Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation

Supplementary Figures

Supplementary Figure 1. The m⁵C and m⁶A levels during chondrogenic differentiation.

a, **b** The m⁵C/C ratio **a** and m⁶A/A ratio **b** of the mRNA were determined by LC-MS/MS after chondrogenic differentiation. Data are presented as means \pm SD from three independent experiment. * P < 0.05, **p < 0.01, by Student's t test.

a, **b** Principal component analysis (PCA) of ribosome profiling (**a**) and RNA-sequencing (**b**) libraries from the control cells and BMSCs cultured in chondrogenic induce medium for 7 days (n=3 for ribosome profiling and n=2 for RNA-sequencing. **c** Nsun2-7 mRNAs were detected by RNA-seq. Heat maps show the differential expression fold($\log_2 Rario$) for Nsun2-7 mRNAs between control and induced group. **d** NSUN2-7 mRNA expression on chondrogenic differentiation tested by RT-qPCR. **e**, **f**, **i** Western blot analysis of Nsun4 (**e**), Nsun6 (**f**) and Mettl3 (**i**) in BMSCs transfected with the indicated siRNAs. **g**, **h** m⁵C dot blot of the Nsun4 knockdown (**g**) and Nsun6 knockdown (**h**) BMSCs undergoing chondrogenic differentiation. Data are presented as means \pm SD from three independent experiment. * P < 0.05, **p < 0.01, ***p < 0.001 compared with the control group by Student's t test.

Supplementary Figure 3. Nsun4 and Mettl3 stable each other during chondrogenic differentiation .

a, e Protein expressions of Mettl3 in Nsun4 knockdown (a) and overexpressed (e) BMSCs after 7 days of chondrogenic induction. b, f Protein expressions of Nsun4 in Mettl3 knockdown (b) and overexpressed (f) BMSCs after 7 days of chondrogenic induction. c, d Verification of the efficiency of Mettl3 or Nsun4carrying adenovirus (OE-Mettl3 or OE-Nsun4) to induce Mettl3 (c) or Nsun4 (d) overexpression at the protein level after adenovirus infection in BMSCs. g-j Dot blot analysis of m⁵C (g, j) and m⁶A (h, i) in total mRNA of the BMSCs infected with adenovirus of Mettl3 or Nsun4 after induction for 7days.

20ng

Supplementary Figure 4. The efficiency of RNA bisulfite conversion treatment.

а

b

1

Untreated Results:

4329-gggccucacg	auccuucuga	ccuuuugggu	uuuaagcagg	aggugucaga	aaaguuacca
4389-cagggauaac	uggcuugugg	cggccaagcg	uucauagcga	cgucgcuuuu	ugauccuu <mark>C</mark> g
4449-augucggcuc	uuccuaucau	ugugaagcag	aauucaccaa	gcguuggauu	guucacccac
4509-uaauagggaa	cgugagcugg				

Treated Results:

4329-ggguuuuaug	auuuuuuuga	uuuuuugggu	uuuaaguagg	agguguuag	a aaaguuauua
4389-uagggauaau	ugguuugugg	ugguuaagug	uuuauaguga	uguuguuuuu	ugauuuuuu <mark>C</mark> g
4449-auguugguuu	uuuuuauuau	ugugaaguag	aauuuauuaa 🤅	guguuggauu	guuuauuuau
4509-uaauagggaa	ugugaguugg				

Conversion Efficiency (C to T): C: 99.5%

100 1- GGGT TTTATGAT TTTTTGA TTTTTTGGG TTTTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TTTGTGGTGGTT AAGTGTTTATAGTGA 2- GGGT TTTATGAT TTTTTTGA TTTTTTGGG TTTTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TTTGTGGTGGTT AAGTGTTTATAGTGA 3- GGGT TITATGAT TITTITGA TITTITGGG TITTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TITGTGGTGGTT AAGTGTTTATAGTGA 4- GGGT TITATGAT TITTITGA TITTITGGG TITTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TITGTGGTGGTT AAGTGTTTATAGTGA 5- GGGT TTTATGAT TTTTTTGA TTTTTTGGG TTTTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TTTGTGGTGGTT AAGTGTTTATAGTGA 6- GGGT TTTATGAT TTTTTTGA TTTTTTGGG TTTTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TTTGTGGTGGTT AAGTGTTTATAGTGA 7- GGGT TITATGAT TITITTGA TITITTGGG TITTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TITGTGGTGGTT AAGTGTTTATAGTGA 8- GGGT TITATGAT TITTITGA TITTITGGG TITTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TITGTGGTGGTGATT AAGTGTTTATAGTGA 9- GGGT TTTATGAT TTTTTGA TTTTTTGGG TTTTAAGTAGGAGGGTGTTAGAAAAGTTATT ATAGGGATAATTGG CTTGTGGTGGTT AAGTGTTTATAGTGA 10- GGGT TITATGAT TITTITGA TITTITGGG TITTAAGTAGGAGGTGTTAGAAAAGTTATT ATAGGGATAATTGG TITGTGGTGGTT AAGTGTTTATAGTGA 101 200 1- TGTT GTTTTTTGA TTTTTCGATGTTGGTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG 2- TGTT GTTTTTGA TTTTTCGATGTTGGTTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG

3- TGTT GTTTTTGA TTTTTCGATGTTGGTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG 4- TGTT GTTTTTTGA TTTTTCGATGTTGGTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG 5- TGTT GTTTTTGA TTTTTCGATGTTGGTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG 6- TGTT GTTTTTTGA TTTTTCGATGTTGGTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG 7- TGTT GTTTTTGA TTTTTCGATGTTGGTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG 8- TGTT GTTTTTTGA TTTTTCGATGTTGGTTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG 9- TGTT GTTTTTGA TTTTTCGATGTTGGTTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AATGTGAGTTGG 10- TGTT GTTTTTGA TTTTTCGATGTTGGTTTTTT TATTATTGTGAAGTAGAA TTTATT AAGTGTTGGATTG TTTATTT ATTAATAGGG AA<mark>C</mark>GTGAGTTGG

a m⁵C sites in 28S rRNA identified by RNA-BisSeq. b The conversion rate of RNA-BisSeq. Highlighted C represents m⁵C, highlighted C represents non-converted cytosine. The original, non-converted RNA sequence with non-methylated <mark>C</mark> highlighted is show below the converted cDNA sequencing results for comparison.

Supplementary Figure 5. Identification of m5C and m6A sites in Sox9 3'UTR.

a Predicted sites for m⁶A modification in the sequence of *Sox9* gene. **b** m⁵C sites in 3'UTR of *Sox9* identified by RNA-BisSeq. **c** Schematic depiction of Sox9 3'UTR wide type (WT-luc) and mut type (MUT-luc) reporters. For the mut type (MUT-luc), A to T was made in the 2030nt. **d** Relative dual-luciferase reporter activity of wide (WT-luc) or mutated (MUT-luc) reporters in 293T cells with knock-down and overexpressed Mettl3. **e**, **f** Schematic diagram of *Sox9* 3'UTR MUT-luc reporters. The MUT-luc, A or C to T substitutions were made (up). Relative dual-luciferase reporter activity of Mut-luc reporter in 293T cells with ectopically expressed Mettl3, Nsun4 and Ythdf2 respectively (down). Data are presented as means \pm SD from three or six independent experiment. * P < 0.05, **p < 0.01, ***p < 0.001 compared with the negative control group by one way ANOVA and Tukey's multiple comparison tests .

Supplementary Figure 6. The proteins interacted with Nsun4.

A list of indentified Nsun4-interaction protein candidates			
Detected specially in BMSCs on chondrogenic differentiation			
Gene names	Major function		
RPS17	translation		
RPS25	translation		
RPS30	translation		
RPL39	translation		
Rpl10a	translation		
EF1A1	mRNA binding;		
	translation elongation factor activity		
Mettl3	mRNA (N6-adenosine)-methyltransferase activity;		
	mRNA binding		

a Sliver-stained gel of affinity-purified Nsun4 complex in BMSCs undergoing chondrogenic differentiation. **b** The table of a list of protein candidates that interacted with Nsun4 protein.

b

Supplementary Figure 7. Protein expression and purification.

a-d SDS-PAGE analysis of the eEF1 α -1, Ythdf2, Mettl3 and Nsun4.

Supplementary Figure 7. The expression of marker genes regulated by Mettl3 and Nsun4.

a, **b** Aggrecan (**a**) and Col2 (**b**) protein expression of repaired cartilage visualized through immunofluorescence at six weeks.

Original Blot Scans – Main Article

Original scans Figure 1

Figure 1b Sox9:

Col2:

β-actin:

Figure 1e m⁵C:

Figure 1f m⁶A:

Original scans Figure 2

Figure 2a:

Nsun4:

β-actin:

Figure 2f: Sox9:

Aggrecan:

Col2:

β-actin:

Figure 2g:

Sox9:

Aggrecan:

β-actin:

Figure 2h:

m⁵C:

Figure 2b:

Mettl3:

β-actin:

Original scans Figure 3

Figure 3a:

IP-Mettl3:

Input-Nsun4:

Figure 3b:

IP-Nsun4:

Input-Nsun4:

Figure 3c:

m⁵C:

Input-Mettl3:

Input- β -actin :

Input-Mettl3:

Input- β-actin :

Original scans Figure 4

Figure 4a:

Figure 4d:

IP-Ythdf2:

Input-Ythdf3:

Figure 4e:

Sox9:

Figure 4e

Mettl3:

Input-Ythdf1:

Input-Nsun4:

Input-Ythdf2:

Input- β -actin :

β-actin:

B-actin:

Original scans Supplementary Figure 1

Supplementary Figure 1e:

Nsun4:

Supplementary Figure 1f:

Nsun6:

Supplementary Figure 1g:

Mettl3:

Supplementary Figure 1h: m⁵C:

β-actin:

β-actin:

Supplementary Figure 1i: m⁶A:

Original scans Supplementary Figure 3

Supplementary Figure 3a:

