In Vitro Proliferation and Long-Term Preservation of Functional Primary Rat Hepatocytes in Cell Fibers

Supplementary information

Elsa Mazari-Arrighi^{a,b,c,e,f}, Teru Okitsu^{a,b*}, Hiroki Teramae^d, Hoshimi Aoyagi^{a,b}, Mahiro Kiyosawa^{a,b}, Mariko Yano^{a,b}, François Chatelain ^{e,g}, Alexandra Fuchs ^{e,g}, Shoji Takeuchi^{a,b*}

- [b] ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency (JST), Japan.
- [c] LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Japan
- [d] Faculty of Teacher Education, Shumei University, Chiba, Japan.
- [e] Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France.
- [f] AP-HP, Hôpital Saint-Louis, Paris, France.
- [g] IRIG/DRF, CEA, F-38000, Grenoble, France

 Table of contents

- **1.** Supplemental methods
- 2. Supplemental figures and tables

[[]a] Institute of Industrial Science, The University of Tokyo, Japan.

1. Supplemental methods

Culture of primary rat hepatocytes in cell fibers

After formation of core-shell hydrogel microfibers encapsulating primary rat hepatocytes, they were incubated at 37 °C for more than 15 minutes to set the ECM proteins at the core region into gels. Subsequently, primary rat hepatocytes in cell fibers were cultured in DMEM supplemented with 1% Glutamax, 10% heat-inactivated FBS, 100 IU mL⁻¹ penicillin, 100 mg mL⁻¹ streptomycin, insulin, 6.25 mg mL⁻¹ transferrin, 6.25 ng mL⁻¹ selenous acid (Lonza, Tokyo, Japan), and 1mM HEPES at 37 °C under a water saturated 5% CO₂ environment; this medium is the one that have been optimized to culture primary rat hepatocytes in cell fibers for long term (**Figure S1c**). Media exchanges were performed every 48 hours.

When primary rat hepatocytes were cultured either using cell fibers or using collagen-coated 24-well plates, the morphologies of these primary cells were observed using an inverted fluorescence microscope (IX71; Olympus, Tokyo, Japan).

Culture of primary rat hepatocytes using collagen-coated 24-well plates

5x10⁵ primary rat hepatocytes freshly isolated were seeded on collagen-coated 24-well plates (Corning Japan K.K, Tokyo, Japan). The primary rat hepatocytes were first cultured in Dulbecco's Modified Eagle's Medium (DMEM; Gibco, Tokyo, Japan) supplemented with 1% Glutamax (Life Technologies, Tokyo, Japan), 10% heat-inactivated foetal bovine serum (Equitech-Bio, Kerrville, TX), 100 IU mL⁻¹ penicillin (Gibco), 100 mg mL⁻¹ streptomycin (Gibco), and 1mM HEPES (Sigma Aldrich, Japan) at 37 °C under a water saturated 5% CO₂ environment. Three hours after the beginning of culture, media were changed and the primary rat hepatocytes started to be cultured in William's medium E (Life Technologies) supplemented with 1% Glutamax, 100 IU mL⁻¹ penicillin, 100 mg mL⁻¹ streptomycin, 6.25 mg mL⁻¹ insulin, 6.25 mg mL⁻¹ transferrin, 6.25 ng mL⁻¹ selenous acid (Lonza, Tokyo, Japan), 10 mM HEPES, 40 ng mL⁻¹ dexamethasone (Sigma-Aldrich), and 2% of Matrigel (Corning). Media exchanges were performed every 24 hours.

Cell fiber formation to encapsulate and culture NIH/3T3 fibroblasts

Mouse embryonic fibroblast cell line, NIH/3T3 cells (TKG0299, RIKEN Cell Bank, Japan) were maintained using petri dishes containing DMEM with 1% Glutamax, 10% FBS (Thermo Scientific, Waltham, MA), 100 IU mL⁻¹ penicillin, and 100 mg mL⁻¹ streptomycin. The cells were cultured in a humidified incubator at 37 °C with 5% CO₂.

