmol V, Guillen P et al Low and High body mass index in hidradenitis suppurativa patients- different subtypes? J Eur Acad Dermatol Venereol 2017;32(2):307-312
- Hessam S, Sand M, Gambichler, Bechara FG Correlation of Serum Inflammatory with disease severity in patients with Hidradenitis Suppurativa. et al J Am Acad Dermatol. 2015;73(6):998-1005
- 68. Frew JW, Jiang CS, Singh N, Navrazhina K, Vaughan R, Krueger JG Quantifying the natural variation in lesion counts over time in untreated Hidradenitis Suppurativa: Implications for outcome measures and trial design. JAAD Int 2020;1(2): 208-221
- Roy C, Roy SF Ghazawi FM et al. Cutaneous squamous cell carcinoma arising in hidradenitis suppurativa: A case report. SAGE Open Med Case Reports 2019;7:2050313X19847359
- Lapins J, Ye W, Nyren O, Emtestam L Incidence of cancer among patients with hidradenitis suppurativa Arch Dermatol 2001;137(6):730-4
- 71. Frew JW, Jiang CS, Singh N Grand D et al Malignancy and Infection Risk during adalimumab therapy in hidradenitis suppurativa. Clin Exp Dermatol 2020;45(7):859-865

- 72. Liu M, Degner J, Georgantas RW, Nader A, Mostafa NM, Teixeira HD et al A genetic variant in the BCL2 Gene associated with Adalimumab response in Hidradenitis Suppurativa Clinical Trials and Regulated Expression of BCL2.J Invest Dermatol 2020;140(3):574-582.e2
- 73. Frew JW, Jiang CS, Singh N et al. Clinical response rates, placebo response rates, and significantly associated covariates are dependent on choice of outcome measure in hidradenitis suppurativa: A post hoc analysis of PIONEER 1 and 2 individual patient data. *J Am Acad Dermatol.* 2020 May;82(5):1150-1157.
- 74. Frew JW, Jiang CS, Singh N, Grand D, Navrazhina K, Vaughan R, Krueger JG Dermal Tunnels influence time to clinical response and family history influences time to loss of clinical response in patients with hidradenitis suppurativa treated with adalimumab. Clin Exp Dermatol 2021;46(2):306-313
- 75. Montaudié H, Seitz-Polski B, Cornille A, Benzaken S, Lacour JP, Passeron T et al Interleukin 6 and high-sensitivity C-reactive protein are potential predictive markers of response to infliximab in hidradenitis suppurativa. J Am Acad Dermatol 2017;76(1):156-158
- 76. Gudjonsson JE, Tsoi LC, Ma F, Billi AC, van Straalen KR, Vossen ARJV et al Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis. JCI Insight 2020;5(19):e139930
- Kimball AB, Okun MM, Williams DA et al. Two Phase 3 Trials of Adalimumab for Hidradenitis Suppurativa. N Engl J Med. 2016 Aug 4;375(5):422-34.
- 78. Zouboulis CC, Okun MM, Prens EP et al. Long-term adalimumab efficacy in patients with moderate-to-severe hidradenitis suppurativa/acne inversa: 3-year results of a phase 3 open-label extension study. *J Am Acad Dermatol*. 2019 Jan;80(1):60-69.e2.
- Torres R, Judson-Torres RL. Research Techniques Made Simple: Feature Selection for Biomarker Discovery. *J Invest Dermatol.* 2019 Oct;139(10):2068-2074.e1.
- 80. Frew JW Hidradenitis Suppurativa is an autoinflammatory keratinisation disease: A review odf the clinical histological and molecular evidence. JAAD Int. 2020; 1(1): 62-72.

