
Reviewer	#1:	Thanks	to	the	authors	for	this	paper.	I	have	only	two	criticisms: 
 
1.	The	paper	largely	focuses	on	overlaps	in	genomic	regions	without	applying	any	statistical	evidence	that	
those	overlaps	are	more	extreme	than	would	be	expected	by	chance	alone.	In	the	resubmission	I	would	
advise	including	hypergeometric	testing	or	something	similar	to	assess	the	strength	of	evidence.	
	
We apologize for the confusion in the presentation of our work. Throughout the manuscript, we employ 
our computational tool Regulatory Element Locus Intersection (RELI) (Nat Genet. 2018;50(5):699-707. 
PMID: 29662164) to estimate the significance of the overlap between the genomic features employed 
in this study  (TF binding events, histone marks, ATAC-seq peaks, etc.). As input, RELI takes the 
genomic coordinates of peaks from two datasets. RELI then systematically intersects these coordinates 
with one another, and the number of input regions overlapping the peaks is counted. Next, a p-value 
describing the significance of this overlap is estimated using a simulation-based procedure in which the 
peaks from the first dataset are randomly distributed within open chromatin regions from human cells 
(the “negative set”). A distribution of expected overlap values is then created from 2,000 iterations of 
randomly sampling from this negative set, each time choosing a set of negative examples that match 
the input set in terms of the total number of genomic loci. The distribution of the expected overlap values 
from the randomized data is modeled using a normal distribution and can thus be used to generate a 
Z-score and corresponding p-value estimating the significance of the observed number of input regions 
that overlap each dataset.   

Since its initial introduction, RELI has been used to identify statistical enrichment for functional genomic 
datasets in numerous studies, including: 

• Cell Metabolism. 2021;33(6):1187-204 e9. PMID: 34004162 
• Allergy. 2021;76(6):1836-45. PMID: 33175399 
• Nature Communications. 2021;12(1):1611. PMID: 33712590 
• Nature Struct Mol Biol. 2020;27(10):978-88. PMID: 32895557. 
• Nature Communications. 2021;12(1):567. PMID: 33495464. 
• J Exp Med. 2020;217(1). PubMed PMID: 31653690. 
• Genome Res. 2021. PMID: 34799401. 
• PLoS Genet. 2021;17(6):e1009574. PMID: 34111109 
• Blood. 2018;132(21):e24-e34. PMID: 30249787. 
• eLife. 2020;9. PMID: 33006313. 
• Cell Reports. 2021;34(12):108891. PMID: 33761354. 
 
From our standpoint, this isexactly the kind of analysis that the reviewer is requesting, but actually 
slightly better, since RELI can control for things a simple hypergeomtric test cannot (e.g., the varying 
width of ChIP-seq peaks, and the non-uniform distribution of ChIP-seq peaks across the genome). We 
apologize for not making this clearer in the manuscript. To ensure that readers understand the analytical 
pipeline used to assess significance of overlapped datasets, we have added the following to the 
methods section on lines 546-560: 
 

“Enrichment analysis for functional genomic datasets: We used the RELI algorithm to estimate the 
significance of the overlap between genomic features generated in this study (TF binding events, 
histone marks, ATAC-seq peaks, etc.). As input, RELI takes the genomic coordinates of peaks from 
two datasets. RELI then systematically intersects these coordinates with one another and the number 
of input regions overlapping the peaks is counted. Next, a p-value describing the significance of this 
overlap is estimated using a simulation-based procedure in which the peaks from the first dataset are 
randomly distributed within the union coordinates of open chromatin from human cells. A distribution of 



expected overlap values is then created from 2,000 iterations of randomly sampling from the negative 
set, each time choosing a set of negative examples that match the input set in terms of the total number 
of genomic loci. The distribution of the expected overlap values from the randomized data resembles 
a normal distribution and can thus be used to generate a Z-score and corresponding p-value estimating 
the significance of the observed number of input regions that overlap each dataset.” 

	
2.	The	statement	below	is	copied	from	the	manuscript:	
	
The	100	kB	region	of	DNA	around	AD-specific	gene	sets	widely	overlapped	(94.7-100%)	the	ATAC-seq	
peaks	in	the	six	subjects	with	AD	(Supplemental	Table	8).	There	was	substantial	overlap	(26.3-68.4%)	
between	the	100	kb	region	of	DNA	around	ADspecific	gene	sets	with	the	AD-specific	ATAC-peaks,	
indicating	that	possible	enhancers	proximal	to	the	AD-specific	genes	were	accessible	for	transcription	in	
an	AD-specific	manner.	
	
The	above	gives	no	indication	of	the	directionality	of	effect.	Can	you	produce	a	graph	or	something	
similar	to	show	the	relationship	between	chromatin	accessibilty	and	gene	expression	i.e	logFC	case	v	
control	(GE)	v	logFC	case	v	control	(ATAC)	
 

We compared AD- and control-specific ATAC-seq peaks to AD- and control-specific genes (RNA-seq). 
Comparisons were done on a “matched subject pair” basis, using 100kb windows around the genes (e.g., ATAC-
seq peaks found only in subject AD1 vs. CTRL1 were compared to genes with higher expression in AD1 vs 
CTRL1). We did observe a trend for AD-specific gene loci to more frequently contain AD-specific ATAC-seq 
peaks, although the difference are not significant (new Figure 5 below). We note that opening DNA that encodes 
a silencer can reduce gene expression, while closing a silencer can increase gene expression; thus, we do not 
expect perfect correlation between AD-specific ATAC-seq and AD-specific gene expression directionality.  

