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eMethods. 
 
Predictors:  
There were a total of 147 predictors, and the complete list of predictors were shown in Table S1. 
The predictors were from the following groups: Demographic (e.g., Gender, BMI), comorbidity 
(e.g., Prior cardiac event, diabetes), pre-operative laboratory tests (e.g., Platelet count, WBC 
count), diagnostic and staging workup (e.g., Extraperitoneal metastases), extent of surgery and 
operative predictors (e.g., Right diaphragm peritonectomy, extubated in OR), and pre-operative 
treatment (e.g., type and duration of chemotherapy). To pre-process these predictors, we first 
grouped them into four data formats – ordinal, binary, categorical, and continuous. We then 
regrouped the ordinal predictors, such as number of previous CRS, into three categories: None, 
once; and more than once. In the next step, we pre-processed the missing values. For each of the 
categorical predictors, a missing category was created. For each of the continuous predictors, the 
missing values were replaced by its mean or median based on the skewness of its distributions. 
For example, if the distribution was right or left skewed, the median imputation was applied. If the 
continuous predictor missed more than 50%, its missing values were replaced by an extreme value 
(e.g., 999) and a corresponding missing indicator was created. Lastly, we transformed the 
categorical variables using the one-hot encoder, explicitly creating indicator predictor for each 
level of the categorical variable.1 
 
Predictive modeling  
The primary outcome of interest was grade 3 or higher (grade3+) complications based on the 
Clavien-Dindo classification system.2 To predict grade 3+ surgical complications, we used an 
ensemble-based ML model – gradient boosting model (hereafter referred to as GBM), as 
implemented in the lightGBM package in Python.3  
 
GBM is a machine learning method that combines a series of simple tree-based models, such as 
decision trees.4 This method first builds a simple tree-based model, and the added more models 
one at a time to the existing model to minimize the loss function, a function of the difference (aka 
“the loss) between the prediction of the model and the given outcome value. This process is known 
as gradient descent. The method is also able reduce overfitting and improve performance by tuning 
several parameters, such as the number of trees, the fraction subsample, or columns to build each 
of the tree-based models, and the depth of the trees. The optimal parameters of the final model are 
selected based on the loss function and the specified evaluation metrics, such as area under the 
precision/recall curve. 
 
We first trained the model with two different sets of training set. When building a model, data are 
usually divided into training and test set to avoid overfitting. Based on empirical studies, the best 
results can be obtained if we use 70-80% of the data for training, and 20-30% data for testing.5 
The first set contained 80% of the patients, which was the entire training set, and the second was 
a subset of this training set, which only consists of the patients with grade 3+ complications and 
no complications. We then trained this model on the extremes of outcomes (no complication vs. 
grade 3+ complication) to improve model performance. We reasoned that if the dichotomy is 
magnified, it will allow a greater accuracy of optimized GBM model in identifying features of 
patients with grade 3+ complications during training. Both prediction models were trained using a 
5-fold cross validation to find the optimal hyperparameters, and their tuning ranges are listed in 
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Table S2. During the cross validation, we randomly assigned the patients into five different subsets 
and ensured that the ratio between the two outcome groups (e.g., grade 3+ versus grade 0) were 
the same in each of these subsets. We trained the model on four of these groups and tested it on 
the fifth group. This process was repeated five times so that each patient was used in both training 
and validation groups. Each time, the areas under the receiver operating characteristic curve 
(AUROC) and precision-recall curve (AUPRC) were generated, and the optimal values of the 
hyperparameters that maximized the average AUROC (i.e. overall ROC) was selected. The models 
with the optimal values of both models were then validated by the independent holdout test set, 
which contained the remaining 20% of the patients.  
 
Separately, we developed two multivariate logistic regression models to predict surgical 
complication of grade 3+ vs. no complication. The first model (hereafter referred to as MLR model 
1), which included all significant predictors from univariate logistic regression models and 
excluded the predictors that were highly correlated with each other. The second model - hereafter 
referred to as MLR model 2 - used the predictors specified from a previously published paper that 
predicted surgical complication. These predictors included (CCI, excluding the index malignancy), 
symptoms, and prior resection and operative status.6 We then compared predictive performances 
of these two regression models to that of the GBM.  
 
