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Supplementary note 1. The geometric property of hyperbolic lattices. In this section, we introduce 

some basic properties of the hyperbolic lattice embedded in the Poincaré disk model and show the general 

method to produce the finite hyperbolic lattice {6, 4} considered in our work. The Poincaré disk 𝔻 =

{𝑧 ∈ ℂ, |𝑧| < 1} is defined in a 2D complex plane (z=x+iy) with the limitation of |z|<1. The hyperbolic 

metric used in the model is defined by 

𝑑𝑠2 = (2𝜅)2 𝑑𝑥2+𝑑𝑦2

(1−|𝑧|2)2.                            (1) 

Here, κ is the curvature radius, which determines the value of constant negative curvature by K = −κ−2. 

In addition, the hyperbolic distance between two points z and 𝑧′ in the Poincaré disk is expressed as: 

𝑑(𝑧, 𝑧′) = 𝜅 arcosh(1 +
2|𝑧−𝑧′|2

(1−|𝑧|2)(1−|𝑧′|2)
),                   (2) 



which reduces to |z-z’| for |z|, |z’|≪ 1. This is because the hyperbolic metric becomes flat for |z|≪ 1. The 

boundary of the Poincaré disk is infinitely far from the interior point, and the corresponding geodesics 

are circular arcs perpendicular to the boundary. The isometries of the Poincaré disk are the maps that 

preserve the hyperbolic distance, which are fractional linear transformations expressed as: 

𝑧 ↦ 𝑀𝑧 ≔
𝑎𝑧+𝑏

𝑏∗𝑧+𝑎∗ ,   𝑎, 𝑏 ∈ ℂ,   |𝑎|2 − |𝑏|2 = 1                    (3) 

The map M could be written in the matrix form by 

𝑀 = (
𝑎 𝑏
𝑏∗ 𝑎∗),                               (4) 

which corresponds to the non-abelian group PSU(1,1). 

For the hyperbolic lattice model, the continuum space becomes discrete. In this case, the isometries 

of Poincaré disks embedded with hyperbolic lattices should be the discrete subgroup of PSU(1,1). The 

orientation-preserving (detM=+1) full space group of the hyperbolic lattice {p, q} is called the proper 

triangle group 

∆+(𝑝, 𝑞, 2) =< 𝐴, 𝐵|𝐴𝑝 = 𝐵𝑞 = (𝐴𝐵)2 = 𝐼 >                (5) 

with group generators A and B being expressed as 

𝐴 = (𝑒𝑖𝛼/2 0
0 𝑒−𝑖𝛼/2

) 

𝐵 =
1

1 − 𝑟0
2 (

𝑒
𝑖𝛽
2 − 𝑟0

2𝑒−
𝑖𝛽
2 𝑟0(1 − 𝑒𝑖𝛽)𝑒

𝑖(𝛼−𝛽)
2

𝑟0(1 − 𝑒−𝑖𝛽)𝑒−
𝑖(𝛼−𝛽)

2 𝑒−
𝑖𝛽
2 − 𝑟0

2𝑒
𝑖𝛽
2

) 

𝑟0 = √
cos (

𝜋

𝑝
+

𝜋

𝑞
)

cos (
𝜋

𝑝
−

𝜋

𝑞
)
, 𝛼 =

2𝜋

𝑝
, 𝛽 =

2𝜋

𝑞
                          (6) 

Here, generator A corresponds to a rotation around the center of a face, and B corresponds to a rotation 

around an adjacent vertex in the hyperbolic lattice. It is worth noting that the proper triangle group 

defined in the hyperbolic lattice possesses a similar role as space groups in the Euclidean lattice model. 

Based on two generators of ∆+(𝑝, 𝑞, 2) , the coordinates of all lattice sites belonging to the {6,4} 

hyperbolic lattice could be easily obtained. Specifically, we start with a single 6-gon and iteratively apply 

products of generators A and B on all produced coordinates based on the fractional linear transformations 

in Eq. (6). Profiles of lattice sites with different iterations (1, 2, 3 and 4) are shown in Supplementary 

Figure 1, where the site distribution is in the form of the {6,4} hyperbolic lattice. 



 

Supplementary Figure 1. Profiles of lattice sites with different iterations. Profiles of hyperbolic 

lattice {6, 4} with one iteration in a, two iterations in b, three iterations in c and four iterations in d. 