There is a more striking finding from the ChIP-seq data. For all AD-specific gene sets (up in AD and down in 
AD), there is more overlap with NFKB1 in AD compared to control. 

  

We have modified the manuscript accordingly (lines 306-324).  

This section now reads:	 The 100 kB region of DNA around AD-specific gene sets widely overlapped 
(94.7-100%) the ATAC-seq peaks in the six subjects with AD (Supplemental Table 8). There was 
substantial overlap (26.3-68.4%) between the 100 kb region of DNA around AD-specific gene sets with 



the AD-specific ATAC-peaks (Figure 5), indicating that possible enhancers proximal to the AD-specific 
genes were accessible for transcription in an AD-specific manner.  Similarly, the 100 kb region of DNA 
around AD-specific NFKB1 ChIP-seq peaks overlapped the transcriptional start site of 47-95% of the 
AD-specific genes (Supplemental Table 8, Figure 5). In five of the six pairs, AD-specific NFKB1 ChIP-
seq peaks overlapped a large proportion of the AD-specific genes (42.1-73.4%) (Supplemental Table 
8). The 100 kb region around AD-specific NFKB1 ChIP-seq peaks overlapped 44.3% of the genes with 
increased expression in AD. In contrast, only 15.4% of genes with increased expression in AD had 
control-specific NFKB1 ChIP-seq peaks within 100 kb (Figure 5). Importantly, there is AD specificity to 
the overlap of NFKB1 ChIP-seq peaks, with AD-specific genes with AD-specific NFKB1 peaks 
overlapping more AD-specific genes (~80%) while control specific NFKB1 peaks overlapped only ~35% 
of AD-specific genes (Figure 5). These results are consistent with NFKB1 acting as both an activator 
and a repressor depending on the context (25)(26). Collectively, these data indicate strong agreement 
between AD- and control-specific gene expression, chromatin accessibility, and NFKB1 binding.	

3.	Likewise	 is	 it	possible	to	 include	a	 figure	demonstrating	the	allele-specific	chromatin	accessibility	 i.e	
ATAC	reads	stratified	by	genotype	in	cases	and	controls	or	something	similar?	

We have added red tick marks as an indication to Figure 5 to identify if the allelic ATAC was found in a 
case with AD or in a control. We do not find an increase in allelic behavior in cases relative to controls, 
which is consistent with previous studies of autoimmune diseases in which allelic behavior follows 
genotype and not case/control status: 

• Nat Genet. 2018; 50(5):699-707. PMID: 29662164 
• Nat Genet. 2018; 50(3): 424–431. PMID: 29379200 
• Nature Communications. 2018; 9:2905. PMID: 30046115 
• Science 2020; 369(6503):561-565. PMID: 32732423 
• Genome Res. 2021. PMID: 34799401. 
 
The finding is also consident with the presence of genotype-dependent expression (eQTLs) in non-
disease cohorts (e.g. DICE or GTeX). 
 
Please see the edited Figure below. 



 

	 	



Reviewer	#2:	This	is	an	interesting	report	from	Eapen	et	al.,	that	characterizes	the	epigenetic	and	
transcriptional	dysregulation	of	CD4	T	cell	in	patients	with	atopic	dermatitis	(AD).	AD	affects	
approximately	20%	of	children	and	high	rate	of	persistence	into	adulthood.	There	are	29	independent	
risk	haplotypes	identified.	It	is	well	know	that	CD4	T	cells	are	the	major	effector	cell	type	for	AD	and	that	
NFKB	signaling	mediates	the	pathogenic	inflammation.		

This	paper	seeks	to	determine	if	there	are	upstream	effects	in	CD4	T	cells	at	the	level	of	epigenome	and	
transcriptome	changes	that	facilitate	pathogenic	T	cell	responses.	The	authors	use	a	combination	of	
genomic	techniques	to	determine	if	AD	risk	haplotypes	demonstrate	altered	chromatin	accessibility,	
NFKB	binding	and	gene	expression	changes	consistent	with	AD	using	a	case/control	study	design	in	CD4	
T	cells	in	patients	with	AD.	They	demonstrate	that	in	stimulated	CD4	T	cells	taken	from	patients	with	AD	
that	open	chromatin	regions	were	enriched	for	AD	risk	variants	and	that	there	was	strong	enrichment	for	
NFKB	binding	motifs	in	these	peaks	in	AD	patients	but	not	in	controls.		

They	also	demonstrated	over	60	instances	of	genotype-dependent	chromatin	accessibility	for	36	AD	risk	
variants.	Together	they	conclude	that	allele	specific	epigenetic	and	transcriptional	regulation	is	an	
important	feature	of	CD4	T	cell	responses	to	stimulation	in	patients	with	AD.	While	these	results	are	
interesting,	there	are	several	significant	issues	that	need	to	be	addressed	to	improve	the	overall	quality	of	
this	manuscript.	These	are	listed	below	in	no	specific	order	of	importance:	
	
1.	The	text	is	missing	some	basic	proofreading	

We submitted this manuscript to the copy editor service “Editage” for advanced editing and incorporated 
over 95% of their suggested changes. Invoice is provided below. 

