Cell Chemical Biology, Volume 29

# Supplemental information

# The *Plasmodium falciparum* ABC transporter

### ABCI3 confers parasite strain-dependent

## pleiotropic antimalarial drug resistance

James M. Murithi, Ioanna Deni, Charisse Flerida A. Pasaje, John Okombo, Jessica L. Bridgford, Nina F. Gnädig, Rachel L. Edwards, Tomas Yeo, Sachel Mok, Anna Y. Burkhard, Olivia Coburn-Flynn, Eva S. Istvan, Tomoyo Sakata-Kato, Maria G. Gomez-Lorenzo, Annie N. Cowell, Kathryn J. Wicht, Claire Le Manach, Gavreel F. Kalantarov, Sumanta Dey, Maëlle Duffey, Benoît Laleu, Amanda K. Lukens, Sabine Ottilie, Manu Vanaerschot, Ilya N. Trakht, Francisco-Javier Gamo, Dyann F. Wirth, Daniel E. Goldberg, Audrey R. Odom John, Kelly Chibale, Elizabeth A. Winzeler, Jacquin C. Niles, and David A. Fidock

# **Supplementary Materials for**

# The *Plasmodium falciparum* ABC Transporter ABCI3 Confers Parasite Strain-Dependent Pleiotropic Antimalarial Resistance

James M. Murithi, Ioanna Deni, Charisse F.A. Pasaje, John Okombo, Nina F. Gnädig, Rachel L. Edwards, Tomas Yeo, Jessica L. Bridgford, Sachel Mok, Anna Y. Burkhard, Olivia Coburn-Flynn, Eva S. Istvan, Tomoyo Sakata-Kato, Maria G. Gomez-Lorenzo, Annie N. Cowell, Kathryn J. Wicht, Claire Le Manach, Gavreel F. Kalantarov, Sumanta Dey, Benoît Laleu, Maëlle Duffey, Amanda K. Lukens, Sabine Ottilie, Manu Vanaerschot, Ilya N. Trakht, Francisco-Javier Gamo, Dyann F. Wirth, Daniel E. Goldberg, Audrey R. Odom John, Kelly Chibale, Elizabeth A. Winzeler, Jacquin C. Niles, David A. Fidock

#### **Supplementary Figures and Tables**

| Figure S1. | Genetic modifications of ABCI3 do not confer cross resistance to first-line antimalarialspage 3                        |
|------------|------------------------------------------------------------------------------------------------------------------------|
| Figure S2. | ABCI3 mutations and amplifications do not show parasitemia-dependent dose responses against                            |
|            | SNP-selecting compoundspage 4                                                                                          |
| Figure S3. | ABCI3 foci localize to vesicles and various cellular organellespage 5                                                  |
| Figure S4. | Parasites treated with compounds 3-5 do not display a heme fractionation profile similar to CQ                         |
|            | page 6                                                                                                                 |
| Figure S5. | PfMDR1 amplifications do not affect parasite susceptibility to ABCI3-associated compounds                              |
|            | page 7                                                                                                                 |
| Table S1.  | Plasmodium falciparum as<br>exual blood stage $IC_{50}$ data in nM for the tested antimal<br>arials. page 8            |
| Table S2.  | Plasmodium falciparum as<br>exual blood stage $IC_{50}$ data in nM for the antiplasmodial compounds                    |
|            | assayed against the Dd2-B2 parent as well as the selected and edited ABCI3 F689C and S696Y                             |
|            | parasite linespage 9                                                                                                   |
| Table S3.  | Plasmodium falciparum as<br>exual blood stage $\rm IC_{50}$ data in nM for compounds<br>$\bf 1, 3$ and $\bf 4$ against |
|            | 3D7-A10 parent, drug-selected, and gene-edited L690I parasite linespage 10                                             |
| Table S4.  | Plasmodium falciparum asexual blood stage IC50 data in nM for ABCI3-linked antiplasmodial                              |
|            | inhibitors tested in the presence or absence of aTc in an ABCI3 conditional knockdown parasite                         |
|            | linepage 11                                                                                                            |

| Table S5. | Cellular accumulation ratio of chloroquine and compound <b>1</b> in <i>Plasmodium falciparum</i> asexual |
|-----------|----------------------------------------------------------------------------------------------------------|
|           | blood stage parasitespage 12                                                                             |

| Table S6. | Mean ± SEM amount of hemoglobin, free heme and hemozoin in drug-treated parasites                            |
|-----------|--------------------------------------------------------------------------------------------------------------|
|           | represented as percent proportion or absolute amount of heme iron per cell in fg/cell and the in             |
|           | vitro $\beta$ -hematin inhibition assay IC <sub>50</sub> data in $\mu$ M for the tested antimalarialspage 13 |

- Table S8.
   Transmission electron microscopy image scoring of *Plasmodium falciparum* asexual blood stage

   parasite subcellular localization of anti-HA stained ABCI3-3×HA......page 15
- Table S9.Association constants with Fe(III)PPIX in 40% DMSO and either 0.02 M HEPES (pH 7.4) or MES

| Table S10. | Oligonucleotides used in this study | page 17 |
|------------|-------------------------------------|---------|

(pH 5.6).....page 16



Figure S1 (related to Fig. 1, Table S1). Genetic modifications of ABCI3 do not confer cross resistance to first-line antimalarials. (A) Dose-response assays of ABCI3 CNV and SNP lines showed no cross-resistance against a panel of clinical antimalarials. Mean  $\pm$  SEM; N≥4, n=2. Mann-Whitney *U* tests vs. 3D7-A10. (B) Chemical structure of first-line antimalarials and MMV compound **6**, which is identical to compound **1** apart from the absence of a –CF3 group in the pyridyl ring.