- Hessam S, Gambichler T, Skrygan M et al. Increased expression profile of NCSTN, Notch and PI3K/AKT3 in hidradenitis suppurativa. *J Eur Acad Dermatol Venereol*. 2020 Sep 25.
- 82. Xiao X, He Y, Li C, Zhang X, Xu H, Wang B. Nicastrin mutations in familial acne inversa impact keratinocyte proliferation and differentiation through the Notch and phosphoinositide 3kinase/AKT signalling pathways. *Br J Dermatol. 2016* Mar;174(3):522-32.
- Frew JW Differential profiles of gamma secretase-Notch signalling in Hidradenitis Suppurativa: The need for Genotype-Endotype-Phenotype Analysis. Br J Dermatol 2021; doi:10.1111/bjd.19805
- 84. Zouboulis CC, Tzellos T, Kyrgidis A et al. Development and validation of the International Hidradenitis Suppurativa Severity Score System (IHS4), a novel dynamic scoring system to assess HS severity. *Br J Dermatol.* 2017 Nov;177(5):1401-1409.
- Goldfarb N, Lowes MA, Butt M, King T, Alavi A, Kirby JS. Hidradenitis Suppurativa Area and Severity Index Revised (HASI-R): psychometric property assessment. *Br J Dermatol*. 2020 Sep 23.
- 86. Navrazhina K, Frew JW, Gilleaudeau P, Sullivan-Whelan M, Garcet S, Krueger JG Epithelialized tunnels are a source of inflammation in Hidradenitis Suppurativa. J Allerg Clin Immunol 2021; doi:10.1016/j.jaci.2020.12.651
- 87. Navrazhina K, Garcet S, Gonzales J, Grand D, Frew JW, Krueger JG In Depth Analysis of the Hidradenitis Suppurativa Serum Proteome Identified Distinct Inflammatory Profiles. J Invest Dermatol 2021 (In Press)
- 88. Martorell A, Jfir A et al Defining hidradenitis suppurativa phenotypes based on the elementary lesion pattern: results of a prospective study. JEADV 2020;34(6):1309-1318
- 89. Sartorius K, Lapins J, Emtestam L, Jemec GB. Suggestions for uniform outcome variables when reporting treatment effects in hidradenitis suppurativa. *Br J Dermatol*. 2003;149(1):211-213

- 90. Jenei A, Medgyesi B, Gaspar K, Beke G, Kinyo A et al Apocrine gland rich skin has a noninflammatory IL-17 Related Immune Mileu, that turns to inflammatory IL-17 Mediated Disease in Hidradenitis Suppurativa. J Invest Dermatol 2019;139(4):964-968
- 91. Beke G, Dajnoki Z, Kapitany A, Gaspar K, et al Immunotopographical differences in human skin. Front Imunol 2018;9:424
- 92. Frew JW, Navrazhina K Byrd AS, Garg A, Ingram JR et al Defining, Lesional, Perilesional and Unaffected skin I Hidradenitis Suppurativa: proposed recommendations for clinical trials and translational research studies. Br J Dermatol 2019;181(6):1339-1341
- Torres R, Judson-Torres RL Research Techniques Made Simple: Feature Selection for Biomarker Discovery. J Invest Dermatol 2019;139(10):2068-2074
- 94. Giamarellos-Bouboulis EJ, Argyropoulou M, Kanni T, Spyridopoulos T, Otto I et al Clinical Efficacy of complement C5a inhibition by IFX-1 in hidradenitis suppurativa: an open-label single arm trial in patients not eligible for adalimumab. Br J Dermatol 2020; 183(1):176-178
- 95. Chemocentryx "ChemoCentryx Announces Positive Topline Results of Phase II AURORA Clinical Trial of Avacopan in the Treatment of Hidradenitis Suppurativa (HS)" Retrieved 1st March 2021 <u>https://ir.chemocentryx.com/news-releases/news-release-details/chemocentryx-</u> announces-positive-topline-results-phase-ii-aurora
- 96. Gonzales-Lopez GA, Vilanova I, Ocejo-Vinals G, Arlegui et al Circulating levels of Adiponectin, leptin resistin and visfatin in non-diabetic patients with hidradenitis suppurativs. Arch Dermatol Res 2020;312,595-600
- 97. Ozkur E, Erdem Y, Altunay IK, Demir D, Dolu NC, Serin E, Cerman AA Serum irisin level, insulin resistance and lipid profiles in patients with hidradenitis suppurativa: a case control study. An Bras Derm 2020;95(6):708-713
- 98. Wolk K, Wenzel J, Tsaousi A, Witte-Händel E, Babel N, Zelenak C, Volk HD, Sterry W, Schneider-Burrus S, Sabat R. Lipocalin-2 is expressed by activated granulocytes and keratinocytes in affected skin and reflects disease activity in acne inversa/hidradenitis