	

In total, we accepted ~500 changes from the copy editor.  

	
2.	Testing	the	hypothesis	that	“AD	loci	may	be	epigenetically	regulated”	is	vague	(pp.	2,	128).	

The text has been edited as follows (line 132-133): 
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The original sentence in the Introduction: “Herein we hypothesized that AD loci may be epigenetically 
regulated”. 

Revised sentence: “In this study, we hypothesized that the chromatin accessibility and binding of 
transcription factors may regulate genetic AD risk loci.” 

	
3.	The	FRiP	scores	are	quite	low	with	average	of	32%	indicating	that	the	ATAC-seq	data	may	have	QC	
issues	(typically	>50%	is	expected),	please	address.	

The current ENCODE standards for ATAC-seq data (https://www.encodeproject.org/atac-
seq/#standards) state that “The fraction of reads in called peak regions (FRiP score) should be >0.3, 
though values greater than 0.2 are acceptable. For EN-TEx tissues, FRiP scores will not be enforced 
as QC metric. TSS enrichment remains in place as a key signal to noise measure.” 
 
Thus, the official ENCODE policy is to have FRiPs ideally exceeding 0.3 for experiments performed in 
cell lines, with 0.2 still being acceptable.  Note that for studies such as ours, which were performed in 
primary cells, they do not require a minimum FRiP score.  Nevertheless, all but one of our ATAC-seq 
experiments have FRiP scores > 0.2, with a mean of 0.3. 

	
4.	Analysis	of	shared	peaks	was	performed	by	using	pairwise	assessments.	It	is	not	clear	how	
case/control	pairs	were	selected	and	why	a	more	exhaustive	case/control	analysis	was	not	performed	
(i.e.,	pairwise	comparisons	using	all	possible	pairs)	

We matched each pair of samples by age and ancestry. At the beginning of the study we identified 
heterogeneity across samples, consistent with literature demonstrating differences within the CD4+ 
immune compartment as a person ages (eg Immun Aging. 2019 Sep 11;16:24. PMID: 31528179 and 
Clinical Experimental Immunology 2021 Dec 29; PMID: 3502089). We thus did not compare across all 
samples because of the heterogeneity that was introduced by different sex, ancestries, and ages. 
Instead, we choose to focus on the matched case:control pairs to facilitate the identification of 
consistent differences between AD and controls. 

We have now included Supplemental Table 13, which describes the patient – control matching 
characteristics in detail. 

 

 

 

 

 

 

 

 

Patient ID 
Age 
(years) 

Patient 
Sex 

Self-Reported 
Race 

Self-Reported  
Ethnicity 

AD1 8 M White Not Hispanic 
CTL1 10 M White Not Hispanic 
AD2 25 F White Not Hispanic 
CTL2 18 F White Not Hispanic 
AD3 12 F Black Not Hispanic 
CTL3 17 F Black Not Hispanic 
AD4 55 M White Not Hispanic 
CTL4 39 F White Not Hispanic 
AD5 67 F White Not Hispanic 
CTL5 53 F White Not Hispanic 
AD6 30 F White Not Hispanic 
CTL6 31 F White Not Hispanic 



We have also added a section to the Discussion focused on the importance of further controlling for 
age and ancestry in future studies to allow for pooled analysis (line 388):  

 “This study used a paired analysis of cases with demographically matched controls. The findings of 
this manuscript represent epigenetic differences that are consistent across these matched pairs. Future 
studies will be needed in which ancestry and age are carefully matched for all cases and controls to 
support a pooled analytical strategy.”  

	
5.	More	generally,	how	were	subjects	matched?	

See above. Age and self-reported race and ethnicity.  

	
6.	After	the	pairing	approach	used	to	identify	AD-	or	control-specific	ATAC	peaks,	peaks	that	were	AD-	or	
control-specific	in	3	or	more	of	the	pairings	were	classified	as	“consistently	AD/control”	(pp.	5,	176-178).	
It	is	not	stated	how	much	these	peak	sets	overlap	each	other.	Based	on	the	data	in	the	supplement	
(Supplemental	Table	3),	they	share	80%	of	LD	SNPs	so	it	is	likely	they	have	some	overlap.	

We define “consistent” as being present in three or more cases (AD consistent) or controls (CTL 
consistent). This is why there is large overlap between AD consistent and CTL consistent peaks – the 
vast majority of open chromatin regions in the genome do not change from individual to individual as a 
function of disease status.  

We define “specific” based on MANORM statistical differential analysis. Consistently AD-specific peaks 
are statistically stronger in AD in three or more pairs. Consistently control-specific peaks are statisticaly 
stronger in control subjects in three or more pairs. Consistently AD-specific ATAC peaks have no 
overlap with consistently CTL-specific ATAC peaks.  

To clarify this finding in the Results section, we have added the following text to line 188-194: 

“As expected, there was substantial overlap between AD-consistent and control-specific ATAC-seq 
peaks since most chromatin states do not change from individual to individual within a cell type. We 
identified 5,639 AD-specific consistent ATAC-seq peaks (i.e., consistent peaks that were not consistent 
in controls). Likewise, we identified 10,065 control-specific consistent ATAC-seq peaks. Consistently 
AD-specific ATAC peaks have no overlap consistently control-specific ATAC peaks.” 

Please see the answer below for the question around the overlapped AD risk variants. 