When they reached confluence, the cells were harvested by trypsin/EDTA (Gibco) treatment and were encapsulated into core-shell hydrogel microfibers using the same protocol as used for encapsulation of primary rat hepatocytes except for the condition regarding ECM proteins for the core solution: bovine type I collagen (AteloCell, IAC-50, Native collagen, KOKEN, Japan) alone.

Preparation of 3T3CM to stimulate primary rat hepatocytes for proliferation in vitro

3T3CM was used as the media supplement for primary rat hepatocytes to proliferate according to previous report.^[31] The duration and the conditions of culturing NIH/3T3 cells before their encapsulation into cell fibers were determined based upon the findings in our preliminary experiments. Specifically, the amount of HGF in the conditioned medium is always higher when NIH/3T3 cells are cultured in cell fibers than when cultured in petri dishes (Figure S2), and the HGF amount is highest after 5 days of culture when cells are cultured in cell fibers. Furthermore, the 3T3CM collected from in cell fibers has showed comparable effects on maintenance of both microscopic morphology of fiber-shaped hepatic cell aggregates as well as hepatocyte-specific functions, namely albumin secretion and urea synthesis, with the media supplemented with both recombinant mouse HGF and recombinant mouse EGF (Figure S3). Based on the findings as described above, we decided to use the culture media supplemented with 3T3CM that had been cultured in cells fibers for 5 days, and in this study, to make primary rat hepatocytes to proliferate, the media supplemented with 3T3CM started to be used after 2 days of culture. Since the start of using 3T3CM, culture media were exchanged every 24 hours.

2. Supplemental figures and tables

Figure S1. Preliminary experiments to select key parameters for encapsulation of primary hepatocytes into cell fibers.

(a) Influence of ECM protein composition in the core of cell fibers on the behaviours of primary rat hepatocytes encapsulated within cell fibers at the initial cell seeding density of 9.10^7 cells/ml and cultured for 7 days. (b) Influence of Matrigel concentration in the core of cell fibers on the primary rat hepatocytes encapsulated within cell fibers at the initial cell seeding density of 9.10^7 cells/mL and cultured for 7 days. (b1) Representative dark-field images of primary rat hepatocytes encapsulated in cell fibers with native collagen as well as with 10% of Matrigel and cultured for 7 days. (b2-b3) Impact of Matrigel concentration in the core composed of primary rat hepatocytes on (b2) viability examined by the blue Trypan exclusion test and on (b3) albumin secretions in the culture medium, which was measured by ELISA assay. (c) Influence of 3D culture medium formulation on the behaviours of primary rat hepatocytes encapsulated within cell fibers at the initial cell seeding density of 9.10^7 cells/ml and cultured over a 3-week period. (c1) Representative dark-field images of rat primary hepatocytes within cell fibers cultured in medium 1* and in medium 2** at day 2, day 4, and day 21. (c2) Monitoring of hepatocyte viability. (c3) Time-course changes of albumin secretion. (c4) Time-course change of urea synthesis in the culture medium. N \geq 4 per condition. Error bars denote mean \pm SD.

^{*}Medium 1 = William's medium supplemented with 1% Glutamax, 100 IU mL⁻¹ penicillin, 100 mg mL⁻¹ streptomycin, 6.25 mg mL⁻¹ insulin, 6.25 mg mL⁻¹ transferrin, 6.25 ng mL⁻¹ selenous acid, 10 mM HEPES, 40 ng mL⁻¹ dexamethasone, and 2% of Matrigel

^{**}Medium 2 = DMEM supplemented with 1% Glutamax, 10% heat-inactivated FBS, 100 IU mL⁻¹ penicillin, 100 mg mL⁻¹ streptomycin, 6.25 mg mL⁻¹ insulin, 6.25 mg mL⁻¹ transferrin, 6.25 ng mL⁻¹ selenous acid, and 1mM HEPES.