Figure S2 (related to Fig. 5). ABCI3 mutations and amplifications do not show parasitemiadependent dose responses against SNP-selecting compounds. Compounds 3 and 4 had similar dose-response across all the three tested lines regardless of the starting parasite inoculum size. The absolute  $IC_{50}$  could therefore not be calculated from extrapolating the linear relationship between starting inoculum size and the measured  $IC_{50}$ . Mean ± SEM; N, n = 5, 2.





**Figure S3 (related to Fig. 5D, E). ABCI3 foci localize to vesicles and various cellular organelles.** (**A**) In the fluorescent image, ABCI3 Flag-tagged parasites were stained with anti-Flag (green), DAPI (nuclear, blue), anti-PfCRT (DV membrane, red), anti-ERD2 (cis-Golgi), or anti-Rab5B or anti-Rab7 (markers of vesicular transport) antibodies. The plasmid used to generate the tagged lines is illustrated. Scale bars: 2 μm. (**B**) Immuno-EM images of HA-tagged ABCI3 parasites stained with anti-HA antibodies. ER, endoplasmic reticulum; N, nucleus; NM, nuclear membrane; Hz, hemozoin crystals (digestive vacuole); V, vacuole; PM, plasma membrane and C, cytosol. Cy, cytostome. Scale bar: 500 nm.

Α



Figure S4 (related to Fig. 6). Parasites treated with compounds 3-5 do not display a heme fractionation profile similar to CQ. (A-I) Treatment of parasites with compounds 3-5 did not interfere with heme or Hz accumulation. (J-L) Concentration-dependent inhibition of parasite growth obtained with compounds 3-5 was independent of free heme levels. Statistical comparisons of the drug-treated lines to their untreated controls were performed using two-tailed Student's tests (with Welch's correction). N, n = 3, 2. \*p<0.05, \*\*p<0.01, \*\*\*p<0.001.



Figure S5 (related to Fig. 7, Table S7). PfMDR1 amplifications do not affect parasite susceptibility to ABCI3-associated compounds. Isogenic parasite lines expressing 1 (KD1) or 2 (FCB) copies of *pfmdr1* were equally susceptible to all five ABCI3-associated inhibitors. Mefloquine and lumefantrine were used as positive controls. *P* values were determined by comparison between the KD and parental FCB lines using Mann-Whitney *U* tests. N, n = 3-5, 2; \*p<0.05, \*\*p<0.01.

|                    | 3D                       | 7-A10 |    |                          | ABCI           | 3 cop | lies                |                          | ABCI3 | Y2079 | 9C      |                          | ABCI3 | R2180 | P       |                          | ABCI3 | R2180 | )G      |                          | ABCI | 8 L690 | l       |
|--------------------|--------------------------|-------|----|--------------------------|----------------|-------|---------------------|--------------------------|-------|-------|---------|--------------------------|-------|-------|---------|--------------------------|-------|-------|---------|--------------------------|------|--------|---------|
| Antimalarials      | Mean<br>IC <sub>50</sub> | SEM   | Ν  | Mean<br>IC <sub>50</sub> | SEM            | Ν     | P value             | Mean<br>IC <sub>50</sub> | SEM   | Ν     | P value | Mean<br>IC <sub>50</sub> | SEM   | Ν     | P value | Mean<br>IC <sub>50</sub> | SEM   | Ν     | P value | Mean<br>IC <sub>50</sub> | SEM  | Ν      | P value |
| 1                  | 47.0                     | 0.8   | 8  | 106<br>(1249)            | 8.0<br>(79.0)  | 15    | <0.001<br>(<0.0001) | 48.0                     | 0.8   | 14    | ns      | 58.0                     | 2.0   | 14    | <0.001  | 56.0                     | 2.0   | 5     | <0.01   | 45.0                     | 1.0  | 7      | ns      |
| 2                  | 281                      | 19.0  | 6  | 265<br>(4054)            | 34.0<br>(69.0) | 4     | ns<br>(0.0095)      | 252                      | 13.0  | 6     | ns      | 275                      | 12.0  | 6     | ns      | 260                      | 14.0  | 6     | ns      | 208                      | 11.0 | 6      | <0.01   |
| 3                  | 1012                     | 64.0  | 11 | 2890                     | 246            | 5     | <0.001              | 2746                     | 89.0  | 15    | <0.0001 | 3029                     | 141   | 15    | <0.0001 | 2784                     | 196   | 8     | <0.0001 | 2511                     | 225  | 8      | <0.0001 |
| 4                  | 140                      | 14.0  | 10 | 500                      | 47.0           | 15    | <0.0001             | 1241                     | 34.0  | 8     | <0.0001 | 1918                     | 61.0  | 7     | <0.001  | 1268                     | 55.0  | 4     | <0.01   | 2300                     | 217  | 5      | <0.001  |
| 5*                 | 2.0                      | 0.1   | 10 | 25.0                     | 0.9            | 11    | <0.0001             | 8.0                      | 0.7   | 6     | <0.001  | 29.0                     | 1.7   | 6     | <0.001  | 21.0                     | 1.0   | 6     | <0.001  | 2.0                      | 0.3  | 9      | ns      |
| 6                  | 16.0                     | 2.0   | 11 | 32.0                     | 3.0            | 15    | <0.001              | 20.0                     | 1.0   | 10    | ns      | 25.0                     | 1.0   | 10    | <0.01   | 23.0                     | 1.0   | 8     | <0.05   | 17.0                     | 0.7  | 8      | ns      |
| Dihydroartemisinin | 0.4                      | 0.1   | 6  | 0.3                      | 0.0            | 6     | ns                  | 0.4                      | 0.1   | 6     | ns      | 0.6                      | 0.1   | 6     | ns      | 0.4                      | 0.1   | 6     | ns      | 0.4                      | 0.1  | 6      | ns      |
| Chloroquine        | 5.0                      | 0.5   | 4  | 4.9                      | 0.4            | 5     | ns                  | 5.1                      | 0.6   | 5     | ns      | 6.4                      | 0.6   | 6     | ns      | 4.8                      | 0.3   | 5     | ns      | 5.3                      | 0.4  | 5      | ns      |
| Piperaquine        | 8.5                      | 0.6   | 5  | 8.0                      | 1.1            | 5     | ns                  | 9.5                      | 1.2   | 5     | ns      | 10.0                     | 1.6   | 5     | ns      | 8.7                      | 1.0   | 5     | ns      | 8.2                      | 0.9  | 5      | ns      |
| md-amodiaquine     | 10.6                     | 0.2   | 6  | 6.6                      | 0.8            | 6     | <0.01               | 7.6                      | 0.9   | 6     | <0.05   | 11.3                     | 0.4   | 5     | ns      | 11.7                     | 1.4   | 4     | ns      | 10.7                     | 0.5  | 5      | ns      |
| Quinine            | 13.9                     | 0.7   | 6  | 11.5                     | 0.7            | 4     | ns                  | 12.8                     | 0.8   | 5     | ns      | 16.1                     | 0.7   | 6     | ns      | 12.2                     | 0.8   | 4     | ns      | 12.1                     | 0.7  | 4      | ns      |
| Lumefantrine       | 0.8                      | 0.2   | 4  | 1.4                      | 0.3            | 4     | ns                  | 1.1                      | 0.2   | 4     | ns      | 1.4                      | 0.2   | 5     | ns      | 0.8                      | 0.3   | 5     | ns      | 0.9                      | 0.3  | 5      | ns      |
| Mefloquine         | 4.2                      | 0.6   | 5  | 4.0                      | 0.5            | 5     | ns                  | 4.6                      | 0.6   | 6     | ns      | 5.7                      | 0.7   | 6     | ns      | 5.6                      | 0.7   | 5     | ns      | 5.2                      | 0.5  | 5      | ns      |