suppurativa. Br J Dermatol. 2017 Nov;177(5):1385-1393. doi: 10.1111/bjd.15424. Epub 2017 Sep 19. PMID: 28256718.

- Matusiak Ł, Bieniek A, Szepietowski JC. Soluble interleukin-2 receptor serum level is a useful marker of hidradenitis suppurativa clinical staging. Biomarkers. 2009 Sep;14(6):432-7. doi: 10.1080/13547500903075218. PMID: 19627253.
- Assan F, Gottlieb J, Tubach F et al. Anti-Saccharomyces cerevisiae IgG and IgA antibodies are associated with systemic inflammation and advanced disease in hidradenitis suppurativa. J Allergy Clin Immunol. 2020 Aug;146(2):452-455.e5. doi: 10.1016/j.jaci.2020.01.045. Epub 2020 Feb 13. PMID: 32061710.
- Tsaousi A, Witte E, Witte K et al. MMP8 Is Increased in Lesions and Blood of Acne Inversa Patients: A Potential Link to Skin Destruction and Metabolic Alterations. Mediators Inflamm. 2016;2016:4097574. doi: 10.1155/2016/4097574. Epub 2016 Oct 23. PMID: 27843200; PMCID: PMC5097814.
- Derruau S, Gobinet C, Untereiner V et al. New insights into hidradenitis suppurativa diagnosis via salivary infrared biosignatures: A pilot study. J Biophotonics. 2021
 Mar;14(3):e202000327. doi: 10.1002/jbio.202000327. Epub 2020 Dec 2. PMID: 33231348.
- Miller IM, Rytgaard H, Mogensen UB et al. Body composition and basal metabolic rate in Hidradenitis Suppurativa: a Danish population-based and hospital-based cross-sectional study. J Eur Acad Dermatol Venereol. 2016 Jun;30(6):980-8. doi: 10.1111/jdv.13522. Epub 2015 Dec 9. PMID: 26660945.
- Hessam S, Gambichler T, Höxtermann S et al. Frequency of circulating subpopulations of T-regulatory cells in patients with hidradenitis suppurativa. J Eur Acad Dermatol Venereol. 2020 Apr;34(4):834-838. doi: 10.1111/jdv.16071. Epub 2019 Dec 9. PMID: 31721309.
- 105. Wieland CW, Vogl T, Ordelman A et al. Myeloid marker S100A8/A9 and lymphocyte marker, soluble interleukin 2 receptor: biomarkers of hidradenitis suppurativa disease activity? Br J Dermatol. 2013 Jun;168(6):1252-8. doi: 10.1111/bjd.12234. PMID: 23320892.