 

Supplementary note 2. Numerical results of the real-space Chern number with different lattice 

sizes and summation regions. Previous investigations have shown that the calculated value of real-

space Chern number is dependent on the position and size of the chosen summation regions I, II and III. 

Generally, the real space Chern number does not converge well if the lattice site in the summation region 

is too close to the boundary of the system (relative to the localization length of edge modes) or the 

summation region is too small to contain sufficient numbers of sites. To clarify the size influence on the 

real-space Chern number in the hyperbolic Haldane model, here, we consider a larger hyperbolic lattice 

with L=5 and calculate the real space Chern number with different numbers of lattice sites in the 

summation region. Supplementary Figures 2a-2c present the results with the site number in each 

summation region (I, II, III) equal to 20, 30, and 108. Moreover, the eigenspectrum of the corresponding 

hyperbolic lattice is also calculated, as shown in Supplementary Figure 2d, where the color bar quantifies 

the localization degree of associated eigenmodes on the boundary. We can see that as the number of 

lattice sites in each summation region increases, the calculated nontrivial Chern number gradually 

approach to -1.  

 

Supplementary Figure 2. The dependency of real space Chern number with the number of lattice 

sites. a-c. Calculated real-space Chern numbers with the site number in each summation region (A, B, 

C) equal to 20, 30, and 108. d. The eigenspectrum of the corresponding hyperbolic lattice with L=5.  



 

Supplementary note 3. Coupled model equations of the hyperbolic Chern lattice. In this part, we 

construct the general coupled-mode equations in the hyperbolic Haldane model with an input port to 

characterize the evolution of unidirectional edge states in the hyperbolic Chern insulator. The wave 

function in the hyperbolic Chern insulator is expanded as: 

Ψ(𝑡) = ∑ 𝑐𝑖(𝑡)𝑖                                 (7) 

where 𝑐𝑖(𝑡) is the probability amplitude of the wave function at site i. In this case, the coupled mode 

equation could be expressed as: 

𝑑𝑐𝑖(𝑡)

𝑑𝑡
= −𝑖𝛾 ∑ 𝑐𝑗(𝑡)

<𝑖,𝑗>
− 𝑖λ ∑ λ𝑒𝑖𝜑𝑐𝑗(𝑡)

<<𝑖,𝑗>>
+ 𝜒ψin(t)           (8) 

where 𝜒 is the coupling rate of the input channel and ψin(t) is the input signal. In all calculations, we 

set χ = 0.2. In addition, the input wave packet at the lattice site (i=21) is given by 𝜓𝑖𝑛(𝑡) = 𝑒𝑥𝑝(−(𝑡 −

𝑡0)2/64)𝑠𝑖𝑛(𝜀𝑐𝑡)𝛿21,𝑖 for simulations in Figs. 1f and 1g of the main text.  

 

Supplementary note 4. Numerical results of the robust propagation of wave packets in hyperbolic 

Chern insulators with different sizes. In this part, we give numerical results of the robust propagation 

of wave packets in hyperbolic Chern insulators with L=3 and L=5. Supplementary Figure 3a displays the 

time-dependent spatial distributions of |𝛙i(t)| in the hyperbolic Chern lattice with L=3 at t=17.8, 

t=44.7 and t=74.5. Positions of the excitation site and defects are marked by the green arrow and black 

triangles. We can see that even though the hyperbolic Chern insulator contains only three layers, the 

injected wave packet can still unidirectionally move along the edge and pass through defects without 

backscattering. Similarly, numerical results for the hyperbolic lattice with L=5 are presented in 

Supplementary Figure S3b. We note that similar phenomena with robust wave propagations on the 

boundary are observed. 



 

Supplementary Figure 3. Numerical results of wave propagations in the hyperbolic lattice with 

L=5. a. The time-dependent spatial distributions of |𝛗i(t)| at t=17.8, t=44.7 and t=74.5 for the system 

with L=3. b. The time-dependent spatial distributions of |𝛗i(t)| at t=19.8, t=338 and t=500 for the 

system with L=5. 