Table S1 (related to Fig. 3, S1). Plasmodium falciparum asexual blood stage IC<sub>50</sub> data in nM for the tested antimalarials.

SEM: standard error of the mean; N: number of biological repeats (with technical duplicates); () refers to the  $IC_{50}$  and SEM of the second shift of the biphasic curve. \* Selections with compound **5** were run on a Dd2-B2 parental background ( $IC_{50} = 8 \text{ nM}$ ). *P* values were determined by comparison between the variant lines and parental 3D7-A10 using Mann-Whitney *U* tests. ns: not significant (p>0.05). Table S2 (related to Fig. 3). *Plasmodium falciparum* asexual blood stage IC<sub>50</sub> data in nM for the antiplasmodial compounds assayed against the Dd2-B2 parent as well as the selected and edited ABCI3 F689C and S696Y parasite lines.

|               | D                     | d2-B2      |   |                       | ABCI3 F6890 | Ced. |         | ABCI3 S696Y ed.       |             |   |                |  |  |
|---------------|-----------------------|------------|---|-----------------------|-------------|------|---------|-----------------------|-------------|---|----------------|--|--|
| Antimalarials | Mean IC <sub>50</sub> | SEM        | Ν | Mean IC <sub>50</sub> | SEM         | Ν    | P value | Mean IC <sub>50</sub> | SEM         | Ν | <i>P</i> value |  |  |
| 1             | 27.0 (1404)           | 3.0 (343)  | 4 | 30.0                  | 3.0         | 6    |         | 34.0                  | 2.0         | 6 |                |  |  |
| 2             | 265 (3542)            | 14.0 (465) | 5 | 257                   | 26.0        | 7    |         | 279                   | 26.0        | 7 |                |  |  |
| 3             | 1546                  | 95.0       | 7 | 956                   | 112         | 7    | <0.01   | >5 mM                 |             | 4 | <0.01          |  |  |
| 4             | 246                   | 20.0       | 7 | 36.0                  | 4.0         | 7    | <0.001  | >10 mM                |             | 4 | <0.01          |  |  |
| 5*            | 8.0                   | 0.9        | 6 | 94.0 (89.0)           | 10.0 (4.0)  | 6    | <0.01   | 1626 (1433)           | 56.0 (24.0) | 7 | <0.01          |  |  |

SEM: standard error of the mean; N: number of biological repeats (with technical duplicates); For compounds **1** and **2**, the brackets denote the mean  $IC_{50}$  and SEM of the second shift of the biphasic curve. For compound **5** where selections were run on a Dd2-B2 parental background, the brackets denote the mean  $IC_{50}$  and SEM values of the selected clones. ABCI3 <sup>F689C ed</sup>/ABCI3 <sup>S696Y ed</sup>: *P. falciparum* lines generated by introducing ABCI3 F689C and S696Y mutations into parental Dd2-B2 using CRISPR/Cas9. p values were determined by comparison between the variant lines and parental Dd2-B2 using Mann-Whitney *U* tests. -- not determined. Table S3 (related to Fig. 2C). *Plasmodium falciparum* as exual blood stage  $IC_{50}$  data in nM for compounds 1, 3 and 4 against 3D7-A10 parent, drug-selected, and gene-edited L690I parasite lines.

|           | 3D7                   | 7-A10 |   |                       | ABCI3 | L690I |         | ABCI3 L6901 ed.       |     |   |         |  |
|-----------|-----------------------|-------|---|-----------------------|-------|-------|---------|-----------------------|-----|---|---------|--|
| Compounds | Mean IC <sub>50</sub> | SEM   | Ν | Mean IC <sub>50</sub> | SEM   | Ν     | P value | Mean IC <sub>50</sub> | SEM | Ν | P value |  |
| 1         | 23.0                  | 2.6   | 6 | 16.0                  | 2.4   | 4     | ns      | 16.0                  | 0.8 | 4 | ns      |  |
| 3         | 1548                  | 161   | 4 | 3616                  | 299   | 4     | <0.05   | 3327                  | 436 | 4 | <0.05   |  |
| 4         | 188                   | 30.0  | 4 | 4168                  | 286   | 4     | <0.05   | 3805                  | 585 | 4 | <0.05   |  |