7.	Based	on	shared	LD	and	Tag	SNPs	(Supplemental	Table	3)	it	is	NOT	clear	that	chromatin	is	accessible	
in	a	“disease	specific	manner”	(pp.	5,	181-182).	Twelve	of	the	13	AD	risk	loci	overlapped	by	“consistently	
AD”	peaks	are	also	overlapped	by	“consistently	control”	peaks.	

Thank you for pointing this out. In the context of the overlap between AD-specific ATAC and CTL-
specific ATAC, we have added a sheet to STable 3 to highlight the number of AD-risk variants 
overlapping AD-specific and CTL-specific ATAC peaks.  

In this sheet (also presented below), the overlapping SNP is presented in the first column. In the second 
column, the Tag SNP is provided so that readers can identify instances in which multiple SNPs in the 
same haplotype overlap with ATAC-seq peaks. There are 24 AD risk variants in 17 haplotypes that 



overlap consistent AD ATAC-peaks. Of these, five overlap consistent AD ATAC-seq peaks but not 
consistent CTL peaks. 

SNP inside 
ATAC-seq 
peak (LD 
SNP) 

locus ID 
(Tag SNP) 

Consistently 
AD (present in 
3 or more 
samples) 

Consistently 
CTL 
(present in 3 
or more 
samples) 

rs11602467 rs12295535 YES NO 
rs6684439 rs2228145 YES NO 
rs2058658 rs6419573 YES NO 
rs1291209 rs909341 YES NO 
rs1295810 rs909341 YES NO 
rs6890853 rs10214237 YES YES 
rs10791824 rs10791824 YES YES 
rs9391734 rs12153855 YES YES 
rs77190366 rs12295535 YES YES 
rs112502960 rs16948048 YES YES 
rs17389644 rs17389644 YES YES 
rs1048990 rs2143950 YES YES 
rs28365850 rs2143950 YES YES 
rs4845373 rs2228145 YES YES 
rs1420106 rs6419573 YES YES 
rs10957979 rs6473227 YES YES 
rs11776367 rs6473227 YES YES 
rs2370615 rs6473227 YES YES 
rs4739737 rs6473227 YES YES 
rs5892724 rs6473227 YES YES 
rs11236797 rs7110818 YES YES 
rs34455012 rs7110818 YES YES 
rs4144896 rs7127307 YES YES 
rs2427531 rs909341 YES YES 

In addition to the text added in response to Reviewer 2 Question 6, we have also added the following 
sentence to the results: 

“In total, we identified 361 consistently AD-specific ATAC-seq peaks.” 

“24 AD risk variants in 17 haplotypes overlap ATAC-peaks consistently found in subjects with AD. Of 
these, five overlap ATAC-seq peaks consistently found in subjects with AD but not consistently found 
in controls.” 

We have also added the table above in a sheet in Supplemental Table 3. 

	
8.	On	pp.	5,	170-171,	authors	state	75-88.4%	of	ATAC	peaks	were	shared	between	AD	and	
demographically	matched	controls,	but	on	pp.	8,	231	authors	state	a	median	of	91.9%	of	ATAC	peaks	
were	shared.	It	is	unclear	how	this	inconsistency	arose	or	if	the	comparison	being	made	is	different	in	the	
second	statement	in	a	way	that	is	not	clear	from	the	text.	

The numbers reported in the manuscript were not correct. The data in Figure 3 were correct. The 
sentence has been corrected as follows (now line 178): 



Original: In pairwise assessments performed using MAnorm (24), most ATAC-seq peaks were shared 
between AD patients and demographically matched controls (75-88.4%).  

Corrected: In pairwise assessments performed using MAnorm (24), most ATAC-seq peaks were shared 
between AD patients and demographically matched controls (85.9-96.0%).  

The median of 91.9% was accurate.  

	

9.	On	pp.	22,	471-472	in	the	METHODS	section,	authors	state	that	reads	for	ChIP-seq	were	processed	the	
same	way	as	ATAC-seq	reads,	but	the	MACS2	parameters	needed	to	properly	call	peaks	in	these	two	data	
types	should	be	different	to	avoid	errors	in	the	genomic	coordinates	of	the	called	peaks,	especially	
excluding	parameters	‘-nomodel	--shift	--extsize’	for	ATAC-seq	peak	calling. 

Many different approaches are used for peak calling.  Because there is currently no single established gold 
standard method, we try to follow ENCODE recomendations whenever possible.   

For ATAC-seq and ChIP-seq, ENCODE’s suggested parameters are as follows: 

ATAC-seq: macs2 callpeak --nomodel --shift -75 --extsize 150 
ChIP-seq: macs2 callpeak --nomodel  --shift 0 --extsize fraglen 
 
The difference between the two methods is the “--shift -75 --extsize 150” recommended for ATAC-seq. These 
parameter settings shift the reads 75 base pairs from the 3’ à 5’ direction, and then extend the size of the read 
in the 5’ à 3’ direction to create a fragment of length 150bp centered around the place where the read originally 
mapped. 
 
For our analysis, we used the following in macs2: 
macs2 callpeak --q 0.01 
 
In other words, we used the most commonly used peak calling algorithm (macs2) with default settings. We also 
used a 50bp padding to extend the called peaks on both sides which help amplify the cutting site enrichment. 
 