- 106. Vossen ARJV, van der Zee HH, Tsoi LC et al. Novel cytokine and chemokine markers of hidradenitis suppurativa reflect chronic inflammation and itch. Allergy. 2019 Mar;74(3):631-634. doi: 10.1111/all.13665. Epub 2018 Dec 10. PMID: 30421795; PMCID: PMC6590369.
- Penno CA, Jäger P, Laguerre C et al. Lipidomics Profiling of Hidradenitis Suppurativa Skin Lesions Reveals Lipoxygenase Pathway Dysregulation and Accumulation of Proinflammatory Leukotriene B4. J Invest Dermatol. 2020 Dec;140(12):2421-2432.e10. doi: 10.1016/j.jid.2020.04.011. Epub 2020 May 5. PMID: 32387270.
- 108. Pacific KP, AAD Annual meeting. United stated PP AB61, 2020
- Kelly AM, Cronin P. MRI features of hidradenitis suppurativa and review of the literature. *AJR Am J Roentgenol.* (2005) 185:1201–4. 10.2214/AJR.04.123
- Zouboulis CC, Nogueira da Costa A, Jemec GBE, Trebing D. Long-Wave Medical Infrared Thermography: A Clinical Biomarker of Inflammation in Hidradenitis Suppurativa/Acne Inversa. Dermatology. 2019;235(2):144-149. doi: 10.1159/000495982.
- Alatas ET, Biteker M, Alatas OD. Epicardial fat thickness is increased and associated with disease severity in hidradenitis suppurativa. Arch Dermatol Res. 2020 Sep;312(7):467-472. doi: 10.1007/s00403-019-02032-6. Epub 2020 Jan 1. PMID: 31894390. Epub 2019 Jan 16. PMID: 30650424.
- Abdalla T, Mansour M, Bouazzi D, Lowes MA, Jemec GBE, Alavi A. Therapeutic Drug Monitoring in Patients with Suboptimal Response to Adalimumab for Hidradenitis Suppurativa: A Retrospective Case Series. Am J Clin Dermatol. 2020 Nov 26. doi: 10.1007/s40257-020-00575-3. Epub ahead of print. PMID: 33242185.
- Banerjee A, McNish S, Shanmugam VK. Interferon-gamma (IFN-γ) is Elevated in
 Wound Exudate from Hidradenitis Suppurativa. Immunol Invest. 2017 Feb;46(2):149-158. doi:
 10.1080/08820139.2016.1230867. Epub 2016 Nov 7. PMID: 27819528; PMCID: PMC5767159.

- 114. Thomi R, Yerly D, Yawalkar N, Simon D, Schlapbach C, Hunger RE. Interleukin-32 is highly expressed in lesions of hidradenitis suppurativa. Br J Dermatol. 2017 Nov;177(5):1358-1366. doi: 10.1111/bjd.15458. Epub 2017 Sep 27. PMID: 28301691.
- Thomi R, Kakeda M, Yawalkar N, Schlapbach C, Hunger RE. Increased expression of the interleukin-36 cytokines in lesions of hidradenitis suppurativa. J Eur Acad Dermatol Venereol. 2017 Dec;31(12):2091-2096. doi: 10.1111/jdv.14389. Epub 2017 Aug 29. PMID: 28602023.
- 116. Hessam S, Sand M, Gambichler T, Skrygan M, Rüddel I, Bechara FG. Interleukin-36 in hidradenitis suppurativa: evidence for a distinctive proinflammatory role and a key factor in the development of an inflammatory loop. Br J Dermatol. 2018 Mar;178(3):761-767. doi: 10.1111/bjd.16019. Epub 2018 Jan 31. PMID: 28975626
- 117. Frew JW, Lowes MA, Goldfarb N, Butt M, Piguet V, O'Brien E, Ingram J, Jemec GBE,
 Tan J, Zouboulis C, Alavi A, Kirby JS. Global Harmonization of Morphological Definitions in
 Hidradenitis Suppurativa for a Proposed Glossary. JAMA Dermatol. 2021 Mar 10. doi:
 10.1001/jamadermatol.2020.5467. Epub ahead of print. PMID: 33688910.
- 118. Naik HB, Lowes MA. A Call to Accelerate Hidradenitis Suppurativa Research and Improve Care-Moving Beyond Burden. JAMA Dermatol. 2019 Jul 10. doi: 10.1001/jamadermatol.2019.1105. Epub ahead of print. PMID: 31290934.
- Cao Y, Hong F, Conlon DM, Sidur L, Smith KM, Fang Y et al Potential Predictive
 Biomarkers of Adalimumab Response in Patients with Hidradenitis Suppurativa. Br J Dermatol
 2021; doi: 10.1111/bjd.20097