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Neuroblastoma (NB) is an enigmatic and deadliest pediatric
cancer to treat. The major obstacles to the effective immuno-
therapy treatments in NB are defective immune cells and the im-
mune evasion tactics deployed by the tumor cells and the stro-
mal microenvironment. Nervous system development during
embryonic and pediatric stages is critically mediated by non-
coding RNAs such as micro RNAs (miR). Hence, we explored
the role of miRs in anti-tumor immune response via a range
of data-driven workflows and in vitro & in vivo experiments. Us-
ing the TARGET, NB patient dataset (n=249), we applied the
robust bioinformatic workflows incorporating differential
expression, co-expression, survival, heatmaps, and box plots.
We initially demonstrated the role of miR-15a-5p (miR-15a)
and miR-15b-5p (miR-15b) as tumor suppressors, followed by
their negative association with stromal cell percentages and a
statistically significant negative regulation of T and natural
killer (NK) cell signature genes, especially CD274 (PD-L1) in
stromal-low patient subsets. The NB phase-specific expression
of the miR-15a/miR-15b-PD-L1 axis was further corroborated
using the PDX (n=24) dataset. We demonstrated miR-15a/
miR-15b mediated degradation of PD-L1 mRNA through its
interaction with the 3’-untranslated region and the RNA-
induced silencing complex using sequence-specific luciferase
activity and Ago2 RNA immunoprecipitation assays. In addi-
tion, we established miR-15a/miR-15b induced CD8*T and
NK cell activation and cytotoxicity against NB in vitro.
Moreover, injection of murine cells expressing miR-15a
reduced tumor size, tumor vasculature and enhanced the activa-
tion and infiltration of CD8'T and NK cells into the tumors
in vivo. We further established that blocking the surface PD-
L1 using an anti-PD-L1 antibody rescued miR-15a/miR-15b
induced CD8'T and NK cell-mediated anti-tumor responses.
These findings demonstrate that miR-15a and miR-15b induce
an anti-tumor immune response by targeting PD-L1 in NB.
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INTRODUCTION

Neuroblastoma (NB) is the most common pediatric cancer affecting
children younger than 5 years.' > NB develops from immature nerve
cells, most commonly in adrenal glands situated above the kidney. NB
accounts for 15% of childhood cancer-related mortality, and approx-
imately 50% of children treated for high-risk NB have more aggressive
tumor relapse with less than 20% 5-year overall survival.*”’
During embryogenesis, multipotent neural crest cells differentiate
into multiple cell types, including sympathetic neurons, adrenal
medullary cells, and modified postganglionic sympathetic neurons.>’
The deregulation of signaling pathways involved in the differentiation
of neural crest cells leads to NB development in the sympathetic ner-
vous system or medullar region of the adrenal glands. NBs are highly
heterogeneous tumors consisting of various sub-cell types, and they
display various genomic alterations, including MYCN amplifica-
tion,'® different DNA ploidy patterns,'' deletion in the short arm of
chromosome 1, a gain of chromosome 17q,13 and chromosome
11q deletion.'* These genomic alterations, along with International
NB Staging System, stage histopathology and age are used to classify
NB patients into risk groups.'>'° The high-risk NB patients are chal-
lenging to treat and require high doses of chemotherapy and radio-
therapy in the clinic.'”"” The chances of tumor regression (>50%)
and death rate (41.7% compared with 0% in low-risk and 5.2% in in-
termediate-risk patients) in high-risk patients are higher than other
groups.'>** Moreover, the use of intense treatment regimens has sig-
nificant adverse effects on patients” quality of life.
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Several investigators have tried different therapeutic approaches like
high-dose chemotherapy, surgery, radiation therapy, stem cell
transplantation, retinoid therapy, and immunotherapy to improve
clinical outcomes in aggressive high-risk NB patients.'”'>*"**
Immunotherapy has recently gained traction in high-risk NB treat-
ment and improved survival rates in patients.””** Immunotherapy
treatment harnesses the CD8"T and natural killer (NK) cells to
recognize, target, and eradicate malignant cells.”* *® The immuno-
therapy approach of using chimeric monoclonal anti-disialoganglio-
side (GD,) antibody dinutuximab has shown some success in NB
clinical trials but is associated with severe side effects including
neuropathic pain, infection, infusion-related reactions, capillary
leak syndrome, decreased sensation, and paresthesia.B’27 In NB,
the levels of infiltrating CD8'T and NK cells correlate with
therapy response.”>”’ Elevated levels of programmed death-ligand
1 (PD-L1 or CD274) have been found in NB tumors.”**>*' Two
recent reports suggested that higher PD-L1 expression positively
correlates with worse outcomes in NB patients.”>’" Patients with
high PD-L1 expression had an increased risk of NB relapse and
less overall survival compared with patients with low PD-L1 expres-
sion.”>™>* Therefore, therapies targeting PD-L1 could strengthen
anti-tumor immunity and offer a promising strategy to treat high-
risk NB.

Checkpoint inhibitor drugs that inhibit the PD-L1/PD-1 pathway
have shown promising results in boosting immune responses and
improving clinical outcomes in cancer patients. Food and Drug
Administration (FDA) approval of PD-L1/PD-1 targeting drugs to
treat cancer in recent years has attracted considerable interest in
the discovery and development of improved PD-L1/PD-1 signaling
pathway inhibitors. However, many patients do not respond well to
these therapies and develop resistance and relapse.”””"** Therefore,
there is a need for novel approaches that target PD-L1 upstream
signaling pathways to overcome these challenges.

Molecular Therapy: Oncolytics

Micro RNAs (miRs) are key upstream regulators in NB.>>*” Several
miRs have been reported to have roles in NB progression
recently.”® ** For example, suppression of MYCN targeting tumor-
suppressor miRNA let-7 by LIN28B upregulates MYCN and promotes
proliferation in non-malignant neuroblasts."’ Amplification and
overexpression of LIN28B or chromosomal loss of let-7 drives NB
development and growth.*” Moreover, downregulation of miR-
342, miR-34b,"" miR-124b,”” miR-145,"" miR-542," miR-204,"
and miR-27b," is strongly associated with NB progression and ther-
apy resistance. We recently showed that exosomal miR-155 induces
chemotherapy resistance by targeting TERF1, an inhibitor of telome-
rase complex activation within the tumor microenvironment.”
Several investigators have reported that a distinct set of miRs
activate/inhibit the immune system at multiple levels, including regu-
lation of the checkpoint molecule PD-L1.°°">* For instance, miR-
424(322) inhibits PD-L1 and CD80 expression, which promotes
CD8" T cells activation and reverses chemoresistance. The suppres-
sion of miR-21 in tumor-associated macrophages (T AMs) reprograms
TAMs to proinflammatory anti-tumor type, improves CD8"T cell
tumor infiltration and inhibits angiogenesis. Our previous study
shows that NB cells transfer miR-21 in exosomes to monocytes, which
upregulates oncogenic miR-155 expression in monocytes. Monocytes
transfer this miR-155 to NB cells via exosomes and induce
chemotherapy resistance.”>***

Several miR-based therapies, for example, tumor-suppressor miRs,
miR-34 and miR-122, are in clinical development to treat cancer or
other diseases.”” Nervous system development during embryonic
and pediatric stages requires precise epigenetic regulation of prolifer-
ation and differentiation pathways that are critically mediated by
non-coding RNAs (ncRNAs). These ncRNAs, primarily miRs, also
contribute to several tumor suppressive and oncogenic pathways
within the tumor microenvironment. However, how miRs influence
T and NK cell function in NB remains poorly understood. In this

Figure 1. High-risk NB patients and PDX tumors show higher tumor-infiltrating lymphocyte exhaustion signatures together with reduced miR-15a and
miR-15b

(A) The Volcano plot depicting top-ranked up- (red) and down-regulated (blue) miRs (MR genes) in deceased versus living cohorts. The log-transformed TARGET dataset
(n=249) was analyzed to prioritize miRs with statistically significant fold changes. The vertical red lines depict the fold change threshold of 1.77, corresponding to the log 2-fold
change of 0.25. The horizontal red line indicates the P-value threshold of 0.03. The study prioritized miR-15a and miR-15b as tumor suppressor miRs for further charac-
terization and validation. (B) The heatmap depicting the differential expression of miR-15a, miR-15b, and the T- and NK- cell signature genes across the TARGET dataset
patient cohorts. The 249 TARGET dataset samples were classified into six categories with different aggressiveness based on a multi-attribute criterion depicted in the top
annotation. The mean miR-15a and miR-15b log-transformed & scaled expression values for stromal-high and stromal-less tumor categories were -0.28 & -0.669. Two of the
six categories were significantly enriched with stromal-high tumors. The values in stromal-high tumors were significantly lower than the corresponding mean values across the
four other categories. This indicates potential antitumor immune response functions of miR-15a, and miR-15b. (C) Heat map of Pearson correlation Z-values between
the mean miR-15a & miR-15b expression values and the eight genes of T- and NK- cell signatures. CD274 showed a strong signal with significant negative correlation profiles
in stromal-low tumors versus the stromal-high tumors. This is consistent with the previous observations that miR-15a, miR-15b are tumor suppressors whose expression is
higher in stromal-low tumors leading to better mR inhibitory functions captured as the significant negative correlations with target mRNA in these cohorts. (D) Heatmap
depicting the differential expression of miR-15a, miR-15b, and the T- and NK- cell signature genes across the PDX dataset patient cohorts. The 24 PDX dataset samples were
classified into six categories with different aggressiveness based on the Phase and Age depicted in the heatmap’s top annotation. The mean miR-15a scaled expression
values for the two less aggressive categories were high (0.5679 & 0.463), while its target mRNA CD274 demonstrated suppressed expression (-0.399 & -0.3206),
corroborating our hypotheses that miR-15a/miR-15b-CD274 axis might contribute to immune evasion and tumor aggressiveness. (E) Kaplan-Meier curves showing event-
free and overall survival probability rates with different levels of PD-L1 in NB patients. (F) Immunofluorescence images of PD-L1 on NB patient tumor and normal tissue
microarrays photographed at 5X. (G) Western blotting analysis of PD-L1 in whole lysates of PDX tumors of NB patients collected at the diagnosis and progression stages.
Images were captured at low and higher exposures (exp). (H) IHC staining of PD-L1 in PDX tumors of NB patients at the diagnosis and progression stages.
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study, we found that infiltration of fewer T and NK cells, diminished
miR-15a-5p, miR-15b-5p (hereafter miR-15a, miR-15b) levels, and
enhanced PD-L1 expression were positively associated with poor
survival in NB patients and patient-derived xenograft (PDX) tumors.
The miR-15a and miR-15b activate CD8"T and NK cell mediated
anti-tumor immune response against NB by PD-L1 mRNA degrada-
tion through in vitro and in vivo approaches.