Until Fall of 2021, our laboratory used a pipeline that we called “NextGenAligner” to call peaks and run quality 
assessment on next generation datasets. We are in the process of shifting to the ENCODE pipeline, which is 
non-trivial (one year in, with the involvement of three postdocs, we are almost there). Based on this Reviewer 
comment, we reran all of the ATAC-seq data through our preliminary ATAC-seq ENCODE pipeline. To confirm 
that the differences in peak calling do not affect the findings of this manuscript, we re-ran HOMER motif 
enrichment analysis and found exceptional concordance between motif enrichment for the two peak calling 
methods:  



 
 
Figure R1. HOMER TF motif enrichment comparison between peak calling methods employed in this study (Y-
axis) and by the ENCODE pipeline (X-axis).  Each point represents a human TF binding site motif (obtained from 
the Cis-BP database).  The X- and Y-axis indicate the -log p-value of the enrichment of that motif in the 
corresponding peak set. 
 



Please also see the “TSS enrichment” results presented in Supplemental Table 2 – the ATAC-seq peaks called 
using our method clearly meet ENCODE standards for each subject, with a mean TSS enrichment of 19.5 
(compared to 21.5 using our preliminary implementation of the ENCODE pipeline). (ENCODE considers TSS 
enrichment scores over 10 as “ideal”). We thus conclude that our peak calling did not affect the conclusions in 
this manuscript.	
	
	
10.	On	pp.	8,	228-231,	it	states	that	there	is	more	variability	in	overlap	between	subject	matched	pairs	for	ChIP	vs.	ATAC	peaks,	
but	this	may	be	entirely	due	to	the	fact	that	there	is	substantial	variability	in	the	number	of	ChIP	peaks	across	samples	
(Supplemental	Table	2).	It	would	be	useful	to	compare	variability	of	overlap	within	controls	and	within	AD	to	see	if	the	
variability	between	control	vs.	AD	is	any	greater	than	the	large	variability	already	present	in	the	samples.	

Please see the variability analysis of ChIP and ATAC broken down by case:control status. 

	

This analysis has been added as a subfigure in to Supplemental Figure 1. The following statement has 
been added to the results: 

“A global variability analysis of ATAC and ChIP peaks revealed minimal differences in variability within 
cases versus within controls.” 

	
11.	The	biological	processes	associated	with	the	differentially	expressed	genes	(15	are	expressed	1.5x	
higher	in	AD,	16	are	expressed	1.5x	lower	in	AD;	shown	in	a	table	in	Supplemental	Figure	6)	are	not	
particularly	compelling.	These	seem	like	very	high-level	and	general	processes	and	many	of	the	enriched	
pathways	include	hundreds	or	even	over	1000	genes.	More	generally,	only	finding	31	differentially	
expressed	genes	seems	surprisingly	low.	

We agree that this study was not powered to robustly identify differential gene expression. When we 
take the list of genes that had a 1.5-fold difference between at least 2 of the 6 pairs (instead of 3), we 
identify 131 total genes, with a more robust set of 36 enriched pathways (adjusted p-values less than 
0.0001 with at least four overlapping genes in the gene set). For example, the top pathway is IL2 
signaling. IL2 is the cytokine that maintains T cell viability and survival during inflammatory responses.  
Indeed, each of the pathways with adjusted p-values less than 0.0001 are related to inflammatory 
signaling and T cells.  The top five enriched pathways with at least 9 gene overlaps are shown below. 

 

 

 



Term 
Overla
p 

P-
value 

Adjuste
d P-
value 

Odd
s 
Rati
o Genes 

Interleukin
-2 
signaling 
pathway 36/847 

3.27E
-21 1.47E-18 

10.0
8 

FURIN;SOCS3;MT2A;MYC;CCL4;UCP2;PIM1;PMAIP1;CCR7;TNFRSF4; 
S100A11;CTSC;IL12RB2;CD53;CD52;JUND;GPX4;STAT1;STAT3;ASNS; 
GZMB;EMP3;CD40LG;IFNG;IRF4;CD5;PSAT1;ID2;STK17B;BHLHE40; 
IL2RB;LTA;PTPN6;LY6E;BCL2L1;BIRC3 

T cell 
receptor 
regulation 
of 
apoptosis 22/603 

9.57E
-12 2.15E-09 7.46 

SERPINB1;JUND;STAT1;GZMB;ITGAL;DYNLL1;PRDX2;CCND3;LGALS1; 
CD40LG;IFNG;IRF4;SCD;MYC;STK17B;CCL4;PIM1;LTA;PMAIP1;CCR7; 
LAP3;BIRC3 

Interferon-
gamma 
signaling 
pathway 9/97 

6.83E
-09 7.66E-07 

18.2
4 SOCS3;MT2A;IFNG;IRF4;OAS2;STAT1;STAT3;PTPN6;HLA-A 

Jak-STAT 
signaling 
pathway 11/199 

3.24E
-08 2.91E-06 

10.5
7 

SOCS3;CCND3;IFNG;STAT1;MYC;STAT3;IL2RB;PIM1;PTPN6;BCL2L1; 
IL12RB2 

Interferon 
signaling 10/168 

7.01E
-08 5.25E-06 

11.3
5 EIF4A2;SOCS3;MT2A;IFITM2;IFNG;IRF4;OAS2;STAT1;PTPN6;HLA-A 

 

We respectfully request not to share these results in the manuscript, as we do not think that fold-change 
differences in 2/6 comparisons is sufficient to report in a manuscript. It is also inconsistent with our 
choice to do 3/6 for the other data types. This manuscript provides the data needed to perform power 
calculations that will optimize future studies with sufficient statistical power to replicate and identify 
differences in gene expression from a similar study design. This opportunity in addition to the learned 
and shared experience in terms of the need to reduce noise through controlling for sex and ancestry 
will be important for future studies.  