 

Supplementary note 5. Numerical results of the trivial hyperbolic lattice model. In this part, we 

calculate the eigen-spectra, the corresponding real space Chern numbers, and the dynamics of injected 

wave packet for systems without NNN couplings λ = 0 (in Supplementary Figure 4), and with real-valued 

NNN couplings λ = 0.2, φ = 0 (in Supplementary Figure 5). We can see that the real-space Chern number 

is trivial around the zero-energy, and the one-way propagation of edge state is also absence. 

 

Supplementary Figure 4. Numerical results of the hyperbolic lattice without NNN couplings. a-c. 



The calculated eigen-spectrum, the real space Chern numbers, and the dynamics of injected wave packet 

for systems with the NNN coupling being λ = 0. The color bar corresponds to the localization degree at 

the boundary. 

 

Supplementary Figure 5. Numerical results of the hyperbolic lattice with real-valued NNN 

couplings. a-c. The calculated eigen-spectrum, the real space Chern numbers, and the dynamics of 

injected wave packet for systems with parameters being λ = 0.2 and φ = 0. The color bar corresponds to 

the localization degree at the boundary. 

 

Supplementary note 6. Details for the derivation of circuit eigenequations and the correspondence 

to the Hyperbolic Chern insulator. In this section, we give a detailed derivation of the circuit 

eigenequation and the correspondence between the designed hyperbolic Chern circuit and the hyperbolic 

Chern insulator. Here, each lattice site possesses three circuit nodes. In this case, the voltage and current 

at site i should be written as 𝑉𝑖 = [𝑉𝑖,1, 𝑉𝑖,2, 𝑉𝑖,3]𝑇 and𝐼𝑖 = [𝐼𝑖,1, 𝐼𝑖,2, 𝐼𝑖,3]𝑇, respectively, and the voltage 

on circuit node i is in the form of 𝑉𝑖𝑒
𝑖𝜔𝑡. 

First, we focus on three nodes (corresponding to a single lattice site) located in the bulk region of 

the hyperbolic Chern circuit. Carrying out Kirchhoff’s law on three circuit nodes at i, we obtain the 

following equation: 

[

𝐼𝑖,1

𝐼𝑖,2

𝐼𝑖,3

] = 𝑖𝜔−1(𝜔2𝐶 [
2 −1 −1

−1 2 −1
−1 −1 2

] [

𝑉𝑖,1

𝑉𝑖,2

𝑉𝑖,3

] + ∑ 𝜔2𝐶𝛾<𝑖,𝑗>
[

𝑉𝑖,1 − 𝑉𝑗,1

𝑉𝑖,2 − 𝑉𝑗,2

𝑉𝑖,3 − 𝑉𝑗,3

] +           

∑ 𝜔2𝐶𝜆≪𝑖,𝑗≫ 𝑤𝑖𝑡ℎ 𝜑>0
[

𝑉𝑖,1 − 𝑉𝑗,2

𝑉𝑖,2 − 𝑉𝑗,3

𝑉𝑖,3 − 𝑉𝑗,1

] + ∑ 𝜔2𝐶𝜆≪𝑖,𝑗≫ 𝑤𝑖𝑡ℎ 𝜑<0
[

𝑉𝑖,1 − 𝑉𝑗,3

𝑉𝑖,2 − 𝑉𝑗,1

𝑉𝑖,3 − 𝑉𝑗,2

] −
1

𝐿𝑔
[

𝑉𝑖,1

𝑉𝑖,2

𝑉𝑖,3

])     (9) 

where 𝐶𝛾  and 𝐶𝜆  are capacitances linking nodes at i to the NN and NNN nodes at j. 𝐶  is the 



capacitance used for connecting circuit nodes belonging to the same site. 𝐿𝑔 is the inductor linking the 

circuit nodes to the ground. 

We assume that there is no external source, so that the current flowing out of the node is zero. In 

this case, Supplementary Eq. (9) becomes: 

−
1

𝜔2𝐿𝑔

[

𝑉𝑖,1

𝑉𝑖,2

𝑉𝑖,3

] = 𝐶 [
2 −1 −1

−1 2 −1
−1 −1 2

] [

𝑉𝑖,1

𝑉𝑖,2

𝑉𝑖,3

] + (4𝐶𝛾 + 8𝐶𝜆) [

𝑉𝑖,1

𝑉𝑖,2

𝑉𝑖,3

] − ∑ 𝐶𝛾

<𝑖,𝑗>

[

𝑉𝑖,1

𝑉𝑖,2

𝑉𝑖,3

] 