RESULTS

Higher PD-L1 and reduced miR-15a and miR-15b associate with
higher tumor-infiltrating lymphocyte exhaustion signatures in
NB patients and PDX tumors

To prioritize tumor suppressor like miRs, we identified statistically sig-
nificant downregulated miR (precursor miRs) genes using the survival
status in the TARGET (Therapeutically Applicable Research to
Generate Effective Treatments), NB patient (n=249) dataset as de-
picted in the Volcano plot Figure 1A. MiR-15a and miR-15b were
selected to investigate further their tumor suppression mechanisms,
especially their role in immune evasion. Immune- (NK cells, T lym-
phocytes), and stromal- [extracellular matrix (ECM), cancer-associ-
ated fibroblasts (CAFs), and mesenchymal stromal cells (MSCs)] cells
are an area of current interest in the context of immune evasion medi-
ated by tumor microenvironment in NB. The stromal cells comprising
ECM, CAFs, and MSCs suppress effector immune cell activation and
infiltration at the tumor site leading to immune evasion. Towards this,
the 249 TARGET patient samples were classified into six categories us-
ing a multi-attribute criterion based on (1) overall survival (OS)- (2)
event-free survival (EFS)- status (deceased/living), (3) INSS stage,
(4) histology of tumor samples (favorable/unfavorable), (5) risk group
(high/low), and (6) stroma cell percentages (low/high) as depicted in
the heatmap top annotation (Figure 1B). Furthermore, to investigate
the regulatory accepts of miR-15a and miR-15b against immune effec-
tors like T- & NK-cells, we performed differential- and co-expression
analyses against the Tumor Inflammation Signatures (TIS) like T-cell
exhaustion and T- & NK- cell abundance, which was presented as
heatmaps (Figure 1B-D). The TIS signature derived using 9000 tumor
samples in TCGA comprised an 18-gene signature associated with
four immune response processes'*>**. TIS serves as an immune-phe-
notyping tool and can be a proxy for critical immune mediators. T cell/
NK cell abundance (NKG7, CD8A & HLA-E) and T cell exhaustion
(CD274, CD276, TIGIT, PDCD1LG2 & LAG3), which constitute
two of the four immune processes, were deemed particularly relevant
for investigation of the mechanistic aspects of miR-15a and miR-15b

Molecular Therapy: Oncolytics

mediated antitumor immune responses. Our preliminary observa-
tions from the TARGET dataset (n=249) differential- and co-expres-
sion analyses demonstrated significant downregulation of tumor sup-
pressor miR-15a and miR-15b (mean scaled expression = -0.28 &
-0.669) among the two stromal-high cohorts. The immune evasion
functions were further delineated by assessing the correlations with
the eight TIS T-cell and NK-cell function signature genes across the
six tumor categories based their aggressiveness (Figure 1B). Among
the six clinical attributes used for patient stratification, the stromal
cell percentage measure is the most relevant and conceptually related
to immune evasion. It has demonstrated that tumors with lower stro-
mal cell percentages (primary tumors) have potent antitumor immune
responses. Higher stromal cell percentages (aggressive tumors) were
associated with pro-tumor immune evasion phenotypes. Further, we
determined the correlation between the mean expression values of
miR-15a, miR-15b, and T- and NK- cell gene signatures in TARGET,
NB patient cohorts. The expression of miR-15a and miR-15b is lower
in stromal-high & aggressive tumors, as shown in Figure 1C. The co-
expression analyses further corroborated these findings with stromal-
low & primary tumors demonstrating high miR-15a and miR-15b
expression and high mRNA inhibitory activity observed as a signifi-
cant negative correlation (mean correlation z-value: -1.943) with
CD274, the TIS signature genes with the most significant differential
co-expression and a clear signal. Stromal-high & aggressive tumors
with little or no miR-15a, and miR-15b expression/activity demon-
strated relatively insignificant negative correlations with CD274
(mean correlation z-value: -1.461) (Figure 1C). We further performed
a similar parallel analysis using PDX tumor data available from the da-
taset of genomic profiling of childhood tumor PDX models'*’. The 24
sample PDX dataset classified into six categories with varying aggres-
siveness using clinical attributes Phase and Age (Figure 1D). The miR-
15a demonstrated high expression for the two least aggressive cate-
gories (mean: 0.5679 & 0.463), while its most significant target,
CD274, showed suppressed expressions (mean: -0.399 & -0.3206) in
the same two least aggressive categories. These observations from
the TARGET dataset further corroborated with the PDX dataset rein-
force our hypotheses that miR-15a/miR-15b-CD274 axis might
contribute to immune evasion and tumor aggressiveness.

From the TIS signature genes, we observed a remarkable, highly sta-
tistically significant correlation between increased PD-L1 expression
and poor survival in the TARGET, NB patients (Figures 1E and
S1A). We further screened the relationship between miR-15a and

Figure 2. MiR-15a and miR-15b target PD-L1 in NB cells

(A,B) ART-gPCR quantification graph for PD-L1 mRNA (A), western blotting for PD-L1 total protein (B) in NB cells transfected with miR-15a, miR-15b, or control (ctrl) miRs for
48 h. (C) Luciferase reporter assay in SK-N-AS cells cotransfected with either luciferase reporter vector containing the PD-L1 -3'UTR wild-type or mutant in the presence or
absence of miR-15a and miR-15b for 48 h, followed by measuring the luciferase activity. (D-F) Representative flow cytometric plots for PD-L1 surface expression analyzed by
using anti-PD-L1 phycoerythrin (PE) conjugated antibody in SK-N-AS and NB-19 cells transfected with miR-15a, miR-15b or ctrl miRs for 48 h (D and E) or miR-15a ex-
pressing stable SK-N-B(E)2 cells (F). (G) Western blotting for PD-L1 total protein in NB cells transfected with inhibitors of miRs such as a-miR-15a, a-miR-15b or a- ctrl
miRs for 48 h. (H) A RT-gPCR quantification graph for Ago2-occupied PD-L1 mRNA (first panel), Ago2-occupied miR-15a (second panel), and Ago2-occupied miR-15b
(third panel). SK-N-BE(2) cells were transfected with miR-15a, miR-15b, or ctrl miRs for 48 h followed by immunoprecipitation (IP) with a-Ago2 antibody. Ago2 bound
RNA complexes were eluted, purified, and quantified for Ago2 bound mRNA and miRs by RT-gPCR using TagMan assays. GAPDH mRNA and U6, a non-coding small
nuclear RNA, were used as non-specific controls. The data were compared with the control IgG-bound mRNA or miR and set to one for normalization. Data represent
the mean + standard error of three to four independent biological experiments. Statistical analyses were performed using a two-sided unpaired t-test. *p < 0.001.
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survival status from other NB patient datasets. We observed that the
expression of DLEU?2, a host gene of miR-15a (GSE16476, n=88), is
associated with relapse-free and overall survival in NB patients
(GSE16476, n = 88), (Figure S1B). Similarly, high miR-15b expression
is significantly associated with better progression-free survival
(p=0.048) and overall survival (p=0.056) in NB patients (Tumor
NB ALT-Westermann—144-tpm-gencodel9 in R2 database)
(Figure S1C). Further, as given in Figure 1D-G, higher levels of
miR-15a found in low-risk vs. high-risk. Later, we performed a tissue
microarray (TMA) analysis to examine the PD-L1 protein expression
level in NB and normal tissues. As shown in Figures 1F and S1J, PD-
L1 protein expressed much higher in NB tumor tissues than in non-
neoplastic normal tissues. Moreover, we checked PD-L1 expression in
NB PDX models (derived from patient tumor cells collected at the
diagnosis and relapse stages) that we established by expansion in
nude mice, as illustrated in Figure S1K. In western blotting analysis,
we saw a trend of PD-L1 upregulation in relapse-specific PDX tumors
versus those taken at diagnosis (Figure 1G, lanes 3, 6, 7 versus 1, 2, 4,
5). Next, immunohistochemical (IHC) staining of PD-L1 showed
similar results in PDX tumors (Figures 1H and S1L). Furthermore,
high levels of PD-L1 expression were detected on the surface of
GD2+ tumor cells isolated from PDX tumor tissues from NB patients
(Figures SIM and SIN). These observations demonstrate that higher
PD-LI and diminished miR-15a and miR-15b are associated with
adverse clinical features and poor survival in NB patients.

MiR-15a and miR-15b target PD-L1 in NB cells

To evaluate the role of miR-15a and miR-15b in PD-L1 regulation if
any, we first transfected SK-N-AS, NB-19, and SK-N-BE(2) cell lines
with precursors of miR-15a, miR-15b, and non-targeting control
miRs for 48 h. The quantification of miRs is shown in Figure S2A.
Cells showed a significant reduction of PD-L1 mRNA upon receiving
miR mimics (Figure 2A). A similar decrease was also seen in PD-L1
total protein levels in miRs transfected cells (Figures 2B and S2B),
and the downregulation was more pronounced in SK-N-AS and
NB-19 cells than SK-N-BE(2). Hence, we chose these two cell lines
for further studies. To explore the mechanistic aspects of PD-L1 regu-
lation by miRs, we checked if any complementary sequence exists
between PD-L1 mRNA and miRs using in silico analysis tools
including TargetScan. Figure S2C shows the presence of complemen-
tary binding sites between miR-15a, miR-15b, and 3'UTR of PD-L1
mRNA. To investigate whether these miRs regulate PD-L1 through
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3'UTR, we cloned PD-L1-3'UTR (NM_014,143.4) wild-type region
and seven base mutations at nucleotides 567-573 in the miR binding
sites of the 3'UTR region referred to as 3'UTR mutant into a commer-
cially available luciferase reporter vector pEZX-MT06 (Cat.
#HmiT117860-MT06, Cat. #CS-HmiT117860-MT06-01; GeneCo-
poeia, Rockville, MD). SK-N-AS cells were transfected with precur-
sors of miR-15a, miR-15b, or control miR oligonucleotides together
with PD-L1-3'UTR wild-type or mutatant constructs for 48h. MiR-
15a and miR-15b showed a reduction in luciferase activity with
PD-L1-3'UTR wild type but not with PD-L1 mutant (Figure 2C).
These observations indicate that miR-15a and miR-15b target PD-
L1 through 3’UTR (Figure 2A-C). Further, we evaluated whether sur-
face PD-L1 expression is also regulated by these miRs. We analysed
surface PD-L1 expression in miR-15a and miR-15b transfected SK-
N-AS, NB-19 cells, and an SK-N-B(E)2 cell line stably expressing
miR-15a by flow cytometry. As shown in Figures 2D-2F, reduced sur-
face PD-L1 expression was found, suggesting that miR-15a and miR-
15b target PD-L1 in NB. The representative flow cytometric plots
showing fluorescence minus one (FMO) control to omit background
signals are shown in Figure S2D. The quantification of miR-15a in
stable miR-15a expressing SK-N-B(E)2 cell line is shown in Fig-
ure S2E. To further confirm that the effect is not off-target, we
silenced endogenous miR-15a and miR-15b in NB cells by transfect-
ing antisense oligonucleotides (miR inhibitors). Conversely, with the
introduction of miR inhibitors, cells exhibited increased PD-L1
expression (Figures 2G and S2F). The quantification of miR-15a
and miR-15b in NB cells after transfection with miR inhibitors is
shown in Figure S2G. Next, we performed Ago2 immunoprecipita-
tion to see whether these miRs bind to PD-L1 mRNA in NB. A sche-
matic presentation of Ago2-RNA-IP is depicted in Figure S2H. As
shown in Figure 2H, anti-Ago2 antibodies successfully immunopre-
cipitated PD-L1 mRNA but not GAPDH mRNA. Further, Ago2
also immunoprecipitated miR-15a and miR-15b but not U6, a small
nucleolar RNA, suggesting that miR-15a and miR-15b regulate PD-
L1 via direct interaction with PD-L1 mRNA in NB cells.