 
Local and Global Interpretation of ML models 
Although ensembled-based GBMs may provide good prediction accuracy, they cannot be applied 
in the clinic because the generated output cannot be interpreted. To facilitate interpretation of the 
ensemble-based GBM method we used an artificial intelligence SHAP (SHapley Additive 
exPlanations) method.7,8 This SHAP method calculates a total SHAP value for each individual 
(i.e., individual-level total SHAP value) – a patient with a higher SHAP value corresponds to a 
higher likelihood of the target outcome i.e. major complications. In addition, the method breaks 
down the SHAP values of predictors for a given individual to predictor specific SHAP value which 
examines how the levels of predictors contribute to this individual’s total SHAP value. These 
predictor-level SHAP values can also be aggregated to show how each of the predictor affects the 
outcome across all individuals. SHAP values enable the interpretation of the model both on a local 
(e.g., individual prediction) or a global (e.g., population trend) level.  
 
To facilitate the interpretation, the method creates the force, summary, and dependence plots to 
visualize the local- and global-level SHAP values. On the local level, the force plot shows the 
individual-level total SHAP value and the predictors that contribute to this value. On the global 
level, the summary and dependence plots display the predictor specific SHAP value across all 
individuals. Specifically, the summary plot ranks the predictors’ predictive ability to the outcome 
as well as the direction of the effects; the dependence plots not only display the direction of effects, 
but also shows the non-linear associations and interactions between predictors. In addition, 
individual-level predictions can be embedded into an explanation space (i.e., Local explanation 
embedding) to make the global interpretation. In this space, individuals with a similar combination 
of individual-level SHAP values were grouped together based on Euclidean distance - an 
unsupervised distance-based clustering method. These clusters (or patient groupings) allow us to 
discover common patterns among a subgroup of the population, and to interpret how these patterns 
together lead to the outcome.  
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eFigure 1. AUROCs and AUPRCs of the Cross-Validation Sets and the Holdout Test Set From 
the Model Trained With the Entire Training Set 
.  
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eFigure 2. Patients With the Highest, Lowest, and Median SHAP Values 
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eFigure 3. One-way SHAP Dependence Plot of the Top 10 Most Important Predictors  
 

 
 
 
1 These are the one-way dependence plots, which shows the association between a predictor and the outcome. 
Specifically, the values of the predictor are represented by the x-axis, and its SHAP values are represented by the y-
axis. To interpret these plots, for example, in (a), patients with higher EBL (as x-axis increased) were associated 
with a higher SHAP value, which indicated a higher likelihood of surgical complications (y-axis also increased). 
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eTable 1. List of Variables Incorporated in Risk Models (ie, MLR Model 1)  

Groups of the predictors  Predictor 
Demographic  Hospital, gender, age, race, BMI, health insurance, 

ASA class, functional status, ECOG performance 
status, histology 

Comorbidity  HTN, diabetes, prior cardiac event, CHF, dyspnea, 
smoking history, severe COPD, chronic steroids, 
ascites, disseminated cancer, history of MI, history of 
PVD, history of CHF, history of CVA,  anticoagulant,  
depression, rheumatic or connective tissue disease, 
history of PUD, symptomatic, GI bleed, GI 
obstruction, diarrhea, pain, nausea/vomiting, anorexia, 
fatigue, anemia, constipation, GERD/dyspepsia, history 
of prior appendectomy, chronic kidney disease, liver 
disease, known genetic syndrome, drinker, smoker, 
previous abdominal surgery, other concurrent 
malignancy 

pre-operative laboratory tests Platelet count, WBC count, neutrophil, lymphocyte, 
monocyte, hemoglobin, albumin, preoperative 
prealbumin level, last bilirubin, creatinine, HbA1C, 
glucose, CEA, CA19.9, CA.125, C reactive protein 

Diagnostic and staging workup  Extraperitoneal disease, liver metastases, lung 
metastases, retroperitoneal lymph node metastases, 
other metastases, preoperative TPN 

Extent of surgery and operative predictors  Surgeon volume, emergency surgery, wound class, 
previous HIPEC, number of previous CRS, operative 
intent, indication for palliative resection, pre 
admission, reason for pre admission, ureteral stents, 
surgical assistant, operative time, PCI, CCR, right 
diaphragm peritonectomy, major right 
peritonectomy, prophylactic right chest tube, 
perfusion of chest, right diaphragm resection, left 
diaphragm peritonectomy, major left 
peritonectomy, prophylactic left chest tube, left 
diaphragm resection, cholecystectomy, porta 
hepatis, splenectomy, distal pancreatectomy, 
omentectomy, lesser omentum, right gutter 
peritonectomy, left gutter peritonectomy, pelvic 
peritonectomy, hysterectomy, oophorectomy, 
partial cystectomy, lymphadenectomy, previous 
CRS, gastrectomy, low anterior resection, diverting 
loop ileostomy, number of small bowel resections, 
mesenteric peritonectomy, small bowel tumor 
excision, end ileostomy colostomy, appendectomy, 
nephrectomy, ureteral resection, why ureteral 
resection, liver capsular resection, formal liver 
resection, caudate resection, intraoperative 
ablation, pringle used, abdominal wall resection, 
component separation, same surgeon performed, 
placement of gastrostomy tube, jejunostomy feeding 
tube, placement of IP catheter, number of drains, 
extubated in OR, partial colectomy, small bowel 
resection, abdominal wall reconstruction, Intra OP 
drain placement, estimated blood loss 
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Pre-operative treatment  IP chemotherapy, targeted temperature, closed vs. 
open, chemotherapy 1, chemotherapy 1’s duration, 
systemic chemotherapy, perfusion terminated, 
neoadjuvant chemo regimen, neoadjuvant 
bevacizumab, neoadjuvant immunotherapy, 
neoadjuvant targeted kinase inhibitor, neoadjuvant 
chemotherapy 