SEM: standard error of the mean; N: number of biological repeats (with technical duplicates). ABCI3 <sup>L690I</sup>: *P. falciparum* line generated from selections with compound **4**. ABCI3 <sup>L690I ed.</sup>: *P. falciparum* line generated by introducing the ABCI3 L690I mutation into parental 3D7-A10 using CRISPR/Cas9. *P* values were determined by comparison between the variant lines and parental 3D7-A10 using Mann-Whitney *U* tests. ns: p>0.05.

|               | 50 n                  | M aTc |   | _                     | 3 nM | aTc |         | 0 nM aTc              |     |   |         |  |  |
|---------------|-----------------------|-------|---|-----------------------|------|-----|---------|-----------------------|-----|---|---------|--|--|
| Antimalarials | Mean IC <sub>50</sub> | SEM   | Ν | Mean IC <sub>50</sub> | SEM  | Ν   | P value | Mean IC <sub>50</sub> | SEM | Ν | P value |  |  |
| Chloroquine   | 6.4                   | 0.2   | 4 | 6.4                   | 0.1  | 3   | ns      | 6.0                   | 0.4 | 4 | ns      |  |  |
| 1             | 60.2                  | 12.0  | 7 | 28.7                  | 4.6  | 8   | <0.05   | 19.4                  | 3.4 | 7 | <0.01   |  |  |
| 2             | 236                   | 13.5  | 8 | 160                   | 6.2  | 7   | <0.001  | 128                   | 8.7 | 8 | <0.001  |  |  |
| 3             | 804                   | 35.2  | 7 | 153                   | 4.2  | 8   | <0.001  | 74.9                  | 9.6 | 7 | <0.001  |  |  |
| 4             | 117                   | 5.5   | 8 | 24.5                  | 0.9  | 7   | <0.001  | 14.1                  | 0.3 | 8 | <0.001  |  |  |
| 5             | 10.0                  | 2.1   | 7 | 2.4                   | 0.6  | 7   | <0.01   | 1.4                   | 0.4 | 8 | <0.001  |  |  |
| 6             | 28.3                  | 5.4   | 7 | 18.0                  | 2.6  | 8   | ns      | 12.9                  | 2.7 | 7 | <0.05   |  |  |

Table S4 (related to Fig. 4). *Plasmodium falciparum* asexual blood stage IC<sub>50</sub> data in nM for ABCI3linked antiplasmodial inhibitors tested in the presence or absence of aTc in an ABCI3 conditional knockdown parasite line.

SEM: standard error of the mean; N: number of biological repeats (with technical duplicates). P values were determined by comparing the IC<sub>50</sub> values of parasites cultured with 3 or 0 nM aTc with those cultured at 50 nM, using Mann-Whitney U tests. ns: p>0.05.

Table S5 (related to Fig. 5C). Cellular accumulation ratio of chloroquine and compound 1 in *Plasmodium falciparum* asexual blood stage parasites.

|               | 3D7                   | 7-A10 |   |                       | ABCI3 <sup>3</sup> | copies |         | ABCI3 L690I ed.       |      |   |         |  |  |
|---------------|-----------------------|-------|---|-----------------------|--------------------|--------|---------|-----------------------|------|---|---------|--|--|
| Antimalarials | Mean IC <sub>50</sub> | SEM   | Ν | Mean IC <sub>50</sub> | SEM                | Ν      | P value | Mean IC <sub>50</sub> | SEM  | Ν | P value |  |  |
| Chloroquine   | 36553                 | 2385  | 6 | 17658                 | 414                | 6      | <0.01   | 28916                 | 729  | 6 | <0.01   |  |  |
| 1             | 59915                 | 2678  | 6 | 2082                  | 426                | 6      | <0.01   | 25744                 | 1288 | 6 | <0.01   |  |  |

SEM: standard error of the mean; N: number of biological repeats (with technical duplicates). P values were determined by comparing accumulation levels between the variant lines and parental 3D7-A10, using Mann-Whitney U tests.

# Table S6 (related to Fig. 6, S4): Mean ± SEM amount of hemoglobin, free heme and hemozoin in drug-treated parasites represented percent proportion or absolute amount of heme iron per cell in fg/cell and the *in vitro* $\beta$ -hematin inhibition assay IC<sub>50</sub> data in $\mu$ M for the tested antimalarials.