MiR-15a and miR-15b promote CD8T cell proliferation and
induce CD8*T cell-mediated NB cytotoxicity

We tested the effect of miR-15a and miR-15b on CD8T cell-mediated
cytotoxicity against NB cells. NB cells were treated with miR-15a and
miR-15b mimics for 24 h and cocultured with activated CD8"T cells
for an additional 24 h. As shown in Figures 3A and 3B, a higher

Figure 3. MiR-15a and miR-15b promote CD8*T cell activation,proliferation and induce CD8*T cell-mediated NB cytotoxicity

(A-D) Representative flow cytometric plots of human peripheral CD8" T cells showing the expression of intracellular Granzyme B (A), intracellular Perforin (B), surface CD3 and
CD8 (C), andintracellular Ki-67 (D) after coculture (E:T=1:1) with miR-15a and miR-15b expressing SK-N-AS (A-D, top panels), and NB-19 (A-D, bottom panels) cells for 24 h.
(E) Representative flow cytometric plots of miR-15a and miR-15b expressing SK-N-AS (E, top panel), and NB-19 (E, bottom panel) showing the expression of intracellular
active caspase-3 upon coculture (E:T=1:1) with activated human CD8" T cells for 24 h. (F) A quantification graph showing normalized luciferase activity in SK-N-BE(2) cells
expressing miR-15a and miR-15b upon coculture (E:T=5:1) with activated CD8" T cells for 24 h. Untouched CD8* T cells were isolated from PBMCs of healthy human blood
donors by negative selection using the MojoSort human CD8* T cell Isolation Kit (BioLegend). For 7 days, CD8" T cells were activated and expanded using human T-activator
CD3/CD28 Dynabeads and used for coculture experiments with NB cells. NB cells were transfected with miRs for 24 h and used for coculture experiments with activated
CD8*T cells for an additional 24 h. Non-targeting control (ctrl) miR cells served as a control group. Cells were permeabilized (intracellular), fixed, and stained for respective
antibodies described in the materials and methods section and analyzed by flow cytometry. The percentage of Granzyme B* (A), Perforin* (B), CD3/CD8* (C), ki67* (D), and
cleaved caspase-3" cells (E) are shown in each of their respective plots. Data represent the mean + standard error of three to five independent biological experiments. Sta-

tistical analyses were performed using a two-sided unpaired t-test.
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percentage of CD8™T cells showed intracellular granzyme B and per-
forin expression after coculture (E:T=1:1) with miR-15a and miR-15b
expressing SK-N-AS (Figures 3A, 3B top panels, and S3G), and NB-19
(Figures 3A, 3B, bottom panels, and S3H) cells. Next, we checked pro-
liferation capacity and Ki-67 (a nuclear protein associated with cell
proliferation) staining in cytotoxic CD8'T cells after coculture
(E:T=1:1) with miR-15a and miR-15b expressing NB cells. Interest-
ingly, CD3"CD8"T cells showed more proliferation (61% in miR-
15a and miR-15b versus 33% control miRs, Figures 3C, S3I1, and
S$312) and higher Ki-67 expression (Figures 3D and S3]) in the pres-
ence of miR expressing SK-N-AS (Figures 3C and 3D, top panels),
and NB-19 (Figures 3C and 3D, bottom panels) cells than control
group cells. These results showed that NB cells expressing miR-15a
and miR-15b induce proliferation in CD8"T cells. In the same exper-
iments, we further checked the functional effect of activated CD8"
T cells on NB cytotoxicity by measuring cleaved caspase-3, an
apoptosis marker in target NB cells. As shown in Figures 3E and
S3K, caspase-3 cleavage increased from 6% to 16.2% and 22.8% (con-
trol miR versus miR-15a and miR-15b) in SK-N-AS cells (Figure 3E,
top panel), and 19% to 24.7% and 25.5% (control versus miR-15a
and miR-15b) in NB-19 cells (Figure 3E, bottom panel). These results
suggest that miRs expressing NB cells were more prone to CD8"T cell-
mediated apoptosis. Further, to confirm these findings, we cocultured
activated CD8™T cells (E:T=>5:1) with stable luciferase gene expressing
miR-15aand miR15b treated SK-N-BE(2) cells for 24 h and performed
the luciferase reporter assay as described in the materials and methods
section. We found significantly reduced luciferase activity in miR ex-
pressing cells than in their control group, suggesting that miR-15a and
miR-15b induce CD8"T-cell-mediated NB cytotoxicity (Figure 3F).

MiR-15a and miR-15b promote NK cell activation and induce NK
cell-mediated NB cytotoxicity

We tested the effect of miR-15a and miR-15b on NK cell-mediated
anti-tumor immune response against NB cells. Representative flow
cytometric pseudo color plots showing human NK cells purity before
and after expansion ex vivo using irradiated K562-mbIL21 feeder cells
are depicted in Figures S4A and S4B. The FMOs related to the exper-
iments are shown in Figures S4C-S4E. First, NB cells were treated with
miR-15a and miR-15b mimics for 48 h and cocultured with activated
NK cells for an additional 5 h. NK cells displayed remarkably higher
perforin expression upon coculture with miR expressing NB cells
than control-miRs (Figures 4A, 4B, S4F, and S4G). Further, fluores-
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cence intensity analysis showed increased accumulation of CD107a
molecules on the NK cells placed on NB cells expressing miRs (17%
t027.2% and 42.5%, SK-N-AS; 21.8% t031.3% and 37.7%, NB-19)
(Figures 4C and S4H). These results show that miR-15a and miR-
15b in NB cells might enhance the activation of NK cells.

To understand the functional consequences of NK cell activation on
tumor cell cytotoxicity, we assayed for cleaved caspase-3, a marker for
cell death, and the number of dead cells in miR-15a and miR-15b ex-
pressing SK-N-AS and NB-19 cells after coculture (E:T=1:1 for SK-N-
AS and E:T=0.25:1 for NB-19) with or without NK cells for 5 h. NK
cells significantly induced caspase-3 cleavage from 27.1% to 46.9%
and 44.6% in SK-N-AS and 49% to 62% and 61% in NB-19 cells in
the presence of miRs compared with control-miRs (Figures 4D and
4E). Quantification of cleaved caspase-3 is shown in Figures S4I
and S4J. Next, we detected dead NB cells using Zombie Aqua, an
amine-reactive, a water-soluble fluorescent dye that stains dead cells
due to their compromised membranes. As shown in Figure 4F, NK
cells coculture with SK-N-AS cells induced a dose-dependent increase
of dead NB cells from 3.2% to 25.4% and 47.1% at an E&T ratio of 0.5:
1 and 1:1. The overexpression of miR-15a and miR-15b further sensi-
tized SK-N-AS cells to NK cell-mediated cytotoxicity. A similar trend
of NK cell-mediated cytotoxicity was further noticed in miR
expressing NB-19 (E:T=0.25:1 and 0.5:1) and SK-N-B(E)2
(E:T=1:1) cells (Figures 4G and 4H). Quantified NK cell-mediated
NB cytotoxicity levels are given in Figures S4K-S4M. These results
were further confirmed in phase-contrast images of miR-15a stably
expressing SK-N-B(E)2 cells showing higher frequency of dead cells
upon coculture with activated NK cells (Figures 41, S4N, and S40).
These results collectively show that miR-15a and miR-15b promote
NK cell-mediated release of cytotoxic granule perforin and cleaved
caspase-3 activation, enhancing the efficacy of NK cell cytotoxicity
against NB cells.

PD-L1 blockade rescues miR-15a and miR-15b mediated
immune activation and cytokine secretion

We determined to test the role of PD-L1 in miR-15a and miR-15b
mediated regulation of CD8'T and NK cell functions in NB. First,
SK-N-AS cells were blocked with anti-PD-L1 or IgG control antibody
for 24 h. followed by transfection with miR-15a and miR-15b mimics
for an additional 24 h. As shown in Figure 5A, miR-15a and miR-15b
effectively silenced (47% to 26% and 28.4%) surface PD-L1 in cells

Figure 4. MiR-15a and miR-15b promote NK cell activation and NK cell-mediated NB cytotoxicity

(A-C) Representative flow cytometric plots of human NK cells showing the expression of intracellular perforin (A and B) and surface CD107a (C) after coculture with miR-15a
and miR-15b expressing SK-N-AS (E:T=1:1) (A and C, top panels), NB-19 (E:T=0.25:1) (A and C, bottom panels), and miR-15a expressing stable SK-N-B(E)2 (E:T=1:1)
(B) cells for 5 h. (D-H) Representative flow cytometric plots of miR-15a and miR-15b expressing SK-N-AS (D and F), NB-19 (E and G), and miR-15a expressing stable
SK-N-B(E)2 cells (H) showing the expression of intracellular active caspase-3 (D and E) and the % of dead cells (F-H) upon coculture with or without activated human
NK Cells for 5 h. () Phase-contrast microscope images of miR-15a expressing stable SK-N-B(E)2 cells showing dead cells upon coculture (E:T=1:1) with or without activated
NK cells for 5 h. Untouched NK cells were isolated from PBMCs of healthy human blood donors by negative selection using the MojoSort human NK Cell Isolation Kit. NK cells
were propagated and activated ex vivo using irradiated K662-mblL21 feeder cells and IL-2 for 14 days and used for coculture experiments with NB cells. NB cells stably
expressing miRs or overexpressing them by transfection were used for coculture experiments with NK cells. Non-targeting control (ctrl) miR cells served as a control group.
Cells were permeabilized (intracellular), fixed, and stained for respective antibodies described in the materials and methods section and analyzed by the Attune Acoustic
Focusing Flow Cytometer. The percentage of Perforin®™ (A and B), CD107" (C), cleaved caspase-3* (D and E), and dead cells (F-H) are shown in each of their respective
plots. Data represent the mean + standard error of three to five independent biological experiments. Statistical analyses were performed using a two-sided unpaired t-test.

316 Molecular Therapy: Oncolytics Vol. 25 June 2022



www.moleculartherapy.org

A SK-N-AS B CD8"* T cells
Ctrl-miR miR-15a miR-15b Ctrl-miR miR-15a miR-15b

| | | | .