− ∑ 𝐶𝜆≪𝑖,𝑗≫ 𝑤𝑖𝑡ℎ 𝜑>0 [

𝑉𝑗,2

𝑉𝑗,3

𝑉𝑗,1

] − ∑ 𝐶𝜆≪𝑖,𝑗≫ 𝑤𝑖𝑡ℎ 𝜑<0 [

𝑉𝑗,3

𝑉𝑗,1

𝑉𝑗,2

])             (10) 

Performing the diagonalization of Supplementary Eq. (10) with a unitary transformation: 

𝐹 =
1

√3
[
1 1 1
1 𝑒𝑖2𝜋/3 𝑒𝑖4𝜋/3

1 𝑒𝑖4𝜋/3 𝑒𝑖8𝜋/3
].                      (11) 

Supplementary Eq. (10) becomes: 

−
1

𝜔2𝐿𝑔
[

𝑉𝑖,0

𝑉𝑖,↑

𝑉𝑖,↓

] = 𝐶 [
0 0 0
0 3 0
0 0 3

] [

𝑉𝑖,0

𝑉𝑖,↑

𝑉𝑖,↓

] + (4𝐶𝛾 + 8𝐶𝜆) [

𝑉𝑖,0

𝑉𝑖,↑

𝑉𝑖,↓

] − ∑ 𝐶𝛾<𝑖,𝑗>
[

𝑉𝑖,0

𝑉𝑖,↑

𝑉𝑖,↓

] +         

   (− ∑ 𝐶𝜆≪𝑖,𝑗≫ 𝑤𝑖𝑡ℎ 𝜑>0 [

1 0 0

0 𝑒
𝑖2𝜋

3 0

0 0 𝑒−
𝑖2𝜋

3

] − ∑ 𝐶𝜆≪𝑖,𝑗≫ 𝑤𝑖𝑡ℎ 𝜑<0 [

1 0 0

0 𝑒−
𝑖2𝜋

3 0

0 0 𝑒
𝑖2𝜋

3

]) [

𝑉𝑖,0

𝑉𝑖,↑

𝑉𝑖,↓

]   (12) 

The new basis is 𝑉(0,↑,↓),𝑖 =F[𝑉𝑖,1, 𝑉𝑖,2, 𝑉𝑖,3]𝑇 , which are three decoupled terms and two frequency-

dependent terms 𝑉(↑,↓),𝑖 acting as a pair of pseudospins 𝑉↑𝑖 = 𝑉𝑖,1 + 𝑉𝑖,2𝑒𝑖2𝜋/3 + 𝑉𝑖,3𝑒−𝑖2𝜋/3 and 𝑉↑𝑖 =

𝑉𝑖,1 + 𝑉𝑖,2𝑒−𝑖2𝜋/3 + 𝑉𝑖,3𝑒𝑖2𝜋/3. Thus, Supplementary Eq. (12) on the basis of two pseudospins can be 

expressed as: 

1

𝜔2𝐿𝐶
𝑉↑,𝑖 − 3 − (4𝐶𝛾 + 8𝐶𝜆)/𝑐 = − ∑ 𝐶𝛾<𝑖,𝑗>

𝑉↑,𝑖 − ∑ 𝐶𝜆≪𝑖,𝑗≫ 𝑒±
𝑖2𝜋

3 𝑉𝑖,↑.        (13) 

1

𝜔2𝐿𝐶
𝑉↓,𝑖 − 3 − (4𝐶𝛾 + 8𝐶𝜆)/𝑐 = − ∑ 𝐶𝛾<𝑖,𝑗>

𝑉𝑖,↓ − ∑ 𝐶𝜆≪𝑖,𝑗≫ 𝑒±
𝑖2𝜋

3 𝑉𝑖,↓.        (14) 

In this case, we provide the following identification of tight-binding parameters in terms of circuit 

elements: 

𝛾 =
𝐶𝛾

𝐶
, 𝜆 =

𝐶𝜆

𝐶
, 𝜑 =

2𝜋

3
, 𝜀 =

𝑓0
2

𝑓2 − 3 −
4𝐶𝛾

𝐶
−

8𝐶𝜆

𝐶
,  𝑓0 =

1

2𝜋√𝐶𝐿
,            (15) 

Combing Supplementary Eqs. (13-15), we note that the circuit eigenequation is consistent with the 

eigenequation of hyperbolic Chern insulators. 