Bold = Variables derived at the time of surgery 
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eTable 2. Hyperparameters and Their Tuning Range 

Hyperparameter Name Description Tuning range  
learning_rate Boosting learning rate. Fixed at 0.1 
Max_delta_step Limit the max output of tree leaves Fixed at 1 
Scale_pos_weight  Balancing of positive and negative 

weight.  
Fixed at the ratio of two outcome groups 

num_boost_round Number of gradient boosted trees.  Fixed at 1000 for tuning the number of tree, 
and the optimal number of trees for the final 
model1 was determined using 5-fold CV.  

max_depth Maximum tree depth for base learners.  Fixed at 6 for tuning the number of tree, 
and randomly picked from 3 to 10 in the 
final model.  

min_child_weight Minimum sum of instance weights 
needed in a child.  

Fixed at 1 for tuning the number of tree, 
and randomly picked from 1 to 5 in the final 
model. 

colsample_bytree Subsample ratio of columns when 
constructing each tree.  

Fixed at 1 for tuning the number of tree, 
and uniformly picked from 0.4 to 0.9 in the 
final model.  

Subsample Subsample ratio of the training 
instance. 

Uniformly picked from 0.4 to 0.9 in the 
final model.  

Reg_alpha L1 regularization  Uniformly picked from 10 evenly spaced 
points between decades 10^-2 and 10^2 

Reg_lambda  L2 regularization  Uniformly picked from 10 evenly spaced 
points between decades 10^-2 and 10^2 

1 A two-stage tuning process was adopted to train the model. In stage I, the initial number of gradient boosted tree 
(num_boost_round) was tuned in a model with all other parameters fixed at a default value. In stage II, using the 
number of tree tuned from the stage I model, the other parameters of the models, which included max depth, min 
child weight, subsample rate, column sample rate, regularized alpha and lambda levels, were further tuned. The 
model prediction and interpretion were generated using the stage II model with the tuned parameters.  
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eTable 3. Comparison of Predictive Performance Between the GBM and Two Multivariate 
Logistic Regression (MLR) Models 

 Optimized GBM1 MLR model 11,2 MLR model 21,3 

AUROC4 0.74 0.71 0.54 
AUPRC4 0.42 0.34 0.18 
Threshold5 0.41 0.47 0.27 
Positive class6 76 76 76 
True positive 31 30 29 
False positive  41 55 166 
False negative 45 45 47 
True positive rate (TPR) 0.41 0.35 0.38 
Positive predictive value (PPV)  0.43 0.39 0.15 

1 All three models were developed with the subset of the training set excluding the patients with grade 1 and 2 
complications.  
2 MLR model 1 included all significant predictors from univariate logistic regression models and excluded the 
predictors that were highly correlated with each other. 
3 MLR model 2 included CCI score, symptomatic, and previous CRS and HIPEC status.  
4 The AUROC and AUPRC of the test set were reported. 
5 The threshold to classify the predicted probability was determined at the recall and precision of 40%.  
6 Positive class was the total number of patients who had the outcome. 
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eTable 4. Characteristics of the Selected Clusters From the Plot of Local Explanation Embedding 
(Figure 3)  

Clusters  Number of patients Mean1 Standard deviation1 Minimum1 Maximum1 
1 145 0.44 0.20 0.06 0.81 
2 78 0.34 0.16 0.10 0.77 
3 27 0.25 0.12 0.10 0.62 
4 55 0.24 0.16 0.05 0.66 
5 91 0.18 0.11 0.05 0.64 
6 162 0.68 0.18 0.28 1.00 

1 Summary statistics of the total SHAP values for the patients in the cluster.  
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