47% | 26% || ) a0% | 26.7% 493%

1 ] - ] . ] : ) ©

| : E -i 5
< < L 1L

Q Q ] ] |2

a -§ a 3

< - ®©

3 3

, S | g

G % e i i 1 ¥

Granzyme B =—————

' Surface PD-L1-

c NK cells D
Ctrl-miR miR-15a miR-15b
- 'Z - NB-19
=t 34.2% 49.7% | 56% & .
] ) S Control siRNA PD-L1 siRNA
- i £ T‘“f 47.3%
- o !
(&) o
<. <
o Q -
A g A
w 2
N = Surface PD-L1
200K _Il
o
. %
8

E F *% *
NK cells 700 :E T 1
Ctrl-miR miR-15a miR-15b .
N < — 650
49.1% | 62.7% 70% [ -1
| Z S 600-
] = i i
3 > 9907
= § g 500 -
<. ] 450 -
Q. i
v s 4005 | I —
] x ctl-miR + - - + - -
] miR-15a -+ - - + -
= 2‘ miR-15b - - + - - 4
R | Ny s— NKecels + + + + + +
1078 —0 3 Control Ab  x-PD-L1 Ab

Figure 5. Targeting PD-L1 is required for miR-15a- and miR-15b-mediated immune cell activation, and cytokine production

(A and D) Representative flow cytometric plots showing the surface PD-L1 expression in SK-N-AS cells that were blocked with anti-PD-L1 or IgG control antibody for 24 h
followed by transfection with miR-15a and miR-15b mimics for an additional 24 h (A), and NB-19 cells treated with miR-15a, miR-15b mimics and PD-L1 siRNA for 48 h (D).
(B, C, and E) Representative flow cytometric plots showing the expression of intracellular granzyme Bin CD8* T cells (B), and surface CD107a in NK cells (C and E) cocultured
(24 h for CD8" T cells, 5 h for NK cells) with miR-15a and miR-15b expressing SK-N-AS cells (E:T=1:1) treated with anti-PD-L1 antibody for 24 h (B, C) or NB-19 cells

(legend continued on next page)
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treated with control antibody but not PD-L1 antibody. These results
confirmed an effective blockage of surface PD-L1 in SK-N-AS cells.
These cells were cocultured (E:T=1:1) with CD8"T cells for 24 h,
NK cells for 5 h and analyzed for activation markers granzyme B on
CD8'T cells and CD107a on NK cells. As shown in Figures 5B, 5C,
S5A, and S5B, blocking cell surface PD-L1 significantly enhanced
granzyme B secretion from 40% to 54% in CD8"T cells and degranu-
lation marker CD107a from 34.2% to 63.7% in NK cells. Consistent
with previous results, SK-N-AS cells treated with miR-15a and miR-
15b significantly increased granzyme B secretion (40% t046.7% and
49.3%, p=0.0034 and p=0.0008) in cocultured CDS8'T cells. Further,
we noticed a similar trend with CD107a (34.2% to 49.7% and 56%,
p=0.0025 and p=0.0006) in cocultured NK cells in the control IgG
antibody treatment group, but no significant difference in PD-L1 anti-
body treated group.

Next, to confirm the role of PD-L1 in miR-15a and miR-15b mediated
anti-tumor response, we followed another approach of silencing PD-L1
using small interfering RNAs (siRNA). As shown in Figure 5D, PD-L1
siRNAs effectively silenced (47.3% t031.5%, p<0.05) surface PD-L1 in
NB-19 cells compared with control siRNAs. These cells were used for
coculture experiments with NK cells. NK cells showed a significant in-
crease of CD107a expression upon coculture with miR-15a and
miR-15b expressing NB-19 cells that are treated with control siRNAs
but no significant difference in cells treated with PD-L1 siRNA
(Figures 5E and S5C).These results further confirmed that PD-L1 sup-
pression plays an important role in miR-15a and miR-15b-mediated
immune cell activation. In addition, we analyzed the secretion of solu-
ble factor interferon (IFN)-y by ELISA in cell culture supernatants of
effector NK cells coincubated (E:T=1:1) with miR-15a and miR-15b ex-
pressing target SK-N-AS cells and treated with control IgG or anti-PD-
L1 antibody. Interestingly, we did not see a significant difference in
INF-vy secretion in control miR versus miR-15a, miR-15b treated SK-
N-AS cells and cocultured with NK cells. However, anti-PD-L1 anti-
body treatment increased INF-y concentration in the media upon
coculture with NK cells, which was further decreasing after miR-15a
and miR-15b overexpression, implying that these miRs suppressed
INF-v secretion from NK cells (Figure 5F). Altogether, these results
indicate that suppression of PD-L1 by miR-15a and miR-15b mediate
immune cell activation and cytokine secretion response in NB.

MiR-15a regulates CD8" T and NK cell-mediated anti-tumor
immune response in NB in vivo

Based on these in vitro findings, we next sought to investigate the role of
miR-15a and miR-15b in modulating immune response using an im-
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mune-competent C57BL/6 mice model. We chose miR-15a for our
in vivo experiments as both miR-15a and miR-15b share a common
complementary sequence with PD-L1 mRNA (Figure S2C). We subcu-
taneously injected C57/BL6 mice with murine stable NB975 cells ex-
pressing either GFP-control miR or GFP-miR-15a for 30 days and eval-
uated tumor growth. A significant (p<0.05) repression of tumor
growth, weight, and volume were observed in the mice that received
miR-15a cells compared with control miR cells (Figures 6A, 6B, and
S6A). Tumor tissues were harvested, freshly prepared single-cell sus-
pensions, and analyzed PD-L1 on GFP+ve tumor cells by flow cytom-
etry. As shown in Figures 6C and 6D, tumor cells of the mice that
received miR-15a cells showed a significant (p<0.05) reduction of sur-
face PD-L1 (64.9%-33.4%) compared to control miR cells, suggesting
that miR-15a targets PD-L1 in vivo. Next, CD8"T and NK cells infiltra-
tion was evaluated using a flow cytometer. As depicted in Figures 6E,
6F, S6B, and S6C, miR-15a tumors showed a significant increase in
CD8™T cell infiltration (30.8% versus 45.8%, p=0.002), and Ki-67, a
CD8'T cell proliferation marker from 6.73% to 9.48% (p=0.018)
when compared with the control miR group. Further, the infiltrated
CDS8™T cells in miR-15a-specific tumors produced higher levels of
INF-v (0.72% versus 1.72%, p=0.038) (Figures 6G and S6D) than the
control miR group. These results suggest that miR-15a promoted
T cell priming and infiltration into NB tumors.

Tumor-infiltrating CD25"CD4" regulatory T cells (Tregs) with Foxp3
expression play a key role in suppressing anti-tumor activity and
promoting tumor growth.® Thus, we examined the effect of
miR-15a on CD25"CD4"Foxp3™ Tregs in NB tumors. As shown in
Figures S6E and S6F, tumors of mice that received miR-15a cells
had a significantly lower (p=0.0016) Treg population than the control
group, indicating that miR-15a repressed Tregs in the tumor micro-
environment to prevent immune escape. We next evaluated the acti-
vation status of tumor-reactive NK cells in tumors by analyzing per-
forin on CD3 ™ (to exclude T cells), NK1.1* (a marker for mouse NK
cells) gated population from the single-cell suspension of tumor tis-
sues. We found higher perforin expression (16.5% versus 27.1%,
p=0.013) in the miR-15 group tumors than the control miR group tu-
mors (Figures 6H and S6G). Last, we examined microvessel infiltra-
tion by IHC staining using an anti-mouse CD34 antibody, which
stains endothelial cells. As shown in Figures 61 and S6H, tumors of
mice that received control miR cells showed intense neovasculariza-
tion as indicated by high CD34 staining, which was significantly
decreased in tumors of mice that received miR-15a cells . The mean
microvessel count/field in control miR group tumors was 233+44
(SD) and 101+52 (SD) in miR-15a group tumors (Figure S6I). These

(E:T=0.25:1) treated with PD-L1 siRNA for 48 h (E). (F) Representative ELISA assay-based quantification graphs of IFN-vy in the culture medium of NK cells after coculture
(E:T=1:1) with miR-15a and miR-15b expressing SK-N-AS cells pretreated with anti-PD-L1 antibody for 24 h. NB cells were treated with anti-PD-L1 antibody (15 ng/mL) for
24 h followed by miRs transfection for another 24 h (SK-N-AS) or PD-L1 siRNA (NB-19) for 48 h and used for coculture experiments with activated CD8*T (SK-N-AS) or NK
(NB-19) cells. Control (ctrl) miR or IgG antibody treated cells served as a control group. Untouched CD8" T cells and NK cells were isolated, expanded, and activated as
previously described, and were used for coculture experiments with NB cells. Cells were permeabilized (intracellular), fixed, stained with antibodies as described in the
materials and methods section, and analyzed by the Attune Acoustic Focusing Flow Cytometer. The percentage of surface PD-L1* (A and D), intracellular granzyme B*
(B), and surface CD107a* (C and E) are shown in each of their respective plots. Data represent the mean + standard error of three to five independent biological experiments.
Statistical analyses were performed using a two-sided unpaired t-test. *p < 0.05, *p < 0.001.
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observations indicate that miR-15a decreases tumor microvessel
density in vivo. Overall, our data strongly support the role of miR-
15a and miR-15b in anti-tumor immune response through PD-L1
degradation.

DISCUSSION

Tumor-immune interactions are intricate, and efforts to capture this
complexity via a single marker such as PD-L1 expression as measured
by IHC, or tumor mutation load as a surrogate of potential tumor an-
tigenicity, yields limited and incomplete information. This is a signifi-
cant concern for the analyses of pediatric tumors’ immunogenicity
since their tumor mutation burden is negligible. The complex and dy-
namic nature of the tumor-immune microenvironment also involves
stromal cells consisting of extracellular matrix, cancer-associated fibro-
blasts, and mesenchymal stromal cells. These cells prevent the infiltra-
tion of immune mediators while enabling drug resistance and metas-
tasis via mesenchymal cancer cell permeation. This data-driven study
represents one of the earliest attempts to use stromal cell percentages
to interrogate non-coding RNA molecules with tumor antigenic func-
tion. Using differential- and co-expression studies on TARGET
(n=249) and PDX (n=24) datasets, the stromal-cell specific expression
and co-expression of miR-15a, miR-15b, and its target gene PD-L1
were established. These findings were experimentally validated in great
detail using in vitro and in vivo approaches. Various cell surface and
other immunophenotyping markers were quantified, reinforcing the
crucial role of the miR-15a/miR-15b & PD-L1 axis in regulating various
immune mediators involved in NB tumor immunogenicity.

PD-LI surface expression on cancer cells is primarily involved in
immune cell dysfunctions, and many studies have reported its
prognostic significance in several cancer types.”” °° PD-LI expression
in tumor cells attenuate T cell activation and functions.®*®* Currently,
the FDA has approved the use of three PD-L1 inhibitors: (1) atezoli-
zumab for non-small cell lung cancer (NSCLC),** (2) durvalumab for
NSCLC and urothelial carcinoma (UC),%” and (3) avelumab for UC

64,65 . s
%2 Moreover, several other inhibitors are

and renal cell carcinoma.
in different phases of clinical trials for various cancer types.”® How-
ever, one of the challenges limiting the effectiveness of anti-PD-L1
therapy is that checkpoint molecules acquire several mutations dur-
ing tumor progression, ®’ suggesting the importance of targeting up-

stream regulators of checkpoint molecules.”>*’
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MiRs have been shown to regulate various oncogenes in NB.”>”
Hence miR-mediated targeting of PD-L1 could have great transla-
tional potential to stage 4 NB patients. Hence, we have developed
workflows for elucidating regulatory networks of immune evasion
to prioritize novel miRs upstream of PD-L1 regulation. The present
study explored a miR-based approach to target immune checkpoint
molecule PD-L1, which sensitized NB cells to CD8"T and NK cell-
mediated cytotoxicity. Multiple studies have demonstrated the asso-
ciation of poor survival with fewer tumor-infiltrating lymphocytes,
including T cells and NK cells in NB.****7>"7> Moreover, NB tumors
employ several immune evasion strategies, including the expression
of immune checkpoint molecules.”®** Our bioinformatic co-expres-
sion analysis from the TARGET data highlighted the presence of
exhaustive immune signatures, including PD-L1, in NB patients
and PDX tumors. We further found that lower expression of PD-L1
is associated with better progression-free and overall survival in NB
patients. Moreover, PD-L1 mRNA levels are higher in patients with
tumor relapse. In contrast, high expression levels of miR-15a were
positively correlated with good progression-free and overall survival
of NB patients. Patients who had a high risk or died from the disease
expressed lower miR-15a levels. Besides, miR-15a expressed differen-
tially across different NB stages, with the lowest expression found in
most aggressive and therapy-resistant stage 4 patients. Further, we
found an inverse correlation between PD-L1 and miR-15a expression
in NB patients. These analyses implied that higher PD-L1 and lower
miR-15a expressions are associated with poor clinical features in NB.