| Compound | Drug                          | %                   | 6 Heme specie   | s                  | Н                   | eme Fe (fg/ce       | ell)               | β-hematin i           | nhibitio | n assay |
|----------|-------------------------------|---------------------|-----------------|--------------------|---------------------|---------------------|--------------------|-----------------------|----------|---------|
| Compound | concentration                 | Hemoglobin          | Free heme       | Hemozoin           | Hemoglobin          | Free heme           | Hemozoin           | Mean IC <sub>50</sub> | SEM      | Ν       |
|          | No drug control               | 1.08 ± 0.11         | $6.12 \pm 0.34$ | 92.79 ± 0.31       | $0.80 \pm 0.09$     | $4.49 \pm 0.14$     | 68.30 ± 1.79       | 20.0                  | 1.2      | 3       |
| 0        | 0.5×IC <sub>50</sub> (6 nM)   | 0.65 ± 0.14         | $6.72 \pm 0.40$ | $92.62 \pm 0.32$   | $0.47 \pm 0.10$     | 4.78 ± 0.19         | 66.04 ± 2.95       |                       |          |         |
| quint    | 1.0×IC <sub>50</sub> (12 nM)  | $0.65 \pm 0.08^{*}$ | $7.63 \pm 0.42$ | 91.71 ± 0.38       | $0.47 \pm 0.05^{*}$ | 5.48 ± 0.24*        | 65.91 ± 2.22       |                       |          |         |
| hloro    | 2.0×IC <sub>50</sub> (24 nM)  | 1.12 ± 0.02         | 11.09 ± 0.35*** | 87.79 ± 0.35**     | 0.70 ± 0.01         | 6.92 ± 0.14**       | 54.83 ± 1.45*      |                       |          |         |
| C,       | 3.0×IC <sub>50</sub> (36 nM)  | 1.82 ± 0.03*        | 10.23 ± 0.28*** | 87.95 ± 0.24***    | 1.20 ± 0.06*        | 6.78 ± 0.31**       | 58.30 ± 2.51*      |                       |          |         |
|          | 4.0×IC <sub>50</sub> (48 nM)  | 0.78 ± 0.10         | 12.23 ± 0.41*** | 86.99 ± 0.32***    | $0.46 \pm 0.06^{*}$ | 7.17 ± 0.27**       | 51.05 ± 1.15**     |                       |          |         |
|          | No drug control               | 2.12 ± 0.11         | $5.85 \pm 0.28$ | 92.04 ± 0.48       | 1.43 ± 0.13         | 3.94 ±0.18          | 62.11 ± 0.54       | >500                  | >500     | 3       |
|          | 0.5×IC <sub>50</sub> (12.5 nM | 2.56 ± 0.14         | $5.53 \pm 0.20$ | 91.91 ± 0.29       | 1.61 ± 0.12         | 3.51 ±0.21          | 58.13 ± 1.54       |                       |          |         |
| amin     | 1.0×IC <sub>50</sub> (25 nM)  | 2.61 ± 0.08         | 5.51 ± 0.21     | 91.88 ± 0.29       | 1.64 ± 0.16         | 3.58 ± 0.19         | 59.77 ± 3.21       |                       |          |         |
| inetti   | 2.0×IC <sub>50</sub> (50 nM)  | $2.48 \pm 0.14$     | 5.47 ± 0.13     | 92.05 ± 0.26       | 1.57 ± 0.09         | 3.47 ±0.13          | 58.27 ± 1.26*      |                       |          |         |
| BALL     | 3.0×IC <sub>50</sub> (75 nM)  | 3.15 ± 0.12**       | 5.76 ± 0.13     | 91.09 ± 0.11       | 1.89 ± 0.11*        | 3.46 ± 0.11         | 54.62 ± 1.02**     |                       |          |         |
|          | 4.0×IC <sub>50</sub> (100 nM) | 2.76 ± 0.08         | $5.53 \pm 0.22$ | 91.71 ± 0.27       | 1.72 ± 0.14         | 3.40 ± 0.13         | 56.49 ± 1.56*      |                       |          |         |
|          | No drug control               | 3.12 ± 0.36         | $4.76 \pm 0.50$ | 92.12 ± 0.72       | 1.80 ± 0.21         | 2.73 ± 0.29         | 53.09 ± 0.32       | 29.3                  | 2.2      | 3       |
|          | 0.5×IC <sub>50</sub> (24 nM)  | 3.81 ± 0.67         | $4.98 \pm 0.43$ | 91.21 ± 0.81       | 1.87 ± 0.37         | 2.84 ±0.33          | 51.65 ± 0.74       |                       |          |         |
| 4        | 1.0×IC <sub>50</sub> (48 nM)  | 3.73 ± 0.48         | 5.45 ± 0.21     | 90.82 ± 0.54       | 1.84 ± 0.07         | 3.02 ± 0.21         | 50.28 ± 3.01       |                       |          |         |
| 1        | 2.0×IC <sub>50</sub> (96 nM)  | 3.48 ± 0.46         | 8.24 ± 0.31**   | 88.28 ± 0.45*      | 1.98 ± 0.28         | 4.67 ± 0.11*        | 50.18 ± 1.81       |                       |          |         |
|          | 3.0×IC <sub>50</sub> (144 nM) | 3.71 ± 0.52         | 10.41 ± 0.18**  | 85.87 ± 0.64**     | 1.97 ± 0.31         | 5.48 ± 0.18**       | 45.17 ± 0.76***    |                       |          |         |