(**a-c**) Representative dark-field images (n=4 cell fibers) of NIH/3T3 cells encapsulated in cell fibers after 2 days, 5 days and 7 days of culture. Scale bars; 75 μ m. (**d-e**) Representative dark-field images (n=4 petri-dishes) of rat hepatocytes in collagen-coated petri-dishes after 2 days, 5 days and 7 days of culture. Scale bars; 75 μ m. (**g**) The concentrations of mouse hepatocyte growth factor secreted by NIH/3T3 cells cultured either in cell fibers and in collagen-coated petri dishes over 7 days of culture (n=4 per data point).

Figure S3. Culture of primary rat hepatocytes in cell fibers for up to 14 days under various proliferation stimulations.

(a-l) Representative dark-field images (n=6 cell fibers) of rat hepatocytes encapsulated in cell fibers at the initial cell density of 2.5×10^7 cells mL⁻¹ after 2, 4, 7, 14 days of culture either with 3T3CM, with recombinant mouse hepatocyte growth factor (HGF) alone (rmHGF alone), or with recombinant mouse HGF and recombinant mouse epidermal growth factor (EGF) (rmHGF and rmEGF). Scale bars; 75 µm. (m-n) Concentrations of albumin secreted (m) and urea synthesized (n) by primary rat hepatocytes cultured in cell fibers (n=3 at least per data point) over 14 days either with 3T3CM, with rmHGF alone, or with rmHGF.

Figure S4. Concentration-reaction curves for acetaminophen and diclofenac relating to viability, albumin secretion, and urea synthesis of primary rat hepatocytes cultured either in cell fibers or in collagen-coated petri dishes after 4 days of culture.

Figure S5. Concentration-reaction curves for acetaminophen and diclofenac relating to viability, albumin secretion, and urea synthesis of primary rat hepatocytes cultured either in cell fibers or in collagen-coated petri dishes after 7 days of culture.

Figure S6. Concentration-reaction curves for acetaminophen and diclofenac relating to viability, albumin secretion, and urea synthesis of primary rat hepatocytes cultured in cell fibers after 14 days of culture.

Figure S7. Concentration-reaction curves for acetaminophen and diclofenac relating to viability, albumin secretion, and urea synthesis of primary rat hepatocytes cultured in cell fibers after 30 days of culture.

Figure S8. Transplantation of cell fibers encapsulating primary rat hepatocytes into the intra-mesenteric space of an analbumenic rat.

 (\mathbf{a}, \mathbf{b}) Cell fibers encapsulating primary rat hepatocytes were rinsed with serum-free culture medium once. (\mathbf{c}, \mathbf{f}) The cell fibers were sucked into a 23G butterfly needle connected with a 20 mL syringe. After laparotomy of the rat, (\mathbf{d}, \mathbf{e}) small and large intestines were exposed, and $(\mathbf{g}-\mathbf{q})$ the cell fibers were injected into intramesenteric space and placed along the portal vain. CrM vein, Crania Mesenteric vein; J-I, Jejuno-Ileum; Ca, Caecum; Co, Colon.

Figure S9. Resection of cell fibers encapsulating primary rat hepatocytes transplanted into the intra-mesenteric space of an analbumenic rat 35 days after transplantation.

(a-e) Thirty-five days after transplantation, the rat underwent second-look laparotomy under anesthesia, and (f-m) the transplanted cell fibers encapsulating primary rat hepatocytes were removed. CrM vein, Crania Mesenteric vein; J-I, Jejuno-Ileum; Ca, Caecum; Co, Colon.

Culture duration (days)	Total hepatic cell number (x10⁵ cells)	Average proportion of ASGPR1-positive cells (%)	ASGPR1-positive cell number (x10 ⁵ cells)	Number of samples
Before culture	2.34±0.20	89.89±5.04	2.19±0.15	4
7	6.71±0.46	71.82±11.25	4.81±0.75	3
30	3.86±0.13	57.38±6.03	2.27±0.17	3
90	0.84±0.08	51.09±3.86	0.43±0.07	3

Table S1. Proportion of hepatocytes in primary rat hepatic cells cultured in cell fibers using 3T3CM, before culture, after 7, 30, and 90 days of culture.