Our experimental results showed that miR-15 family in particular
miR-15a and miR-15b degraded PD-L1 mRNA and protein in several
NB cell lines, including SK-N-AS, NB-19, and SK-N-BE(2). Further,
enrichment of miR-15a, miR-15b, and PD-L1 mRNA with Ago2, a
core component of RNA-induced silencing complex (RISC), revealed
a specific interaction between PD-L1, miR-15a, miR-15b within the
RISC complex. RISC plays a major role in regulating gene expression
through Argonaute RISC Catalytic Component2 (Ago2)-mediated
interaction with miRs and the complementary sequence of the target
mRNA, thus serving as an indicator of target gene regulation.”’ PD-
L1, a membrane-anchored protein, binds to its receptor protein PD-1
on the surface of immune cells. Thus, surface expression of PD-L1 on
cancer cells is a critical component of determining the anti-tumor im-
mune response. CD8*T cells are the main components of an adaptive

Figure 6. MiR-15a activates anti-tumor immune response against NB in vivo

(A) Photographs showing tumor pictures, and (B) summary graph showing tumor weight of the C57BL/6 mice that received subcutaneous murine NB-975 cells stably
expressing GFP-miR-15a or GFP-control (ctrl) miR for 30 days. (C) Representative flow cytometric plots showing the percentage of surface PD-L1 expression on GFP* tumor
cells, and (D) quantification, (E) percentage of infiltrated CD8 cells, (F and G) Ki-67, IFN-v positive infiltrated CD8" T cells, and (H) perforin positive CD3~NK1.1* mouse NK
cells analyzed from the single-cell suspension of tumors tissues from C57BL/6 mice that received (subcutaneous) murine NB-975 cells stably expressing miR-15a or Ctrl
miR for 30 days. (I) Representative IHC images of CD34 (murine endothelial cells) stained microvessels at 20 x magnification. Murine NB975 cells stably expressing GFP-miR-
15a or GFP-ctrl miR were injected (subcutaneous) into the left flank of immune-competent C57BL/6 mice. After 30 days, mice were euthanized, tumor tissues were har-
vested, photographed, and weighed. Tumor tissues were excised, prepared single-cell suspension, and stained for PD-L1 (a-mouse PE-PD-L1), infiltrated CD8*T cells
(a-mouse PE-CD8a), Ki-67 (a-mouse BV421-Ki67), IFN-y (a-mouse BV42-IFN-v), CD3"NK1.1* mouse NK cells (a-mouse AF700-CD3, and a-mouse APC/FireTM
750-NK1.1), perforin (a-mouse PE-perforin) by flow cytometry using their respective antibodies. (C, and E-H) Representative flow cytometric plots showing an FMO con-
trol of cells stained with all fluorochromes except one used to set the background signal for the analysis were given. Bar graphs are shown as the mean + standard error (n=4
mice per group). Statistical analyses were performed using a two-sided unpaired t-test. (I) A schematic model showing the modulation of anti-tumor immune response in the
absence (top panel) or presence (bottom panel) of miR-15 (MiR-15a, miR-15b) in NB.

320 Molecular Therapy: Oncolytics Vol. 25 June 2022



www.moleculartherapy.org

8283 NK cells are the main

immune response against tumor cells.
effector immune cells that play essential roles in tumor surveillance
and demonstrate anti-tumor cell cytotoxicity without the require-
ment of the major histocompatibility complex.** Both CD8"T and
NK cells express PD-1 receptors, making them more susceptible to
PD-L1-mediated dys-function by tumor cells.***® MiR-15a treatment
significantly reduced cell surface PD-L1 in NB cell lines suggesting
that miR-15a could promote CD8"T and NK cell-mediated anti-tu-

. . 52
mor immune responses in NB cells.”

NB cells upon receiving miR-15a and miR-15b induced CD8"T and
NK cell activation markers such as granzyme B, perforin, and
CD107A, as well as CD8T cell clonal expansion. CD107A, also known
as lysosomal-associated membrane protein-1 (LAMP-1), is a marker
for NK cell activation and protects NK cells from degranulation-asso-
ciated damage.*”* Cytotoxicity experimental results revealed that NK
cells were more efficient in lysing NB cells upon miRs treatment.
Enhanced granzyme B and perforin secretions and activation of
CD8'T and NK cells by miR-15a and miR-15b are associated with a
more prominent cleavage of caspase-3 in target NB cells. Caspase-3
is one of the endpoint executioner caspases, which cleaves various
target proteins, including PARP-1, leading to an apoptotic breakdown
of the cell,” suggesting that miR-15a and miR-15b play an essential role
in executing immune cell-mediated NB cell apoptosis.

Further, mechanistic experiments interfering PD-L1 by siRNAs or
blocking the surface PD-L1 using anti-PD-L1 antibody revealed effi-
cient CD8'T and NK cell-mediated anti-tumor immune responses
against NB cells. Studies have also shown that tumor necrosis factor
(TNF)-a. is critical for NK cells in tumor response as it promotes cell
recruitment at the tumor site.”” TNF-o. binds to TNF receptor-2
(TNFR2) on the surface of NK cells and promotes INF-y production
in NK cells. NK cells control tumor growth by releasing TNF-o and
IFN-v.”* **IFN-y and TNF-o. synergistically enhance NK cell-induced
tumor cytotoxicity through the NF-kB-dependent pathway.”' How-
ever, we did not see a significant difference in the induction of IFN-y
in NK cells upon treatment with miRs. Interestingly, NB cells treatment
with miR-15a, miR-15b in the presence of anti-PD-L1 antibody signif-
icantly decreased IFN-y secretion from cocultured NK cells. MiR-15a,
miR-15b have complementary binding sequences to 3'UTR of IFN-y
mRNA, and studies have shown that miR-15a, miR-15b inhibit
IFN-y production in NK cells.”® Since miR-15a, miR-15b are not
good for NB cells, we believe NB cells can secrete out these miRs in
the medium. The uptake of miR-15a, miR-15b by NK cells could be
responsible for decreased IFN-y production in NK cells after
coculture with miRs overexpressing NB cells. IFN-vy is known to induce
surface PD-L1 expression on cancer cells, protecting cancer cells from
anti-tumor immunity and playing a role in chemoresistance.”**” MiR-
15 mediated inhibition of IFN-vy secretion might act as a double-edged
sword that prevents IFN-v-induced PD-L1 upregulation and promotes
CD8'T and NK cell functions by directly targeting PD-L1. In vivo ex-
periments provided evidence that miR-15a promotes the activation
and infiltration of CD8*T and NK cells and reduces tumor vasculature,
tumor size, and tumor-promoting CD4"CD25"FoxP3* Tregs in

tumors. These results further suggest that miR-15a mediates immune
regulation and, therefore, should be considered in treating patients
together with approved drugs .

In summary, we have provided evidence that diminished miR-15a,
miR-15b, and higher PD-L1 expression are associated with immune
cell exhaustion signatures and tumor relapse in NB patients and
PDX tumors. PD-L1 mediates immune evasion, whereas targeting
PD-L1 using miR-15a and miR-15b oligonucleotides leads to immune
cell activation, cytokine secretion, and immune cell-mediated NB
cytotoxicity and anti-tumor immune response in vitro. Injection of
miR-15a expressing cells in immune-competent C57/BL6 mouse
reduced tumor growth and tumor vessel formation while increasing
the activation and infiltration of immune cells, suggesting that degra-
dation of PD-L1 by miR-15a and miR-15b activate anti-tumor im-
mune responses in high-risk, low immunogenic NB patients.

MATERIALS AND METHODS

Patient datasets, PDX datasets, missing value imputation, data
mining, and survival analysis

The NB TARGET (n=249) dataset was downloaded from the web of
the National Cancer Institute (https://ocg.cancer.gov/programs/
target/projects/neuroblastoma). According to the International NB
Staging System,'®” and the Risk Group (INRG) systems,'”” disease
stages and risk status were categorized. The clinical characteristics
of NB patients such as sex, MYCN amplification, risk, survival, stage,
and progression were also available. The R2, a web-based genomics
analysis and visualization application platform (http://r2.amc.nl)
was used for survival analysis using (i) TARGET (n=249), (ii) Ver-
steeg, GSE16476 (n=88),'"" and (iii) Tumor NB ALT-Westermann-—
144-tpm-gencodel19-R2 dataset (n=139) datasets. Moreover, the
following datasets were also used for the box plot analysis of miR-
15a, miR-15b, and PD-L1, (i) Versteeg, GSE16476 (n=88),'" (ii) Saa-
dati, GSE73515 (n=105),'"" (iii) Fischer, GSE120572 (n=394),”" and
(iv) Asgharzadeh, GSE3446 (n=234).”” These datasets were down-
loaded from the NCBI Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/). The NB PDX (n=24) dataset was downloaded
from the supplementary information of the Genomic Profiling of
Childhood Tumor Patient-Derived Xenograft Models to Enable
Rational Clinical Trial Design.'” The clinical characteristics of
PDX tumors derived from NB patients such as diagnosis, progression
relapse, age, overall, and event-free survival time were also avail-
able.'”” Patient/PDX RNA-sequencing and microarray-based gene/
miRNA expression matrices and the corresponding clinical attributes
were processed and analyzed (box-, line-, scatter- plots & heatmaps)
through Bioconductor and CRAN libraries using the R software
(https://www.r-project.org/).'"*

Patient stratification using clinical attributes and tumor-stromal
cell percentages

A systematic meta-analysis of tumor stroma quantified in 16 solid
cancer types from 2732 patients revealed that the stroma fraction
was highly variable within and across the tumor types. Kidney cancer
showed the lowest while pancreato-biliary type periampullary cancer
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demonstrated the highest stroma proportion (median 19% and 73%
respectively)''°. Despite the wide variation, no significant association
between stromal abundance and prognosis was observed. Given this
context, we have chosen a stromal cell percent cut-off that yielded
the approximately 50-50 stratification of the 249 patients in concert
with survival status.

Missing value imputation using multivariate imputation by
chained equations

Multivariate imputation by chained equations (MICE) is an imputation
method based on Fully Conditional Specification, where different
models impute incomplete attributes. Hence, MICE can impute missing
values in datasets with continuous, binary, and categorical attributes by
using either logistic or linear regression for each attribute. While expres-
sion/count data mostly had continuous data, the tumor sample attribute
file had continuous and categorical variables. The integrity of the vari-
able types was verified before imputation was attempted. The number of
multiple imputations (m) and the number of iterations (maxit) varied
from their default value of 5. The best parametric settings were deter-
mined after preliminary explorations and assessments of the imputa-
tion quality. Both TARGET and PDX datasets had multiple missing
values in the expression and tumor sample attribute files.

Representative probe prioritization

Both TARGET and PDX datasets had multiple probes per gene.
Furthermore, both these datasets were derived from different array
platforms. Any meaningful meta-analyses and corroboration assess-
ments require a standardized approach for prioritizing the best repre-
sentative probe of the gene. Prioritization of the best representative
probe prior to the application of statistical tests can, in some instances,
be detrimental to the consistency between the obtained results and the
proposed hypotheses. However, such prioritization represents a best
practices protocol with an unbiased, objective, and data-driven
approach with robust statistical significance and predictive utility.