Supplementary Figure 3b:

Mettl3:

β-actin:

Nsun4:

```
β-actin:
```


Supplementary Figure 3c:

Mettl3:

β-actin:

Supplementary Figure 3d:

β-actin:

Nsun4:

Supplementary Figure 3e:

Mettl3:

β-actin:

Supplementary Figure 3f:

Nsun4:

β-actin:

Supplementary Figure 3g-h:

Supplementary Figure 3i-j:

m⁶A:

Supplementary Table

Supplementary Table 1. Primer sequences

	Primers o	f Real-time PCR			
	Forward	TCAACGGCTCCAGCAAGAACAAG			
Sox9	Reverse	CTCCGCCTCCTCCACGAAGG			
	Forward	CTGATCCACTGTCCAAGCACCATG			
Aggrecan	Reverse	ATCCACGCCAGGCTCCACTC			
	Forward	ACGCTCAAGTCGCTGAACAACC			
Col2	Reverse	ATCCAGTAGTCTCCGCTCTTCCAC			
Mettl3	Forward	CACGCTGCCTCAGATGTTGACC			
	Reverse	CTGACCTTCTTGCTCTGCTGTTCC			
Nsun2	Forward	CGCATCCAGCATTCCTAGACTCAC			
	Reverse	CGCCACTGCAAGGGACATCAC			
	Forward	CTTGCTCTTGCGGGGGCTATCAC			
Nsun3	Reverse	TCGGTCTGGAGTTCGGCTGAG			
	Forward	CATGTACCACGGACCGCCATTC			
Nsun4	Reverse	CAAGGAGTCCAGCCGCAAGAAG			
	Forward	TCACTGGCGGCTTCTTCATTGC			
Nsun5	Reverse	TTGGTGCTTTGCTGAGAGGTTCTG			
	Forward	AGGAACCACAGATCGGAGGAGAAG			
Nsun6	Reverse	AGGCACAACACGGGTCAAAG			
	Forward	CCAATGACGCAGTGACCATACCAG			
Nsun7	Reverse	CAATGCCGCAGCCAACTTTGTC			
	Forward	TGTCACCAACTGGGACGATA			
β-actin	Reverse	GGGGTGTTGAAGGTCTCAAA			
	Primers	s of RIP-qPCR			
	Forward	TCAACGGCTCCAGCAAGAACAAG			
Sox9	Reverse	CTCCGCCTCCTCCACGAAGG			
	Forward	GGAAAGCCAAGGGCAAGGA			
Sox9 3'UTR	Reverse	CAGGCAACCAGGGGCAAAT			
Sov0 m64 cito:	Forward	CTTGAAGAGCAATGGTGACAGAGTTGATC			
SUX9 THOA SILE.	Reverse	TTGCATGAGCTCAGATAATGTCTTAAA			
	Primers of Bisulfite sequencing				
Sox9 3'UTR	Forward	AGCTCACCAGACCCTGAGGAGACCTTGAAGAG			
Normal primer	Reverse	TTCCTCACTGACGCTGGTGGGTCCATCTGGC			
Sox9 3'UTR	Forward	AGTTTATTAGATTTTGAGGAGATTTTGAAGAG			
Specific primer	Reverse	TTCCTCACTAACRCTAATAAATCCATCTAAC (R=G/A)			
28S	Forward	GGGGCCTCACGATCCTTCTGACCTTTTGGG			
Normal primer	Reverse	CCAGCTCACGTTCCCTATTAGTGGGTGAAC			
28S	Forward	GGGGTTTTAYGATTTTTTGATTTTTTGGG (Y=C/T)			
Specific primer	Reverse	CCAACTCACRTTCCCTATTAATAAATAAAC			

Supplementary Table 2. siRNA sequences

siRNAs uesd for this study		
eEF1α-1 siRNAs #1	GAGACTTCATCAAGAACAT	
eEF1α-1 siRNAs #2	AGGAAGTCAGCACCTACAT	
eEF1α-1 siRNAs #3	GGAAACTGGTGTTCTCAAA	
Ythdf2 siRNAs #1	GGGATTGACTTCTCAGCAT	
Ythdf2 siRNAs #2	GGGCTGATATTGCTAGCAA	
Ythdf2 siRNAs #3	GGTTCTGGATCTACTCCTT	
Mettl3 siRNAs #1	GTCTATAGTCCCTGAATTAA	
Mettl3 siRNAs #2	CCTACAAGATGACGCACAT	
Mettl3 siRNAs #3	TCTCTAAACCTAAGAACTT	
Nsun4 siRNAs #1	GCAGAAGTATGGTGCACTA	
Nsun4 siRNAs #2	GCCTCAAGATATTAGGAAA	
Nsun4 siRNAs #3	CATCAAGGTTCAAGTGGAA	
Nsun6 siRNAs #1	AGCCAACAAGGATTGTATA	
Nsun6 siRNAs #2	GAATGACAGAACCCATATA	
Nsun6 siRNAs #3	TCATGTTCTTGATCCTCAA	