 

Supplementary note 7. The influence of lossy effects on impedance responses of circuit networks. 

In this part, we numerically investigated the influence of lossy effects on the impedance responses of 

hyperbolic circuit networks. To quantitatively estimate the loss of our circuit samples, we calculate the 

impedance responses (at bulk and edge nodes) of the designed hyperbolic Chern circuit with the effective 



series resistances of inductance being 20 𝑚Ω, 50 𝑚Ω, 100 𝑚Ω, and 150 𝑚Ω, as shown in Supplementary 

Figures 6a-6d. Other circuit parameters are identical to that used in Fig. 2c of main text. It is shown that 

with the series resistances of inductance being increased, the impedance peak is broadening.  

Similarly, we also calculate the impedance at bulk and edge nodes in the deformed hyperbolic circuit 

sustaining higher-order zero modes, where the effective series resistances of inductance are set as 20 𝑚Ω, 

50 𝑚Ω, 100 𝑚Ω, and 150 𝑚Ω, as shown in Supplementary Figures 7a-7d. Other circuit parameters are 

identical to that used in Fig. 4c of main text. The loss induced broadening of impedance peaks also 

appears. 

 

Supplementary Figure 6. Calculated impedance responses of the hyperbolic Chern circuit with 

different effective series resistances of inductance. a-d. The simulated impedance responses (at bulk 

and edge nodes) of the designed hyperbolic Chern circuit with the effective series resistances of 

inductance being 20  𝑚Ω, 50 𝑚Ω, 100 𝑚Ω, and 150 𝑚Ω, respectively. Other circuit parameters are 

identical to that used in Fig. 2c. 

 



 

Supplementary Figure 7. Calculated impedance responses of the higher-order hyperbolic circuits 

with different effective series resistances of inductance. a-d. The simulated impedance responses of 

the designed hyperbolic circuit sustaining higher-order zero modes with the effective series resistances 

of inductance being 20 𝑚Ω, 50 𝑚Ω, 100 𝑚Ω, and 150 𝑚Ω, respectively. The red, blue and black lines 

correspond to results of corner, edge and bulk nodes. Other circuit parameters are identical to that used 

in Fig. 4c. 

 

Supplementary note 8. Simulation results of the propagation for a voltage packet in designed 

hyperbolic Chern circuits. In this part, we calculate the voltage dynamics in the designed hyperbolic 

Chern circuit with L=3, where values of circuit elements are chosen as 𝐶=1 nF, 𝐶𝛾=1 nF, 𝐶𝜆=0.2 nF, 

𝐿𝑔=1 uH, and CP=5 nF. Three boundary circuit nodes are simultaneously excited as [Vi,1, Vi,2, Vi,3] =

V(t)[1, exp(i
2π

3
), exp(−i

2π

3
)]  with V(t)= exp(−(t − t0)2/𝑡𝑑

2)sin(2πfct)  (t0=70 µs, td=28 µs and 

fc=1.706 MHz). Supplementary Figure 8a presents the calculated evolution of pseudospin |𝑉↓,𝑖(𝑡)| in 

the hyperbolic Chern circuit. Distributions of the voltage pseudospin at t=67us, t=94us, and t=120us are 

plotted in Supplementary Figures 8b-8d. It is shown that the pseudospin |𝑉↓,𝑖(𝑡)|  propagates 

unidirectionally along the edge of the hyperbolic circuit, and no significant backscattering appears when 

the voltage signal passes through the defect. Furthermore, in Supplementary Figure 8e, we present time 

tracks of |𝑉↓, 𝑖(𝑡)|2 in the defect-free circuit at two nodes, which are counterclockwise and clockwise to 

the excitation point with equal distances, respectively. It is clearly shown that only the counterclockwise 

circuit node possesses a significant peak in the time-domain, indicating that the voltage packet propagates 

counterclockwise along the edge of hyperbolic Chern circuit. Then, we calculate the voltage signal at 



these two nodes with the existence of a defect, as shown in Supplementary Figure 8f. It is shown that the 

defect nearly has no influence on the voltage signals at these two nodes, manifesting the robust one-way 

propagation of edge states. 