Human tissue samples and peripheral blood mononuclear cells
Deidentified formalin-fixed and embedded paraffin blocks of NB
patient tissue samples were obtained as a tissue microarray
(#NB642a) from US Biomax Inc (26 patient samples, in duplicates).
All procedures with NB patient tissue microarray followed our insti-
tutional ethical standards and were approved by the human ethics
committee. These blocks were used for the Immunofluorescence
(IF) analysis. Freshly obtained human peripheral blood mononu-
clear cells (PBMCs) from the Elutriation Core Facility of our insti-
tute were used for the isolation of CD8'T and NK cells.

PDX tumors

We have established NB-specific PDX tumors in collaboration with C.
Patrick Reynolds, MD, PhD, from Texas Tech University Health Sci-
ences Center through the Alex’s Lemonade Stand Foundation
(ALSF)/Children’s Oncology Group (COG) Childhood Cancer Repos-
itory (https://www.cccells.org) and the Childhood Solid Tumor
Network at St. Jude Children’s Research Hospital.”” In brief, patient tu-
mor samples were surgically removed, cut into multiple pieces in sterile
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Hanks’ balanced salt solution supplemented with antibiotics. The dei-
dentified patient tumor cells were subcutaneously injected into 4- to
6-week-old nude mice. Mice were observed for palpable tumors, and
the tumor tissues were harvested once the tumor reached end volume,
then a single-cell suspension was prepared for re-implantation in the
next set of mice, with multiple passages for expansion. These tumors
were used for the western blotting analysis, PO = Passage 0, P1 = Passage
1 (Figure S1K). Our institutional ethics committee approved the study
methodologies. The PDX tumor tissues COG-N-564x, COG-N-453x,
COG-N-496x, COG-N-603x, COG-N-470x, COG-N-424x, and
SJINBL013763_x1 were used for the Western blotting and IHC analysis.

Cell lines and cell culture conditions

Human NB cell lines SK-N-AS, NB-19, and SK-N-BE(2) were
obtained from American Type Culture Collection (ATCC) or the
COG Cell Culture and Xenograft Repository (www.cogcell.org).
Feeder K562.mbIL21.4-1BBL (K562 cells genetically modified to
express membrane-bound interleukin-21 [mbIL21] and 4-1 BB
[CD137] Ligand [CDI137L]) is a generous gift from Siddappa
Byrareddy, PhD, from the University of Nebraska Medical Center
(UNMC). The murine NB975 cell line was kindly provided by Leonid
Metelitsa, MD, PhD, from Texas Children’s Hospital. SK-N-BE(2),
NB-19, K562, and NB975 cells were cultured in RPMI and SK-N-
AS cells in DMEM media, each containing 10% heat-inactivated fetal
bovine serum (FBS) supplemented with penicillin/streptomycin
(50 U/mL), L-glutamine, sodium pyruvate, and non-essential amino
acids, as described earlier. Cell lines were cultured in a 5% CO,
humidified atmosphere at 37°C. Cell lines were authenticated by
short tandem repeats analysis and were frequently tested to ensure
they were free from mycoplasma.

CD8*T cell isolation, activation, and culture

PBMC:s from healthy human donors were processed using Histopa-
que-1077 reagent and CD8'T cells were isolated using MojoSort Hu-
man CD8™T cell isolation kit (Biolegend, #480012) according to the
manufacturer’s instructions. The CD8"T cells were stimulated by Dy-
nabeads Human T-Activator CD3/CD28 (Thermo Fisher Scientific,
#11131D) at a 1:1 ratio of T cells to beads in the growth medium of
10% FBS in RPMI-1640 for 48 h. The activated CD8™T cells were
harvested, and the purity was analyzed via flow cytometry using
anti-CD3, anti-CD8, and anti-CD4 antibodies. The CD8'T cells
used in the study were CD3*CD8"CD4 . The gating strategy is given
in Figure S3A through staining with CD3-AF700, CD8-PE, and
CD4-BV785 antibodies. The FMOs related to the experiments are
shown in Figures S3B-S3F. CD8'T cells isolated with >90% purity
were used for coculture experiments with NB cells. The activated
CDS8™T cells were cocultured with SK-N-AS, NB-19, and stable lucif-
erase gene expressing SK-N-B(E)2 cells for 24 h at an Effector [E]
CD8'T, and Target [T] NB cell ratio of 1:1 (SK-N-AS and NB-19)
and 5:1 (SK-N-B(E)2) respectively.

NK cell isolation, expansion, and culture
Untouched NK cells were isolated from PBMCs using the MojoSort
Human NK Cell isolation kit (BioLegend, #480054) per the
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manufacturer’s instructions. In brief, PBMCs (1x107/100 uL
MojoSort buffer) were incubated with Biotin-Antibody Cocktail
(10 pL) against lineage-specific targets for 15 min on ice. The cells
were washed with MojoSort buffer, followed by the addition of strep-
tavidin magnetic nanobeads (10 pL) for 15 min on ice, and resus-
pended in MojoSort buffer (2.5 mL). The cells were placed in the mag-
net for 5 min at room temperature (RT), and the unbound NK cells
were separated by pouring the liquid into a fresh tube. The cells
were cultured in RPMI-1640 supplemented with 10% FBS and 1%
penicillin/streptomycin together with recombinant (r) human (h)
IL-2 (20 ng/mL), and rhIL-15 (50 ng/mL) for 4 days and were used
for expansion. The obtained NK cells were cultured with irradiated
K562 CSTX002 mbIL21.41bbL cells at a ratio of 1:1 in the presence
of rhIL-2 (20 ng/mL) and expanded for 2 weeks. NK cells were replen-
ished with fresh K562 cells once a week and rhIL-2 twice a week. The
purity of NK cells was determined by staining with anti-CD56-APC/
Fire750, and CD16-PE antibodies, whereas contaminating T cells were
labeled by anti-CD3-AF700 antibodies, using flow cytometry. The NK
cells used in the study were CD56"CD16"CD3~ (Figures S4A and
$4B) and were used for coculture experiments with NB cells or frozen
in liquid nitrogen in a freezing medium containing 95% FBS for future
use. These activated NK cells were used in coculture experiments with
SK-N-AS cells (E:T=1:1), NB-19 cells (E:T=0.25:1), and SK-N-B(E)2
cells (E:T=1:1) with stable miR-15a expression for 5 h.

PD-L1 cell surface blocking

Surface PD-L1 on NB cells was blocked by treatment with control
immunoglobulin (Ig) G or anti-PD-L1 antibody (15 ng/mL, BioXCell,
Lebanon, NH) for 24 h followed by transfection with miR-15a and
miR-15b oligonucleotides for an additional 24 h. After wash out the
unbound antibody, these cells were used for coculture experiments
with CD8'T and NK cells.

MiRNAs, siRNAs, and transfections

We purchased hsa-miR-15a-5p mimics (Life Technologies, #4464066,
ID: MC10235), hsa-miR-15b-5p mimics (Life Technologies,
#4464066, ID: MC10904), hsa-anti-miR-15a inhibitors (Life Technolo-
gies, 4464084, ID: MH10235), hsa-anti-miR-15b inhibitors (Life Tech-
nologies, #4464084, ID: MH10904), and PD-L1 specific siRNAs (Life
Technologies, #AM16706, ID:134191). The corresponding non-target-
ing control miRs, anti-miRs, and siRNAs were also purchased simulta-
neously. NB cells (1.9x 10°/well) were seeded in a 12-well plate in a reg-
ular growth medium for 24 to 48 h. Cells were transfected with 50 to
60 nM concentrations of miRs, siRNAs, or their corresponding control
miRs in Opti-MEM reduced serum medium (Life Technologies,
#31985070) using RNAiMAX (Life Technologies, #13778150) transfec-
tion reagent for 7 to 8 h. This was followed by replacing a regular growth
medium for 24h at 37°C in 5% CO, and used for the experiments. For
SK-N-BE (2) cells transient transfection, cells were serum-starved for
overnight in RPMI media containing 2% FBS before transfection.

Lentiviral transductions
Lentiviral vectors carrying human precursor (pre) miR-15a
(#PMIRH15aPA-1), non-functional human GFP control miR

(#PMIRHO000-PA-1), mouse pre-miR-15a (#MMIR-15a+16-1-PA-
CL), and non-functional mouse GFP control miR (#MMIR-000-
PA-1) constructs were purchased from System Biosciences.
Lentiviral particles were generated in HEK293T cells (3x10%8 mL
10% FCS DMEM medium) that were co-transfected with lentiviral
miRNA vector (10 pg), and packaging plasmids (pVSV-G [5 pg],
pMDL [10 ng], pREV [5 pg]) using polyethyleneimine (PEI)
transfection reagent at a ratio of 1:4 for DNA and PEI for 24 h
followed by fresh DMEM (10% FCS) media replacement. The
lentiviral supernatants were collected at 48 and 96 h, centrifuged
(200 g/5 min), and filtrated through a 0.45-pum syringe filter. The
lentivirus was concentrated using a PEG-it virus precipitation solu-
tion (System Biosciences, LV825A-1). For viral infections, NB cells
were seeded in a 6-well plate (1x10°/well) and were infected with
lentivirus at 40% confluence for 24 h followed by fresh regular growth
medium replacement, and the cells were allowed to grow for 3 to
5 days. The transduced cells were selected in the presence of
puromycin (5 pg/mL). Further, to keep a pure population, GFP-pos-
itive cells were sorted by flow cytometry.

Western blotting and antibodies

Cells or tumor tissue samples were lysed in radioimmunoprecipitation
assay buffer containing freshly added EDTA-free protease and
phosphatase inhibitor tablets for 30 min on ice. The protein samples
were resolved on 10% gradient SDS-PAGE and transferred to a nitro-
cellulose membrane, followed by blocking with 5% BSA for 1 h at
RT. The membranes were incubated with primary antibodies,
including monoclonal mouse anti-human PD-L1/CD274 (Protein-
tech, #66248-1-Ig, 1:8,000, overnight at 4°C), horseradish peroxidase
(HRP)-conjugated anti-B-actin (Proteintech, #HRP60008, 1:12000,
for 2 h at RT). After secondary antibody incubation at RT for 1 h,
membranes were developed using an enhanced chemiluminescent re-
agent. The images were captured on X-ray film and quantified using
Image]J analysis software.'**

RNA isolation and reverse transcription quantitative real-time
PCR

Total RNA was isolated from the cells using the PureLink ™ RNA Mini
Kit (#12183025) followed by reverse transcription for miRNAs using
TaqMan MicroRNA Reverse Transcription Kit (Life Technologies,
#4366597) and mRNA using iScript cDNA synthesis kit (Bio-Rad,
#1708891). A reverse transcription quantitative real-time PCR (RT-
qPCR) analysis was performed in triplicates on an ABI StepOne RT-
qPCR system (Applied Biosystems) with SYBR Green Master Mix
(Bio-Rad) for mRNA expression or TagMan Universal Master Mix II
(Life Technologies, #4440041) for miRNAs, as described earlier. Calcu-
lations were performed using the AACt method, normalized with glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA or U6 small
nucleolar RNA, and the quantifications were presented as fold
changes.'”” RT-qPCR primers for PD-L1 and GAPDH were purchased
from Integrated DNA Technologies, Inc., and the sequences are as
follows. PD-L1 Forward: 5-TGGCATTTGCTGAACGCATTT-3,
Reverse: 5'-TGCAGCCAGGTCTAATTGTTTT-3'; GAPDH Forward:
5'-GATTCCACCCATGGCAAATTC-3, Reverse: 5'-AGCATCGCCC
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CACTTGATT-3'. The miR-15a (ID: 000389), miR-15b (ID: 000390)
and U6 snRNA (ID: 001973) primers were purchased from Life Tech-
nologies (ID:4427975).