|          | 4.0×IC <sub>50</sub> (192 nM) | 4.97 ± 0.83         | 13.32 ± 0.29*** | 81.71 ± 0.62***    | 2.83 ± 0.33         | 6.40 ± 0.29***      | 39.28 ± 1.55**     |                       |          |         |
|          | No drug control               | 0.78 ± 0.09         | $6.55 \pm 0.25$ | 92.67 ± 0.27       | 0.53 ± 0.05         | $4.42 \pm 0.07$     | 62.83 ± 3.52       | >500                  | >500     | 3       |
|          | 0.5×IC <sub>50</sub> (385 nM) | 2.24 ± 0.24*        | 5.77 ± 1.27     | 92.00 ± 1.13       | 1.24 ± 0.06***      | 3.41 ± 0.98         | 52.01 ± 5.63       |                       |          |         |
| 2        | 1.0×IC <sub>50</sub> (770 nM) | 3.07 ± 0.17***      | $6.55 \pm 0.52$ | $89.75 \pm 0.68^*$ | 1.74 ± 0.06***      | 3.06 ± 0.04***      | 42.47 ± 3.47*      |                       |          |         |
| 3        | 2.0×IC₅₀ (1540 nM             | 4.09 ± 0.48*        | $6.22 \pm 0.62$ | 89.69 ± 0.88       | 1.97 ± 0.14**       | 3.02 ± 0.32*        | 44.52 ± 6.56       |                       |          |         |
|          | 3.0×IC₅₀ (2310 nM             | 4.57 ± 0.40**       | 6.16 ± 0.21     | 89.27 ± 0.34**     | 2.69 ± 0.31*        | 3.60 ± 0.07**       | 52.27 ± 1.42       |                       |          |         |
|          | 4.0×IC₅₀ (3080 nM             | 3.79 ± 0.20**       | 6.21 ± 1.17     | 90.0 ± 1.24        | 1.47 ± 0.08***      | 2.42 ± 0.51         | 35.27 ± 3.72**     |                       |          |         |
|          | No drug control               | 0.95 ± 0.03         | 6.94 ± 0.44     | 92.11 ± 0.46       | 0.67 ± 0.05         | 4.92 ± 0.54         | 64.91 ± 2.97       | >500                  | >500     | 3       |
|          | 0.5×IC <sub>50</sub> (65 nM)  | 2.38 ± 0.07***      | 9.00 ± 0.22*    | 88.62 ± 0.14*      | 1.32 ± 0.05***      | $5.03 \pm 0.44$     | 49.34 ± 3.13*      |                       |          |         |
| 4        | 1.0×IC <sub>50</sub> (130 nM) | 2.66 ± 0.07***      | 6.91 ± 0.80     | $90.43 \pm 0.78$   | 1.36 ± 0.03**       | 3.53 ± 0.41         | 46.21 ± 0.37*      |                       |          |         |
| 4        | 2.0×IC <sub>50</sub> (260 nM) | 1.89 ± 0.03***      | $5.70 \pm 0.79$ | 92.42 ± 0.82       | $0.90 \pm 0.04^*$   | $2.74 \pm 0.46^{*}$ | $44.10 \pm 0.82^*$ |                       |          |         |
|          | 3.0×IC <sub>50</sub> (390 nM) | 2.12 ± 0.05***      | 7.60 ± 1.37     | 90.28 ± 1.35       | 1.01 ± 0.05*        | $3.62 \pm 0.67$     | 42.89 ± 1.14**     |                       |          |         |
|          | 4.0×IC <sub>50</sub> (520 nM) | 1.54 ± 0.04***      | 6.16 ± 0.63     | 92.29 ± 0.61       | 0.66 ± 0.01         | $2.65 \pm 0.32^{*}$ | $39.60 \pm 0.59^*$ |                       |          |         |
|          | No drug control               | 1.36 ± 0.07         | 8.84 ± 0.47     | $89.80 \pm 0.50$   | 0.91 ± 0.04         | 5.87 ±0.29          | $59.68 \pm 0.57$   | >500                  | >500     | 3       |
|          | 0.5×IC <sub>50</sub> (2.5 nM) | 1.89 ± 0.14*        | $8.50 \pm 0.42$ | 89.61 ± 0.56       | $1.07 \pm 0.01$     | $4.82 \pm 0.06$     | 51.16 ± 3.26       |                       |          |         |
| 5        | 1.0×IC <sub>50</sub> (5 nM)   | $1.23 \pm 0.07$     | $8.29 \pm 0.71$ | $90.48 \pm 0.77$   | $0.78 \pm 0.02$     | $5.22 \pm 0.22$     | $57.60 \pm 4.04$   |                       |          |         |
| 5        | 2.0×IC <sub>50</sub> (10 nM)  | $2.05 \pm 0.22$     | 8.26 ± 0.24     | 89.69 ± 0.46       | 1.35 ± 0.03**       | $5.50 \pm 0.34$     | 60.09 ± 5.64       |                       |          |         |
|          | 3.0×IC <sub>50</sub> (15 nM)  | 1.56 ± 0.12         | $9.29 \pm 0.44$ | 89.15 ± 0.55       | 0.94 ± 0.07         | $5.58 \pm 0.25$     | 53.59 ± 0.76**     |                       |          |         |
|          | 4.0×IC <sub>50</sub> (20 nM)  | 1.05 ± 0.07*        | 12.90 ± 0.81*   | 86.04 ± 0.75*      | 0.61 ± 0.01*        | 7.54 ±0.79          | 50.00 ± 2.10*      |                       |          |         |