	
12.	The	case/control	RNA-seq	comparisons	were	only	performed	pairwise	(pp.	11,	280),	which	seems	
like	a	missed	opportunity	for	comparing	pooled	case	vs.	pooled	control	data,	which	would	presumably	
have	more	power	to	detect	differentially	expressed	variants	(this	applies	to	the	pairwise	comparisons	
used	more	generally)	

As presented in response to the question above regarding pooling and case:control differences, we 
were frankly surprised by the age-dependent heterogeneity in the epigenetic measurements. Based on 
our findings, we do not want to introduce a demographic-dependent bias in the RNA analysis. In other 
words, if we are not able to pool the ATAC-seq or ChIP-seq data, we do not want to present pooled 
RNA-seq data. We have added a section to the Discussion (line 388) highlighting this limitation and 
encouraging future functional genomic studies of atopic dermatitis to control for demographics.  

“This study used a paired analysis of cases with demographically matched controls. The findings of this 
manuscript represent epigenetic differences that are consistent across these matched pairs. Future 
studies will be needed in which age, sex, and ancestry are carefully matched for all cases and controls 
to support a pooled analytical strategy.”  

	
13.	On	pp.	12,	289-299,	authors	describe	how	a	large	%	of	AD-specific	ATAC	peaks	overlap	the	100kb	
region	around	AD-specific	gene	sets.	They	then	state	that	NFKB1	ChIP-seq	peaks	overlap	a	large	%	of	the	
TSS	of	AD-specific	genes	(they	don’t	state	whether	it	is	AD-specific	NFKB1	peaks	or	ALL	peaks).		

We only report AD-specific ATAC and AD-specific ChIP in Suplementary Table 8. We apologize for the 
confusion – we have modified the text to make this clearer. 



They	then	state	that	a	lower	%	of	AD-specific	NFKB1	peaks	overlap	the	AD-specific	genes	(does	this	mean	
that	the	peaks	overlap	the	transcripts?).	

This means that the peaks are within 100 kb of the NFKB1 ChIP-seq peak. We have modified the text 
to make this clearer. 

It	would	be	helpful	to	show	additional	comparisons	here	to	make	the	argument	that	control-	and	AD-
ChIP/ATAC	peaks	are	truly	specific	for	control-	and	AD-genes.	For	example,	what	%	of	AD-specific	genes	
show	control-specific	ATAC	peaks	in	the	100kb	vicinity?	Is	it	similar	to	the	%	of	AD-specific	ATAC	peaks,	
or	is	the	%	of	AD-specific	ATAC	peaks	significantly	higher	in	the	vicinity	of	AD-specific	genes,	etc.	

Please see the analysis that was also provided for Reviewer 1 Question 2. 

  

We interpret these results as indicating that AD-specific open chromatin tends to lead to higher 
expression in AD, and AD-specific closing of chromatin tends to lead to lower expression in AD.  NFKB1 
has a different overall trend, which likely indicates that AD-specific NFKB1 peaks can result in either 
AD-specific activation or repression of gene expression, depending on the genomic context of the 
NFKB1 binding event. 

We have now added the overlap of AD and CTL-specific ATAC and NFKB datasets and up-regulated 
and down-regulated genes as a sheet in Supplemental Table 8. Additionally, we now show the overlap 
of 100 kb around AD and CTL-specific NFKB1 ChIP-seq with up and down regulated genes in Figure 
5. 

In text edits (starting on line 306): 

Previously, this section stated: The 100 kB region of DNA around AD-specific gene sets widely 
overlapped (94.7-100%) the ATAC-seq peaks in the six subjects with AD (Supplemental Table 8). 
There was substantial overlap (26.3-68.4%) between the 100 kb region of DNA around AD-specific 
gene sets with the AD-specific ATAC-peaks, indicating that possible enhancers proximal to the AD-
specific genes were accessible for transcription in an AD-specific manner.  Similarly, the 100 kb region 
of DNA around NFKB1 ChIP-seq peaks overlapped the transcriptional start site of 47-95% of the AD-
specific genes (Supplemental Table 8). In five of the six pairs, AD-specific NFKB1 ChIP-seq peaks 
overlapped a large proportion of the AD-specific genes (42.1-73.4%) (Supplemental Table 8). 



Collectively, these data indicate strong agreement between AD- and control-specific gene expression, 
chromatin accessibility, and NFKB1 binding.  