Flow cytometry analysis

The assessment of PD-L1, CD8'T, and NK cell surface markers,
cleaved caspase-3, perforin, granzyme B, Ki-67, Foxp3, INF-y and
cell survival analysis was performed by immunofluorescence staining
followed by flow cytometric analysis. In brief, cells were collected at
350 x g for 5 min, washed with, and suspended in PBS (1.0 x 10°/
100 pL), and all steps were performed in the dark unless stated. The
dead cells were excluded by incubation with Zombie Aqua fixable
viability dye (BioLegend, # 423102) at RT for 30 min. Before immuno-
staining, cells were incubated with Fc receptor blocking solution
(TruStain FcX for human, #422302 or TruStain FcX PLUS for mouse
#156604, BioLegend) diluted in ice-cold cell staining buffer (BD Bio-
sciences) on ice for 15 min to reduce non-specific antibody binding.
For the analysis of surface GD,, PD-L1, CD3, CD4, CD8, CD16,
CD25, CD56, CD107a, and NKI.1 proteins, the cells were incubated
with fluorochrome-conjugated anti-GD,, anti-PD-L1, anti-CD3,
anti-CD4, anti-CD8, anti-CD16, anti-CD25, anti-CD56,
CD107a, and anti-NK1.1 antibodies on ice for 20 min. For measure-
ment of intracellular cleaved caspase-3, perforin, granzyme B, Ki-67,
Foxp3, and INF-v, cells were washed with staining buffer (2x), fixed
and permeabilized with Cyto-Fast Fix/Perm Buffer (BioLegend) at
RT for 20 min followed by staining with the fluorochrome-conjugated
anti-perforin, anti-granzyme B, anti-Ki67, anti-Foxp3, anti-INF-v, or
unconjugated anti-cleaved caspase-3 antibodies at RT for 25 min. The
cells were further incubated with the fluorochrome-conjugated sec-
ondary antibody at RT for another 40 min if stained with an uncon-
jugated primary antibody. After incubation, cells were washed with
Cyto-Fast Perm buffer (2x) and cell staining buffer (1x), then sus-
pended in cell staining buffer. The specificity of the antibodies was
verified by staining with respective isotype control antibodies and
FMOs. The samples were analyzed freshly or within 24 h using the At-
tune Acoustic Focusing Flow Cytometer (Thermo Fischer Scientific)
or LSRII (Becton Dickinson). The data evaluation was performed us-
ing the FlowJo v10.8.1 program.

anti-

Antibodies used for flow cytometry

The following fluorescent dye-conjugated antibodies were purchased
from BioLegend, CA and were used for flow cytometry analysis. PE
anti-human CD274 (clone 29E.2A3, #329706), PE/Cyanine 7 anti-hu-
man CD274 (clone MIH3, #374506), PE anti-human Ganglioside GD,
(clone 14G2a, #357304), APC anti-human/mouse granzyme B (clone
QA16A02, #372204), PE/Dazzle 594 anti-human perforin (clone
dG9,#308132), PE anti-human CD8 (clone SK1, #344706), Alexa Fluor
700 anti-human CD3 (clone OKT3, #317340), Brilliant Violet 785 anti-
human CD4 (clone OKT4, #317442), APC anti-human CD107a (clone
H4A3, #328620), PE anti-human CD16 (clone 3G8, #302008), APC/
FireTM 750 anti-human CD56 (NCAM) (clone 5.1H11, #362554),
anti-mouse CD34 (clone MEC14.7, #119302), Brilliant Violet 421
anti-mouse IFN-y (clone XMG1.2, #505830), Brilliant Violet 421
anti-mouse/human ki-67 (clone 11F6, #151208), Brilliant Violet 785
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anti-mouse CD4 (clone GK1.5, #100453), Pacific Blue anti-mouse
CD25 (clone PC61, #102022), Alexa Fluor 647 anti-mouse/rat/human
Foxp3 (clonel50D, #320014), PE/Cyanine7 anti-mouse F4/80 (clone
BMS8, #123114), anti-mouse PE-CD274 (10F.9G2, #124308), APC/
FireTM 750 anti-mouse NKI1.1 (clone PK136, #108752), PE anti-
mouse perforin (clone S16009A, #154306), Alexa Fluor 647 donkey
anti-rabbit (clone Poly4064) secondary antibody and Zombie Aqua
Fixable Viability Kit (#423101). The unconjugated cleaved caspase-3
was purchased from Cell Signaling Technology (#9661).

Enzyme-linked immunosorbent assay

The concentration of INF-y in the culture supernatants was assayed
by Enzyme-Linked ImmunoSorbent Assay (ELISA) using LEGEND
MAX Human IFEN-y ELISA (BioLegend, #430107) kit per the manu-
facturer’s instructions. In brief, the cell culture supernatants were
collected and human INF-y standards at 500, 250, 125, 62.5, 31.3
and 15.6 pg/mL concentrations were freshly prepared. The ELISA
plates were washed (4x) with PBS containing 0.05% Tween 20, and
blocked (200 pL/well) with PBS containing 10% FBS at RT on a
shaker for 1 h. The cell culture supernatant samples (3x diluted), or
human IFN-y standards (100 pL/well) were added at RT for 2 h on
a shaker. The plates were washed (4x), then the human INF-vy anti-
body was added (100 pL/well) and incubated for 1 h at RT with
shaking. The plates were washed (5x), and the avidin-HRP solution
was added (100 pL/well) and incubated at RT for 30 min with
shaking. The plates were washed (5x) before adding tetramethylben-
zidine substrate solution (100 uL/well) at RT for 5 min in the dark or
until the development of blue color. The reaction was stopped by a
stop solution (100 pL/well), and the optical density was measured
at 450 nm and 570 nm on a plate reader. The final readings were ob-
tained by subtracting 570 nm absorbance from 450 nm and compared
with IFN-vy standard curve. Each sample was assayed in triplicate and
repeated more than three times.

Direct tumor cell killing quantification by luminescence assay
Luciferase gene expressing stable SK-N-B(E)2 cells were used in
CD8'T cell-mediated direct tumor cell killing assay. The cells were
seeded (0.9 x 10°/well) into a 12-well plate for 48 h, followed by trans-
fection with miR-15a, miR-15b, or non-targeting control mimics for 9
h. Next, activated CD8"T cells (effector [E]) were cocultured with SK-
N-B(E)2 (target [T]) cells at a 5:1 E and T ratio for 48 h. The super-
natants containing the effector CDS8™T cells were removed, and the re-
maining dead detached target cancer cells were carefully washed away
by rinsing twice with PBS (1 mL). The target cancer cells were
collected, washed with PBS, and lysed (100 pL) in reporter lysis buffer
(Promega Corporation, Madison, WI; #E3971) with a freeze-thaw cy-
cle to achieve complete cell lysis. The cleared cell lysates (80 puL) were
transferred to a Corning/Costar white, flat-bottom 96-well plates, fol-
lowed by the addition of substrate (80 pL/well) D-luciferin (Promega
Corporation, #E151A). The luminescence was measured using a
luminescence plate reader (Infinite 200 PRO, Tecan). The lumines-
cence units were normalized to control (tumor target cells without
any effector CD8™T cells) set to 100. The results were reported as
the percentage of relative luminescence units.
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PD-L1 3'UTR constructs and luciferase reporter assays

Publicly available online bioinformatics databases such as TargetScan
(www.targetscan.org), miRNA Target Prediction Database (mirdb.
org), and microRNA target prediction (www.microrna.orgg) were
used to predict the potential miR-15a, miR-15b binding sites in the
3'UTR of PD-L1 mRNA. The predicted miR binding sites in the
3'UTR region of PD-L1 mRNA referred to as 3’ UTR wild type
(WT) and mutations in the miRNA binding sites (seven bases) of
the 3'UTR region referred to as 3'UTR mutant were cloned into a
luciferase vector pEZX-MTO06 (Cat. #HmiT117860-MT06, Cat.
#CS-HmiT117860-MT06-01; GeneCopoeia, Rockville, MD). NB cells
were transfected with these luciferase plasmid constructs (1 pg) with
miR-15a, miR-15b, or control miR oligonucleotides (100 nM), using
lipofectamine reagent. After 48 h, the cells were lysed and the lucif-
erase activity was measured by luciferase assay reagent (Promega) us-
ing the luminometer following manufacturer’s instructions. The lucif-
erase activity was expressed relative to control miR, which was set to
100.

Ago2 protein-associated RNA immunoprecipitation
Immunoprecipitation of Ago2 protein-bound RNA-protein com-
plexes was performed as described previously.”” NB cells were trans-
fected with miR-15a, miR-15b, and control miRs for 48 h. After trans-
fection, cells were collected at 300 g, washed with PBS, and lysed in
polysome lysis buffer (5 mM MgCl2, 100 mM KCl, 10 mM HEPES
[pH 7.0], 0.5% Nonidet P-40, 1 mM DTT, 100 U of RNase inhibi-
tor/mL) supplemented with 20 mM EDTA and protease inhibitors
on ice for 20 min. The lysates were centrifuged to remove cell debris,
and clear lysates were collected. The lysates were diluted to 1:10 in
freshly made NT2 buffer (50 mM Tris [pH 7.4], 150 mM NaCl,
1 mM MgCI2, 0.05% Nonidet P-40, 1 mM DTT, 100 U of RNase
inhibitor/mL) supplemented with 20 mM EDTA and protease inhib-
itors and were incubated with o-Ago2 primary antibody at 4°C for 6
h, followed by incubation with protein A beads for an additional 2 h.
The beads were then washed with NT2 buffer five times and treated
with DNase I and proteinase K. The beads were eluted with NT2
buffer containing 0.1% SDS, and RNAs were extracted using
phenol-chloroform and ethanol precipitation. The Ago2 bound
immunoprecipitated RNA was used for the analysis of PD-L1
mRNA and miR-15a, miR-15b by RT-qPCR assay and normalized
to IgG-immunoprecipitations as described.”

Immunohistochemistry and immunofluorescence

THC and IF staining for PD-L1 and CD34 proteins was performed
through our institutional core facility on a Discovery Ultra staining sys-
tem (Roche Tissue Diagnostics, Ventana Medical Systems, Inc.). In
brief, tissue samples were processed by fixing (70% ethanol), embedded
in paraffin, and cut into 5-um sections. The sections were deparaffinized
in EZ prep, a mild detergent solution at 69°C for 24 min (Roche Diag-
nostics, #950-102), and antigen retrieval was achieved by incubation
with cell-conditioning solution (Roche Diagnostics, #950-124), a Tris
EDTA buffer (pH 8.2), for 32 min at 95°C. To prevent unspecific signal,
we blocked endogenous peroxidase activity by treating with Inhibitor
CM, available within the DISCOVERY ChromoMap DAB Kit (Roche

Diagnostics, #760-159) for 8 min at RT. The sections were incubated
with either rabbit monoclonal PD-L1 antibodies (clone 28-8, Abcam,
#ab205921) or anti-mouse CD34 for endothelial cells (clone
MECI14.7, BioLegend, #119302) at 37°C for 30 min using the Discovery
Benchmark ULTRA advanced staining system. The HRP-conjugated
secondary antibody (Roche Diagnostics, #760-4815) incubation was
performed at 37°C for 16 min followed by diaminobenzidine (DAB)
signal detection using DISCOVERY ChromoMap DAB Kit. The sec-
tions were counterstained with hematoxylin II for microscopic exami-
nation. The images were acquired using a fluorescence microscope (Le-
ica Microsystems Inc, USA). Tumor microvessel density was assessed
according to the criteria described by Weidner and colleagues.'**'"”
First, the entire tumor section was scanned at low magnification to
find areas having high vessel density. Then, images of four such fields
were digitally acquired at high magnification (20x). Microvessel
density was quantified by manual counting using Photoshop (version
22.0.1), and an average of four fields from each tumor was determined.
Four mice from each group were included in the analysis.