 

Supplementary Figure 8. Simulation results of the propagation for a voltage packet in designed 

hyperbolic Chern circuits. a. The calculated evolution of pseudospin |𝑉↓,𝑖(𝑡)| in the hyperbolic Chern 

circuit. b-d. Distributions of the voltage pseudospin at t=67us, t=94us, and t=120us. The calculated time 

tracks of the voltage pseudospin at circuit nodes along the counterclockwise and clockwise directions 

with respect to the excitation node without defects for e and with defects for f. 

 

Supplementary note 9. Topological properties of higher-order zero modes in the deformed 

hyperbolic lattice. In this part, we demonstrate the topological properties of our proposed hyperbolic 

zero-energy corner states from three aspects. 

Firstly, we focus on the topological phase transition induced by the unbalanced site coupling in the 

deformed hyperbolic lattice. As shown in Supplementary Figures 9a-9c, we plot the calculated eigen-



spectra of the deformed hyperbolic lattice with the ratio of γ1/γ2 being 10, 1 and 0.1, respectively. The 

color bar corresponds to the participation ratio (PR) of each eigen-mode. We set L=6, where the influence 

of finite size effect could be neglected. It is clearly shown that when the coupling strength in the 

outermost layer is the larger one (γ1/γ2=10), the edge states are gapped around the zero energy, and there 

is no midgap corner state. In such a case, this bandgap is a trivial gap. The topological phase transition 

could appear with closing and reopening of the bandgap. It is shown that the gap is closing (around the 

zero-energy) with balanced values of γ1 and γ2 (γ1/γ2=1), corresponding to the original {6,4} hyperbolic 

lattice. By further decreasing the ratio to the case with a smaller coupling strength in the outermost layer 

(γ1/γ2=0.1), the gap of edge states is reopened, and the midgap corner modes appear. Such a gap closing 

and reopening phenomenon associated with the appearance of midgap corner states is a convenient 

evidence for the topological phase transition. 

 

Supplementary Figure 9. The calculated eigen-spectra of the deformed hyperbolic lattice with 

different ratios of γ1/γ2. a-c. The calculated eigen-spectra of the deformed hyperbolic lattice with the 

ratio between γ1 and γ2 being 10, 1 and 0.1, respectively. Here, we set L=6. 

 

Next, we show that the topological phase transition appearing in the deformed hyperbolic lattice is 

similar to the Euclidean counterpart of the C6-symmetric higher-order topological insulator. To clearly 

prove this similarity, we consider the C6-symmetric higher-order topological insulator, as shown in 

Supplementary Figure 10a, where the different values of intra-cell (γ1) and inter-cell (γ2) couplings exist. 

In the following calculations, the finite C6-symmetric {6,3} lattice containing 37 units is considered. As 

shown in Supplementary Figures 10b-10d, we calculate the eigen-spectra of the system with the ratio 

between γ1 and γ2 being 10, 1 and 0.1, respectively. We can see that, by tuning the ratio of intra- and inter-

cell couplings, the topological phase transition accompanied with the closing and reopening of bandgap 

happens. And, the midgap corner state could appear in the non-trivial bandgap. This phenomenon is 

identical to the above discussed hyperbolic topological phase transition. In this case, due to the same 



topological phase transition and identical symmetries (the C6 rotation, the time reversal, and chiral 

symmetries), we deduce that midgap higher-order zero modes in deformed hyperbolic lattices possess 

similar characteristics to the filling anomaly induced 0D corner states in C6-symmetric higher-order 

topological crystalline insulators. 

 

Supplementary Figure 10. The calculated eigen-spectra of the C6-symmetric Euclidean lattice with 

different ratios of γ1/γ2. a. The schematic diagram of the C6-symmetric higher-order topological 

insulator, where the intra-cell (γ1) and inter-cell (γ2) couplings exist. b-d. The eigen-spectra of the C6-

symmetric lattice with the ratio between γ1 and γ2 being 10, 1 and 0.1, respectively. Here, in the 

calculation, the finite C6-symmetric lattice contains 37 units.  

 

Finally, to further differentiate topological corner states from edge states or trivial corner states, we 

investigate the robustness of the midgap zero modes in the deformed hyperbolic lattice. Here, we 

introduce a little disorder to the onsite potential [-W, W] at all bulk sites and edge sites, and keep the 

onsite potential of corner sites unchanged. Other parameters are set as γ1=1, γ2=10 and L=6. 