In response to this review, we have edited this section to read:	 The 100 kB region of DNA around 
AD-specific gene sets widely overlapped (94.7-100%) the ATAC-seq peaks in the six subjects with AD 
(Supplemental Table 8). There was substantial overlap (26.3-68.4%) between the 100 kb region of 
DNA around AD-specific gene sets with the AD-specific ATAC-peaks (Figure 5), indicating that 
possible enhancers proximal to the AD-specific genes were accessible for transcription in an AD-
specific manner.  Similarly, the 100 kb region of DNA around AD-specific NFKB1 ChIP-seq peaks 
overlapped the transcriptional start site of 47-95% of the AD-specific genes (Supplemental Table 8, 
Figure 5). In five of the six pairs, AD-specific NFKB1 ChIP-seq peaks overlapped a large proportion of 
the AD-specific genes (42.1-73.4%) (Supplemental Table 8). The 100 kb region around NFKB1 ChIP-
seq peaks specific in AD overlapped 44.3% of the genes with increased expression in AD compared to 
the 15.4% of genes with increased expression in AD that were overlapped by 100 kb region around 
NFKB1 ChIP-seq peaks specific for controls (Figure 5). Importantly, there is AD specificity to the 
overlap of NFKB1 ChIP-seq peaks with AD-specific genes with AD-specific NFKB1 peaks overlapping 
more AD-specific genes (~80%) while control specific NFKB1 peaks overlapped only ~35% of AD-
specific genes (Figure 5). These results are consistent with NFKB acting as both an activator and 
repressor depending on the context (25)(26). Collectively, these data indicate strong agreement 
between AD- and control-specific gene expression, chromatin accessibility, and NFKB1 binding.	

	
14.	Authors	used	MARIO	method	to	integrate	information	across	ATAC/ChIP/RNA-seq	data	with	WGS	for	
each	of	their	subjects	and	find	allele	dependence	of	sequencing	reads	(read	depth?)	at	het	variants	(het	
across	the	sample,	or	within	individuals?)	(pp.	13,	304-307)	

As noted by the reviewer, functional genomic data (such as ATAC-seq and ChIP-seq) provide a means 
to identify allele-dependent chromatin accessibility and protein binding events on a genome-wide scale. 
In cases where a given variant is heterozygous in the cell assayed, both alleles are available for the TF 
to bind or for the chromatin to be accessible or not, offering a natural control for one another since the 
only variable that has changed is the allele. We previously developed the MARIO (Measurement of 
Allelic Ratios Informatics Operator) pipeline to identify allele-dependency by weighing imbalance 
between the number of sequencing reads for each allele of a given genetic variant, the total number of 
reads available at the variant, and the number and consistency of available experimental replicates 
(see Nat Genet. 2018;50(5):699-707. PMID: 29662164). MARIO is an easy-to-use, modular tool that (1) 
calculates a score that explicitly reflects reproducibility across experimental replicates; (2) reduces run-
time via utilization of multiple computational cores; and (3) allows the user to directly provide genotyping 
data as input. 

To estimate the significance of the degree of allelic imbalance of a given dataset at a given 
heterozygote, we developed the MARIO Allelic Reproducibility Score (ARS), which is based on a 
combination of two predictive variables: the total number of reads overlapping the variant and the 
imbalance between the number of reads for each allele. Other variables tested were uninformative (see 
Nat Genet. 2018;50(5):699-707. PMID: 29662164).  

For the MARIO results reported in this paper, all results have MARIO ARS values > 0.4 and are hence 
allele-dependent according to previously published standards.  

Currently, the following section is in the methods section where the MARIO analytical pipeline reads: 
Identification of allelic ATAC-seq and ChIP-seq reads using MARIO: To identify possible allele-
dependent mechanisms in our functional genomics datasets, we applied our MARIO method [21]. In 
brief, MARIO identifies common genetic variants that are (1) heterozygous in the assayed cell line 



(using NGS DNA sequencing data) and (2) located within a peak in a given ChIP-seq or ATAC-seq 
dataset. MARIO then examines the sequencing reads that map to each heterozygote within each peak 
for imbalance between the two alleles. We report allelic accessibility and NFKB1 binding at AD genetic 
risk variants in our ATAC-seq data with an Allelic Reproducibility Score (ARS) greater than or equal to 
0.4 which is considered significantly allelic [21]. 

We have updated this section as follows to provide more information: Identification of allelic ATAC-seq 
and ChIP-seq reads using MARIO: To identify possible allele-dependent mechanisms in our functional 
genomics datasets, we applied our MARIO method [21]. In cases where a given variant is heterozygous 
in the cell assayed, both alleles are available for the TF to bind or for the chromatin to be accessible or 
not, offering a natural control for one another since the only variable that has changed is the allele. In 
brief, MARIO identifies common genetic variants that are (1) heterozygous in the assayed cell line 
(using NGS DNA sequencing data) and (2) located within a peak in a given ChIP-seq or ATAC-seq 
dataset. MARIO then examines the sequencing reads that map to each heterozygote within each peak 
for imbalance between the two alleles. To estimate the significance of the degree of allelic imbalance 
of a given dataset at a given heterozygote, we developed the MARIO Allelic Reproducibility Score 
(ARS), which is based on a combination of two predictive variables: the total number of reads 
overlapping the variant and the imbalance between the number of reads for each allele. We report 
allelic accessibility and NFKB1 binding at AD genetic risk variants in our ATAC-seq data with an ARS 
greater than or equal to 0.4 which is considered significantly allelic [21].  

	
15.	Pp.	13,	311-313:	The	authors	state	that	the	MARIO	analysis	discovers	AD-associated	variants	in	ATAC	
peaks	that	are	het	in	some	subjects	and	produce	allele-dependent	ATAC	peaks.	This	seems	like	a	circular	
argument:	the	MARIO	analysis	uses	differences	in	sequencing	reads	combined	with	genotyping	data	to	
discover	alleles	that	affect	sequencing	reads,	so	why	is	it	striking	that	it	finds	alleles	that	produce	allele	
dependent	ATAC	peaks,	since	that	is	the	very	signal	it	is	based	on?	