NB mouse xenograft model

All animal studies were conducted in accordance with and approved
by the UNMC’s Institutional Animal Care and Use Committee.
In vivo immune response was evaluated using NB cell line-derived xe-
nografts. We purchased 5- to 6-week-old C57/BL6 mice from The
Jackson Laboratory (Bar Harbor, ME). We used only female mice
for in vivo experiments to avoid biological variables. NB975, a murine
NB cell line that stably expresses murine GFP-miR-15a, or non-tar-
geting GFP-control miR, suspended in Matrigel (Corning Corpora-
tion, #CB-40230C), were subcutaneously inoculated into the right
flank (3% 10%/100 pL) of C57/BL6 mice within the animal care facility
at UNMC. Mice were monitored daily to ensure that the injection
sites were healthy. On day 30, the mice were sacrificed, and the tu-
mors were excised, photographed, and the final tumor volumes
were measured using the equation: V=LxW2/2 (L: tumor length;
W: tumor width). Tumor tissues were lysed using standard protocols,
prepared single-cell suspensions and then processed for immunophe-
notyping by flow cytometry using the methods described above.

Statistical analysis

All the statistical analyses were performed using GraphPad Prism
software. The data were presented as the mean + standard error or
individual values derived from independent experiments and/or
independent biological replicates. The Kruskal-Wallis test was used
for multiple comparisons between groups. The survival analysis was
calculated by the Kaplan-Meier method and the log-rank test. Statis-
tical significance was calculated using a two-sided unpaired t-test.
P values smaller than 0.05 were considered statistically significant.
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Supplementary Figure 1.

(A) Kaplan-Meier curves showing event-free and overall survival probability rates with different levels
of CD8a, CD276, PDCDI1LG2, TIGIT and LAG-3 in NB patients from the TARGET dataset. (B)
Immunofluorescence images of PD-L1 on NB patient tumor and normal tissue microarrays photographed
at 5X. (C) A schematic model displaying the procedure for establishing NB PDX tumor generation,
implantation, and expansion in nude mice. The surgical procedure removed tumor tissues from patients,
followed by single-cell preparation and subcutaneous injection into mice. Tumor tissues were harvested
once the tumor reached end volume, then prepared a single-cell suspension, and ready for re-implantation
in the next set of mice in multiple passages for expansion and was used for the experiments. PO = Passage
0, P1 = Passage 1. (D) A representative IHC staining of total PD-L1 in NB PDX tumors of NB patients at
the diagnosis and progression stages. (E) The gating strategy of GD2 enriched PDX-derived tumor cell
population achieved through cell sorting by flow cytometry using PE-GD2 antibodies. (F) Representative
flow cytometric plots showing the surface expression of PD-L1 on GD2¥¢ NB tumor cells isolated freshly
from PDX tumor tissues. Percentage PD-L17"¢ cells are shown in each quadrant. (G) Kaplan-Meier curves
showing overall and relapse-free survival probability rates with different levels of the miR-15a host gene,
DLEU? in the 88 NB patient samples in the Versteeg (GSE16476) dataset. (H) Kaplan-Meier curves
showing overall and event-free survival probability rates with different levels of the miR-15b in NB
patients (n=139) from the Tumor NB ALT-Westermann—144-tpm-gencodel9 R2 dataset. (I) Box plots
showing the expression of miR-15B in high-risk vs low-risk NB patient samples (n=96, GSE73515).
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Supplementary Figure 2.

(A) The sequence alignment shows the predicted binding sites between miR-15a, miR-15b, and 3’UTR of
PD-L1 mRNA. Complementary sequences of PD-L1 mRNA and miRNAs are shown in blue and red,
respectively. (B) Representative quantification graphs showing miR-15a and miR-15b levels normalized
to U6 in NB cells transfected with miR-15a, miR-15b, or Scr Ctrl oligonucleotides for 48 h. (C)
Representative quantification graphs showing total PD-L1 normalized to actin in NB cells transfected with
miR-15a, miR-15b, or Scr Ctrl oligonucleotides for 48 h. (D) Representative flow cytometric plots
showing a FMO control of cells stained with all fluorochromes except one used to set the background
signal for PD-L1 in SK-N-AS (left panel), NB-19 (middle panel), and SK-N-B(E)2 (right panel) cells. A
tube containing an unstained negative control or beads was used as compensation controls. (E)
Representative quantification graph showing miR-15a levels normalized to U6 in SK-N-BE(2) cells stably
expressing miR-15a for 48 h. (F) Western blotting for PD-L1 total protein in NB cells transfected with
inhibitors of miRs such as a-miR-15a, a-miR-15b or a- Scr Ctrl oligonucleotides for 48h. (G)
Representative quantification graph showing miR-15a and miR-15b levels normalized to U6 in NB cells
transfected with inhibitors of miRs such as a-miR-15a, a-miR-15b or a- Scr Ctrl oligonucleotides for 48h.
(H) A schematic representation of the Ago2 immunoprecipitation (IP) experiment to identify Ago2
occupied PD-L1 mRNA, miR-15a, and miR-15b in NB cells. Data represent mean + standard error of 3-
4 independent biological experiments. Statistical analyses were performed using a two-sided unpaired ¢-
test. ***p<0.001, **p<0.01.
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Supplementary Figure 3.

(A) Representative flow cytometric pseudo color plots showing the gating strategy used to isolate human
CD8'T cells. Untouched CD8'T cells were isolated from PBMCs of healthy human blood donors by
negative selection using the MojoSort™ human CD8'T Cell Isolation Kit. The dead cells were identified
and excluded from the final analysis by gating on the Zombie Aqua™ viability dye negative population,
live cells. Cells were fluorescently stained with CD3-AF700, CD8-PE, CD4-BV785, and CD3*CD8"CD4~
cells were used in the study. (B-F) Representative flow cytometric plots were showing a FMO control of
cells stained with all fluorochromes except one used to set the background signal for Granzyme B* (B),
Perforin® (C), CD3*/CD8" (D), Ki-67" (E) and cleaved caspase-3 (F) in experiments of Figure.3. A tube
containing an unstained negative control or beads was used as compensation controls. (G-J) Bar graphs
showing flow cytometric quantitative analysis of Granzyme B (G), Perforin (H), CD3/CDS (11,2), and Ki-
67" (J) in CD8'T cells cocultured with miR-15a and miR-15b expressing SK-N-AS (G-J, left panels), and
NB-19 (G-J, right panels) cells. (K) A representative flow cytometric quantitative analysis of intracellular
active caspase-3 in miR-15a and miR-15b expressing SK-N-AS (left panel) and NB-19 (right panel) cells
upon coculture with activated human CD8'T Cells (E:T ratio=1:1) for 48 h. Data represent mean +
standard error of 3-5 independent biological experiments. Statistical analyses were performed using a two-
sided unpaired #-test. *p< 0.05, **p<0.01, ***p<0.001.
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Supplementary Figure 4 continued
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Supplementary Figure 4.

(A,B) Representative flow cytometric pseudocolor plots showing human NK cells purity before and after
expansion ex vivo using irradiated K562-mbIL21 feeder cells and IL-2 for 14 days. NK cells were
fluorescently stained with CD3-AF700, CD56-APC/Fire750, CD16-PE, and CD3"CD56"'CD16" cells
were used in the study. (C-E) Representative flow cytometric plots showing a FMO control of cells stained
with all fluorochromes except one used to set the background signal for perforin (C), CD107a (D), and
cleaved caspase-3 in experiments of Figure.4. A tube containing an unstained negative control or beads
was used as compensation controls. (F-H) A representative flow cytometric quantitative analysis of
perforin (F,G), CD107a (H) in NK cells after coculture with miR-15a or miR-15b expressing SK-N-AS
(F,H left panels), stable miR-15a expressing SK-N-B(E)2 (G), and NB-19 (F,H right panels) cells 5 h. A
representative flow cytometric quantitative analysis of intracellular cleaved caspase-3 (1,J), and dead cells
(K-M) in miR-15a or miR-15b expressing SK-N-AS (I,K), NB-19 (J,L), and stable miR-15a expressing
SK-N-B(E)2 (M) cells upon coculture (1:1 for SK-N-AS, 0.25:1 for NB-19 and 1:1 for SK-N-BE(2))
with activated human NK cells for 5h. (N,O) Phase-contrast microscope images of dead miR-15a and
miR-15b expressing SK-N-AS (N), and NB-19 (O) cells upon coculture (E:T=1:1) with or without
activated NK cells for Sh. The white arrow represents dying NB cells whereas the black arrow represents
activated NK cells in action. Data represent mean =+ standard error of 3-5 independent biological
experiments. Statistical analyses were performed using a two-sided unpaired #-test. *p< 0.05, **p< 0.01,
*#%p<0.001.
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Supplementary Figure 5.
(A-C) Representative flow cytometric quantification graphs showing the expression of intracellular

granzyme B (A) and surface CD107a (B,C) in CD8'T (A) and NK cells (B,C) cocultured with miR-15a
or miR-15b expressing SK-N-AS (A) cells blocked by treatment with anti-PD-L1 antibody for 24h (A,B)
or treatment with PD-L1 siRNA for 24h (C). Data represent mean =+ standard error of 3-5 independent
biological experiments. Statistical analyses were performed using a two-sided unpaired #-test. **p<0.01,
*#%p<0.001.
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Supplementary Figure 6.

(A) Summary graph showing tumor volume of the C57BL/6 mice that received subcutaneous murine NB-
975 cells stably expressing miR-15a or Scr ctrl miRNAs. (B-G) Representative flow cytometric
plots/quantitative analysis graphs showing the percentage of CDS8 cells, Ki-67, IFN-y positive CD8*T
cells, Tregs and their quantification, and perforin positive mouse NK cells analyzed from the single-cell
suspension of tumor tissues from C57BL/6 mice that received subcutaneous murine NB-975 cells stably
expressing miR-15a or Scr ctrl miRNAs for 30 days. Tumor tissues were harvested, prepared as single-
cell suspensions, gated on CD4" (CD4"CD25 Foxp3™) population (a-mouse BV785-CD4, a-mouse PB-
CD25, a-mouse/rat/human AF647- Foxp3) and stained for Tregs by flow cytometry using their respective
antibodies. Representative flow cytometric plot showing a FMO control of cells stained with all
fluorochromes except one used to set the background signal for the analysis was given. Bar graphs are
shown as mean + standard error (n=4 mice per group). (H,I) the representative IHC images of CD34
stained (murine endothelial cells) microvessels at 10X magnification and their quantification of mice
tumors.
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