Supplementary Figures 11a and 11b plot the calculated eigen-spectra with W being 0.1 and 0.2, 

respectively. The colormap corresponds to the PR. We can see that the random onsite potential could 

alter the eigen-energies and localizations of trivial edge states. While, the midgap zero modes are always 

fixed, and the corresponding mode distribution, as shown in Supplementary Figure 11c with W=0.2, also 

keeps the same. These numerical results manifest the robustness of hyperbolic zero modes. Because, 

disorders should break the enhanced energy degeneracies and interference effects in the trivial hyperbolic 

lattice, which makes the robust property cannot exist in the interference-induced trivial edge and corner 

states in hyperbolic lattices sustaining flat bands.  



 

Supplementary Figure 11. The calculated eigen-spectra with different disorder strengths. a and b. 

The calculated eigen-spectra with disorder strength being W=0.1 and W=0.2, respectively. Other 

parameters are set as γ1=1, γ2=10 and L=6. c. The zero-mode distribution with W=0.2. 

 

From above discussions on the topological phase transitions and robustness of zero-energy modes, 

we think that these hyperbolic zero-energy modes possess the same properties of their Euclidean 

counterparts, which results from the filling anomaly in higher-order topological crystalline insulators 

protected by the C6 symmetry.  

 

Supplementary note 10. Details for the derivation of circuit eigenequations and the correspondence 

to the deformed hyperbolic lattice with higher-order zero modes. In this part, we give a detailed 

derivation of the eigenequation for the higher-order hyperbolic circuit and show the correspondence 

between the designed circuit lattice and the deformed hyperbolic lattice. Each bulk circuit node is 

connected with four adjacent nodes, where two of them are connected by 𝐶1 and others are connected 

by 𝐶2. Moreover, each circuit node is grounded by an inductor (𝐿𝑔𝑐). Carrying out Kirchhoff’s law on 

the bulk circuit node, we obtain the following equation: 

 𝐼𝑖 = 𝑖𝜔−1[−
1

𝐿𝑔𝑐
𝑉𝑖 + ∑ 𝜔2𝐶1(𝑉𝑖 − 𝑉𝑗)𝑗 + ∑ 𝜔2𝐶2(𝑉𝑖 − 𝑉𝑗′)𝑗′ ]           (16) 

where Ii and Vi are the net current and voltage at circuit node i, respectively, and j and j’ mark circuit 

nodes that are connected with node i with 𝐶1 and 𝐶2, respectively. 

We assume that there is no external source, so that the current flowing out of the node is zero. In 

this case, the Supplementary Eq. (16) becomes: 

(
𝑓0𝑐

2

𝑓2 −2𝐶1/𝐶2 − 2)𝑉𝑖 = − ∑ (𝐶1/𝐶2)𝑉𝑗𝑗 − ∑ 𝑉𝑗′𝑗′                 (17) 

with 𝑓0𝑐 = 1/2𝜋√𝐶2𝐿𝑔𝑐. 

For the edge node, there are only two NN nodes coupled with edge nodes through 𝐶1. In this case, 



we should additionally add two grounding capacitors 𝐶2 to ensure the same resonance frequency as 

bulk nodes. In this case, we obtain the following circuit equation: 

 𝐼𝑖 = 𝑖𝜔−1[−
1

𝐿𝑔𝑐
𝑉𝑖 + ∑ 𝜔2𝐶1(𝑉𝑖 − 𝑉𝑗) + 2𝜔2

𝑗 𝐶2𝑉𝑖].              (18) 

Assuming there is no external source, the Supplementary Eq. (18) becomes: 

(
𝑓0𝑐

2

𝑓2 −2𝐶1/𝐶2 − 2)𝑉𝑖 = − ∑ (𝐶1/𝐶2)𝑉𝑗𝑗                     (19) 

Based on the circuit eigenequation of both bulk and edge nodes, the tight-binding parameters in terms of 

circuit elements should be expressed as: 

γ1 = (𝐶1/𝐶2),   γ2 = −1, 𝜀 =
𝑓0𝑐

2

𝑓2 − 2 − 2𝐶1/C2,               (20) 

In this case, we note that the circuit eigenequation is consistent with the eigenequation of deformed 

hyperbolic lattices. 