Please see above. The reason that it is not circular is that the genome is masked for common variants 
before remapping all reads – thus the allelic differences in the reference genome do not affect read 
mapping/peak calling. It is important to note that the vast majority (~98%) of peaks overlapping a 
heterozygous variant did not have a significant allelic read imbalance. 

	
16.	Fewer	AD-associated	NFKB1	binding	variants	were	found,	but	this	may	be	largely	driven	by	the	fact	
that	there	were	~7x	more	ATAC	peaks	than	ChIP	peaks	(as	the	authors	acknowledge	pp.	14,	328-329).	

We agree. We have also added this limitation to the Discussion (lines 396).  

“The paucity of AD-associated NFKB1 binding variants could in large part be due to the lower number 
of NFKB1 ChIP-seq peaks.”  

	
17.	It	would	be	interesting	search	the	AD-associated	alleles	in	large	public	datasets	and	look	analyze	their	
frequencies,	whether	they	have	been	associated	with	other	diseases,	etc.	

	

	

	



The allele frequencies and diseases associations are now presented in Supplemental Table 1: 

Variation ID Chromosome Position Reference 
Allele 

Minor 
Allele 

Risk 
Allele 

Minor Allele Global 
Frequency 

Odds 
Ratio 

rs10199605 2 8495097 G A G 0.24 0.93 

rs10214237 5 35883734 T C T 0.18 0.93 

rs10738626 9 22373457 C C T 0.40 0.81 

rs10791824 11 65559266 A G A 0.49 1.12 

rs112111458 2 71100105 A G A 0.22 0.91 

rs12153855 6 32074804 T C T 0.13 1.58 

rs12295535 11 36432024 C T T 0.05 1.68 

rs1295686 5 131995843 T T T 0.42 1.22 

rs16948048 17 47440466 A G G 0.29 1.05 

rs17389644 4 123497697 G A A 0.12 1.21 

rs2041733 16 11229589 T T T 0.50 0.92 

rs2143950 14 35572357 C T T 0.22 1.08 

rs2228145 1 154426970 A C C 0.29 1.08 

rs2918307 19 8789722 A G G 0.17 1.12 

rs4713555 6 32575524 G T G 0.30 0.91 

rs4809219 20 62303115 C C C 0.27 0.90 

rs61813875 1 152536650 C G G 0.00 1.61 

rs6419573 2 103027103 T T T 0.31 1.11 

rs6473227 8 81285892 C A C 0.47 0.93 

rs6602364 10 6038853 G G G 0.49 1.08 

rs6720763 2 167992286 T C C 0.32 1.29 

rs7110818 11 76292575 C T T 0.39 1.28 

rs7127307 11 128187383 T C C 0.49 0.94 

rs7130588 11 76270683 A G G 0.22 1.29 

rs72702813 1 152600854 G T T 0.01 2.06 

rs7512552 1 150265704 T T T 0.27 0.93 

rs759382 2 103094213 G G G 0.31 1.22 

rs848 5 131996500 A A A 0.37 1.40 

rs909341 20 62328742 C T T 0.26 1.32 

Regarding the disease associations beyond AD - we did not have room in this Reviewer Response to 
include them in the table presented above, but we did include them in the updated Supplemental Table 
1. The additional associated phenotypes included expected phenotypes such as asthma.  

The following sentence has been added to the Methods on line 440: 

“Supplemental Table 1 presents the twenty-nine AD risk loci that reached genome-wide significance at 
the beginning of this study; this supplemental table includes information regarding the major, minor, 
reference, non-reference, and risk alleles as well as allele frequencies, disease odds ratios, and 
additional associated diseases and phenotypes.”  

To assess phenotypes related to the entire set of AD risk vairants, we also performed a PheWAS for 
the AD risk alleles using a database of patients with both genome-wide association data and electronic 



medical records. This analysis of statistical significance (the red line marks the level of significance to 
overcome the multiple testing correction) identified shared genetic risk with asthma, eosinophilic 
esophagitis, and atopic dermatitis (AD). The association with AD is a positive control for the analysis. 
The associations with the other atopic diseases are not surprising due to extensive research around 
the atopic march. Unfortunately, we are unable to include this analysis in the manuscript due to 
authorship requirements for the dataset used for the analysis. If the Reviewer determines that this 
analysis is needed, we would be happy to work through the process with the eMERGE network, but 
that could take multiple months.  
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18.	The	author	should	make	an	effort	in	the	discussion,	to	connect	how	their	data	will	impact	the	“atopic	
march”	mentioned	in	the	introduction.	

We have added the following section to the Discussion in lines 411-416. 

“This study is important for the understanding of atopic dermatitis because a mechanistic understanding 
of the etiology of the disease could enable efficacious predictive tools and preventative therapeutics. 
Because atopic dermatitis is the first diagnosis of most patients who find themselves on the atopic 
march from AD to food allergy to asthma to allergic rhinitis, strategies to prevent and halt AD have the 
potential to prevent other atopic diseases.”  

	
19.	There	is	an	error	in	the	readme	file	tab	in	Table	12	that	should	be	changed.	See	line	15	of	the	table.	
S_read	mislabeled	as	weak	reads.	

This has been fixed. 
 
 