Table S2. 50% inhibitory effect (IC50 values) for acetaminophen and diclofenac relating to viability, albumin secretion, and urea synthesis of primary rat hepatocytes cultured either in cell fibers for 4 days, 7 days, 14 days, and 30 days, or in collagen-coated 24-well plates for 4 days and 7 days

Compound	Culture system	Culture duration	IC50 value (µM)		
		(days)			
			Assay metho	Assay methods	
			Viability	Albumin secretion	Urea synthesis
		4	18324±509	16703±2540	17034±1045
		7	18556±661	16406±992	15886±582
	Cell fibers	14	18919±772	16273±1289	15943±490
Acetaminophen		30	18853±661	15876±2063	17299±853
	Collagen-coated 24-	4	19277±164	8507±89	24038±57
	well plates	7	N/A	N/A	N/A
		4	332±17	282±9	350±12
	Cell fibers	7	312±21	310±3	315±9
		14	339±12	299±5	322±7
Diclofenac		30	345±25	337±13	336±16
	Collagen-coated 24-	4	472±98	N/A	385±41
	well plates	7	N/A	N/A	N/A

Data are presented as the mean \pm standard deviation of at least four independent cell fibers and four collagen-coated wells from collagen-coated 24-well plates.

Table S3. 50% inhibitory effect (IC50 values) for acetaminophen and diclofenac relating to viability, albumin secretion, and urea synthesis of primary rat hepatocytes cultured either in cell fibers for 4 days, or in other types of systems reported previously.

Data are presented as the mean \pm standard deviation of at least four independent coreshell hydrogel microfibers in this study.

compound	culture system	culture duration	assay methods	IC50 value (µM)	source of data	
			Viability	18324 ± 509		
acetaminophen	Cell fibers	4 days of culture	Albumin secretion	16703 ± 2540	This study	
			Urea synthesis	17034 ± 1045		
	collagen-coated plates	3 hour after plating	Viability	14014 ± 3204	Wang et al. ²⁷	
	collagen-coated plates	2 days after plating Viability		14300±NA	Luo et al. ²⁸	
	3D culture in beads	3 hour after plating	LDH	10241 ± N/A	Biagini et al.29	
	3D culture in microfluidic device	2 days of culture	Viability	16900 ± N/A	Toh et al. ³⁰	
diclofenac		4 days of culture	Viability	332 ± 17		
	Cell fibers		Albumin secretion 282±9		This study	
			Urea synthesis	350 ± 12		
	collagen-coated plates	3 hour after plating	Viability	263 ± 43.1	Wang et al.27	
	collagen-coated plates	2 days after plating	Viability	139 ± NA	Luo et al. ²⁸	
	3D culture in beads	3 hour after plating	LDH	709 ± 62	Biagini et al.29	
	3D culture in microfluidic device	2 days of culture	Viability	310 ± N/A	Toh et al. ³⁰	

Table S4. Inhibition rates of acetaminophen and diclofenac relating to viability, albumin secretion, and urea synthesis at their various concentrations using primary rat hepatocytes in cell fibers after 4, 7, 14, and 30 days of culture.

P-value of each concentration of acetaminophen or diclofenac was assessed by using oneway analysis of variance (ANOVA). *Respective inhibition rates of viability, albumin secretion, or urea synthesis at the considered concentration point were significantly different from each other after 4, 7, 14, and 30 days of culture at the 0.05 level.