Mean±SEM amount of hemoglobin, free heme and hemozoin represented as percent and fg/cell. The amounts of heme in different parasite lines were determined by the heme fractionation assay (see methods). Parasites were treated with increasing concentrations of chloroquine, pyrimethamine or compounds **1,3-5** at different multiples of their IC<sub>50</sub> values. Hemoglobin, free heme and hemozoin amounts were measured 30 h later. N, n = 1, >3. Statistical comparisons of the drug-treated lines to their untreated controls were performed using two-tailed Student's tests (with Welch's correction). \*p<0.05; \*\*p<0.01; \*\*\*p<0.001. Amodiaquine and doxycycline were also tested in biological triplicate in the *in vitro*  $\beta$ -hematin inhibition assays. The mean IC<sub>50</sub> in µM and SEM were 9.4 and 1.3, respectively for amodiaquine and >500 and >500, respectively for doxycycline. Compound 2 was not tested because of lack of material.

|               |                       |                   | Р | fCRT isofor           | ms                |    |             | PfMDR1 isoforms       |       |   |                       |         |   |         |  |  |
|---------------|-----------------------|-------------------|---|-----------------------|-------------------|----|-------------|-----------------------|-------|---|-----------------------|---------|---|---------|--|--|
|               | D                     | d2 <sup>3D7</sup> |   |                       | Dd2 <sup>Dd</sup> | d2 |             |                       | FCB   |   |                       | KD1     |   |         |  |  |
| Antimalarials | Mean IC <sub>50</sub> | SEM               | Ν | Mean IC <sub>50</sub> | SEM               | Ν  | P value     | Mean IC <sub>50</sub> | SEM   | Ν | Mean IC <sub>50</sub> | SEM     | Ν | P value |  |  |
| 1             | 47.0                  | 6.7               | 4 | 29.0(1234)            | 5.8(162)          | 4  | ns (0.0286) | 74.12                 | 20.55 | 3 | 84.86                 | 30.87   | 3 |         |  |  |
| 2             | 203                   | 24.0              | 4 | 236(2780)             | 23.0(504)         | 4  | ns (0.0286) | 278.4                 | 34.92 | 4 | 270                   | 33.05   | 4 | ns      |  |  |
| 3             | 563                   | 18.0              | 4 | 1268                  | 58.0              | 4  | <0.05       | 1361                  | 108.8 | 5 | 1760                  | 111     | 5 | ns      |  |  |
| 4             | 100                   | 4.9               | 4 | 236                   | 23.0              | 4  | <0.05       | 233.5                 | 10.05 | 5 | 324.8                 | 22.4    | 5 | <0.01   |  |  |
| 5             | 2.2                   | 0.2               | 4 | 4.9                   | 0.4               | 4  | <0.05       | 8.59                  | 1.96  | 4 | 12.93                 | 2.94    | 4 | ns      |  |  |
| Chloroquine   | 11.0                  | 2.2               | 4 | 101                   | 12                | 4  | <0.05       |                       |       |   |                       |         |   |         |  |  |
| Mefloquine    |                       |                   |   |                       |                   |    |             | 6.55                  | 1.00  | 4 | 4.42                  | 0.91    | 4 | ns      |  |  |
| Lumefantrine  |                       |                   |   |                       |                   |    |             | 0.64                  | 0.10  | 4 | 0.29                  | 0.04999 | 4 | <0.05   |  |  |

Table S7 (related to Fig. 7, S5). *Plasmodium falciparum* asexual blood stage IC<sub>50</sub> data in nM for the antiplasmodial compounds tested against PfCRT and PfMDR1 isoforms.

SEM: standard error of the mean; N: number of biological repeats (with technical duplicates); () refers to the IC<sub>50</sub> and SEM of the second shift of the biphasic curve. *P* values were determined by comparing the IC<sub>50</sub> shift of the Dd2<sup>Dd2</sup> parasite line with Dd2<sup>3D7</sup> (PfCRT), or the FCB *pfmdr1* two-copy parasite line with its isogenic *pfmdr1* single-copy KD1 (PfMDR1) using Mann-Whitney *U* tests. ns: p>0.05. '--: not determined.

| Sample<br>number     | lmage<br>number      | Plasma<br>membrane | Edoplasmic reticulum | Digestive<br>vacuole | Vesicles | Nucleus | Nuclear<br>membrane | Cytosol | Total ABCl3-<br>3×HA label per<br>sample |
|----------------------|----------------------|--------------------|----------------------|----------------------|----------|---------|---------------------|---------|------------------------------------------|
| 222                  | 79                   | 2                  | 0                    | 4                    | 1        | 1       | 0                   | 5       | 13                                       |
| 222                  | 81                   | 2                  | ND                   | 1                    | ND       | 2       | 1                   | 6       | 12                                       |
| 222                  | 82                   | 0                  | ND                   | 1                    | 0        | 2       | 0                   | 1       | 4                                        |
| 222                  | 83                   | 1                  | 0                    | 1                    | 0        | 4       | 0                   | 3       | 9                                        |
| 222                  | 85                   | 3                  | ND                   | 0                    | 5        | 2       | 0                   | 15      | 26                                       |
| 222                  | 86                   | 0                  | 0                    | 1                    | 2        | 0       | 1                   | 10      | 15                                       |
| 222                  | 88                   | 1                  | ND                   | 0                    | 0        | 2       | 7                   | 6       | 17                                       |
| 222                  | 89                   | 1                  | 2                    | 2                    | 0        | 5       | 0                   | 4       | 15                                       |
| 222                  | 90                   | 0                  | 3                    | 0                    | 0        | 5       | 3                   | 2       | 13                                       |
| 222                  | 91                   | 1                  | 3                    | 0                    | 1        | 0       | 2                   | 5       | 13                                       |
| 223                  | 95                   | 0                  | ND                   | 0                    | ND       | 2       | 1                   | 6       | 9                                        |
| 223                  | 96                   | 0                  | ND                   | 2                    | ND       | 3       | 0                   | 8       | 13                                       |
| 223                  | 97                   | 0                  | ND                   | 0                    | ND       | 2       | 1                   | 4       | 7                                        |
| 223                  | 99                   | 1                  | ND                   | 0                    | 1        | 2       | 0                   | 8       | 12                                       |
| 223                  | 100                  | 0                  | ND                   | 2                    | 0        | 4       | 1                   | 3       | 10                                       |
| 223                  | 102                  | 1                  | 0                    | 3                    | 1        | 4       | 1                   | 8       | 18                                       |
| 223                  | 104                  | 2                  | 2                    | 0                    | ND       | 2       | 0                   | 5       | 11                                       |
| 223                  | 106                  | 3                  | 1                    | 1                    | 2        | 5       | 2                   | 9       | 23                                       |
| 226                  | 64                   | 0                  | ND                   | 0                    | 0        | 0       | 0                   | 3       | 3                                        |
| 226                  | 65                   | 0                  | 0                    | 0                    | 0        | 1       | 3                   | 7       | 11                                       |
| 226                  | 66                   | 0                  | 2                    | 1                    | 0        | 3       | 0                   | 4       | 11                                       |
| 226                  | 68                   | 0                  | 0                    | 2                    | 3        | 3       | 1                   | 11      | 20                                       |
| 226                  | 70                   | 0                  | ND                   | 5                    | 0        | 2       | 0                   | 16      | 23                                       |
| 226                  | 72                   | 1                  | 1                    | 0                    | 0        | 1       | 0                   | 14      | 18                                       |
| 226                  | 73                   | 2                  | 0                    | 1                    | 0        | 0       | 0                   | 1       | 5                                        |
| 226                  | 74                   | 0                  | 1                    | 1                    | 0        | 3       | 1                   | 2       | 8                                        |
| 226                  | 75                   | 0                  | ND                   | 0                    | 0        | 0       | 1                   | 8       | 9                                        |
| 226                  | 77                   | 1                  | 0                    | 0                    | 1        | 2       | 0                   | 4       | 8                                        |
| 226                  | 78                   | 0                  | 7                    | 3                    | 4        | 1       | 1                   | 2       | 19                                       |
| 226                  | 79                   | 1                  | ND                   | 0                    | 0        | 1       | 1                   | 10      | 13                                       |
| 226                  | 80                   | 2                  | 0                    | 2                    | 0        | 1       | 4                   | 6       | 15                                       |
| Total ABC            | I3-3×HA<br>organelle | 25                 | 22                   | 33                   | 21       | 65      | 32                  | 196     | 403                                      |
| % ABCI3-3<br>per org | ×HA label<br>anelle  | 6                  | 5                    | 8                    | 5        | 16      | 8                   | 49      |                                          |

Table S8 (related to Fig. 5, S3B). Transmission electron microscopy image scoring of *Plasmodium falciparum* asexual blood stage parasite subcellular localization of anti-HA stained ABCI3-3×HA.

Results were collated from parasites obtained on three separate occasions for electron microscopy processing and imaging. ND: not determined.

# Table S9 (related to Fig. 6). Association constants with Fe(III)PPIX in 40% DMSO and either 0.02 M HEPES (pH 7.4) or MES (pH 5.6).

|             | log K           |                 |  |
|-------------|-----------------|-----------------|--|
| Compound    | pH 5.6          | pH 7.4          |  |
| Chloroquine | 5.16 ± 0.03     | 5.32 ± 0.03     |  |
| 1           | $3.64 \pm 0.03$ | $4.00 \pm 0.08$ |  |
| 3           | 2.54 ± 0.02     | $2.82 \pm 0.03$ |  |
| 4           | 2.53 ± 0.11     | $2.59 \pm 0.02$ |  |
| 5           | 2.58 ± 0.02     | $2.42 \pm 0.04$ |  |

Higher log *K* values indicate higher hemebinding constants, with chloroquine showing strong binding, **1** being intermediate and **3-5** yielding low values. Mean±SEM.

| Experiment                                                                          | Nucleotide Sequence (5' to 3')                                                                            | Description                                         | Lab name    |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|
| L690I validation in<br>3D7-A10 (related<br>to <b>Fig. 2C</b> )                      | GGGAAATAACTATGGAATATAAAAAAACAG                                                                            | ABCI3 L690I donor fragment fwd                      | p6417       |
|                                                                                     | GTTGTGTCGAAGAGGTATCATGGG                                                                                  | ABCI3 L690I donor fragment rev                      | p6418       |
|                                                                                     | GTTTCGATATAAATAAAGAG                                                                                      | ABCI3 L690I guide RNA                               | p6387/p6388 |
| F689C and S696Y<br>validation in Dd2-<br>B2 (related to <b>Fig.</b><br><b>S1A</b> ) | GACAAACAAAATGACGAATG                                                                                      | ABCI3 F689C guide RNA (1)                           | p8159/p8160 |
|                                                                                     | GTTTCGATATAAATAAAGAG                                                                                      | ABCI3 F689C guide RNA (2)                           | p8165/p8166 |
|                                                                                     | GAGGTACCGAGCTCGaattc <u>CAGATGAAAAGGAGTATCAGG</u>                                                         | ABCl3 F689C/S696Y donor<br>fragment fwd (In-Fusion) | p8161       |
|                                                                                     | GAAAAGTGCCACCTGacgtc <u>CAATCCTTAAACACATTTGAC</u>                                                         | ABCI3 F689C/S696Y donor<br>fragment rev (In-Fusion) | p8162       |
| cKD in<br>NF54 <sup>pCRISPR</sup> line<br>(related to <b>Fig. S3</b> )              | GTACGGTACAAACCCGGAATTCGAGCTCGG <u>AGAAATTGCTTTAAT</u><br>GAGTTACATGGG                                     | ABCI3 RHR forward                                   |             |
|                                                                                     | GGGTATTAGACCTAGGGATAACAGGGTAAT <u>GGAAAAATATAAAAA</u><br>ATGAAACTACACC                                    | ABCI3 RHR reverse                                   |             |
|                                                                                     | GTTTAACGACAAAGATATCG                                                                                      | sgRNA target site                                   |             |
| ABCI3 3×Flag and<br>3×HA tagging in<br>3D7-A10 (related<br>to <b>Fig. S5</b> )      | ATTGCTTTAATGAGTTACAT                                                                                      | ABCI3 3' tagging guide RNA                          | p7421/p7422 |
|                                                                                     | AGAGGTACCGAGCTCGaattc <u>CTCATCTCACCAGAAGATATG</u>                                                        | ABCI3 3' donor fragment fwd                         | p7423       |
|                                                                                     | CGAAAAGTGCCACCTGacgtc <u>TCTACAACTATAAGAAACTCC</u>                                                        | ABCI3 3' donor fragment rev                         | p7424       |
|                                                                                     | GCAGAAAAIIIIAIAIIIICAAAGIGGAGAIIAIAAAGAICAIGAIG<br>GAGATTATAAAGATCATGATATAGATTATAAAGATGATGATGATAA<br>Ataa | TEV + 3×Flag tag fragment                           |             |
|                                                                                     | TACCCATACGATGTTCCTGACTATGCTGGTTATCCTTATGACGTGC<br>CTGACTATGCAGGATCCTATCCATATGACGTTCCAGATTACGCT            | 3×HA tag fragment                                   |             |

### Table S10 (Related to STAR Methods). Oligonucleotides used in this study.

--: No oligonucleotides