Compound	Assay method			Vichility inhi	ibition + CD (0)		P-value
		Concentration (µM)	1 days		14 days	30 days	-
			of culture	of culture	of culture	of culture	
	Viability	4000	89.9±3.0	84.2±2.2	89.4±1.8	93.2±2.3	P=0.74481
	viability	8000	87.8±3.7	78.8±2.1	74.8±3.7	84.2±2.1	P=0.00151*
		16000	74.0±2.45	69.9±3.5	65.8±4.5	68.1±6.2	P=0.12448
		20000	41.7±6.8	43.3±3.9	42.6±4.7	50.1±6.5	P=0.72592
		24000	23.9±3.9	24.3±3.0	24.6±2.1	25.6±1.8	P=0.98843
		Concentration (uM)	ΔΙ	humin secretio	n inhibition + SI) (%)	D value
		concentration (µm)	4 davs	7 davs	14 davs	30 davs	- P-value
			of culture	of culture	of culture	of culture	-
Acetaminophen	Albumin secretior	4000	90.1±1.8	89.8±2.0	91.6±1.9	88.6±2.2	P=0.69603
		8000	83.0±1.3	79.0±10.6	83.0±10.8	85.3±7.1	P=0.23401
		16000	61.5±15.2	57.0±1.6	54.7±4.0	50.5±8.9	P=0.67973
		20000	6.7±1.9	5.7±1.0	5.6±1.8	4.3±0.9	P=0.46476
		24000	1.4±1.1	1.3±1.5	1.05±0.7	0.51±0.5	P=0.26872
		Concentration (µM)	ι	Jrea synthesis	inhibition ± SD	(%)	P-value
			4 days	7 days	14 days	30 days	-
		4000	of culture	of culture	of culture	of culture	- D=0 70850
		4000	73.4±2.4	70.0±0.9	70.0±3.3	61.5±1.1	P=0.79659
	llrea synthesis	8000	61.5±4.6	53.1±3.2	52.7±2.1	61.5±1.0	P=0.15581
	orea synthesis	16000	59.6±7.0	50.2±2.9	51.2±0.8	66.0±3.1	P=0.00104*
		20000	16.2±1.9	15.3±2.0	16.0±1.7	18.5±4.7	P=0.45514
		24000	4.6±0.9	4.0±0.3	4.3±0.6	4.5±0.4	P=0.48949
		Concentration (µM)		Viability inhi	ibition ± SD (%)		P-value
			4 days of culture	7 days of culture	14 days of culture	30 days of culture	
		100	89.5±3.3	84.4±2.1	87.8±2.1	90.4±5.5	P=0.69625
		200	74.4±1.4	69.7±2.9	72.0±2.8	71.8±3.0	P=0.61605
	Viability	300	64.5±2.8	56.7±7.9	63.3±2.3	59.8±1.6	P=0.65618
		400	22.3±7.0	23.2±6.3	26.4±6.1	38.6±6.4	P=0.17372
		600	11.5±5.0	7.9±4.1	10.3±3.9	14.4±4.4	P=0.40207
		Concentration (uM)	AI	bumin secretio	n inhibition ± SI	D (%)	P-value
		·····	4 days	7 days	14 days	30 days	
			of culture	of culture	of culture	of culture	_
		100	85.8±2.8	90.7±7.9	84.0±2.9	87.0±1.5	P=0.36030
		200	72.5±4.8	64.8±7.3	69.4±6.0	69.±3.4	P=0.79634
Diclofenac	Albumin secretion	300	56.3±5.3	54.0±1.7	49.0±2.8	61.0±5.2	P=0.44567
		400	3.3±0.3	2.6±1.4	3.5±0.8	28.6±2.7	P=0.00492*
		600	0.3±0.3	0.4±0.3	1.0±0.6	1.0±0.5	P=0.72488
		Concentration (µM)	ι	Jrea synthesis	inhibition ± SD	(%)	P-value
			4 days	7 days	14 days	30 days	-
		100	81 8+10 0	68.0+6.8	72 5+7 9	69 2+6 3	- P=0.07359
		200	60 E · E O	61 4 · 0 4	12.JII.J	70.0.00	P=0.07300
		200	00.0±0.9	01.1±3.4	03.0±12.5	10.9±0.0	P=0.32000
	orea synthesis	300	59.7±5.0	04.1±2.9	00.0±2.7	02.3±3.8	P=0.11259
		400	26.0±3.5	21.3±1.7	23.6±2.2	20.7±8.4	P=0.38423
		20-					B 0 55 15 1