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Peer Review File



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

In this manuscript, Zhang et al. investigated topological states in hyperbolic lattices using 

circuit platforms. The authors explored topological states in the Haldane model and zero 

modes in deformed lattices. For both phenomena, the authors conducted in-depth 

theoretical (real-space Chern number and fractal-like grouping), numerical (tight-binding, 

coupled mode, and circuit eigenequation), and experimental (circuit network) 

demonstration. The analysis results of the manuscript were well-developed and supported 

one another. 

The critical impact of this manuscript is on the first experimental demonstration of 

topological hyperbolic lattices, in comparison with the first experimental work on 

hyperbolic lattices [ref. 7] and the first theoretical work on topological hyperbolic lattices 

[ref. 32]. When considering the increasing interest in exploiting non-Euclidean geometry to 

wave phenomena, the manuscript handles a timely issue. Furthermore, the studies of the 

manuscript experimentally verified intriguing features of topological states (edge 

dominance) and zero modes (enhanced degeneracy) in hyperbolic geometry compared with 

Euclidean ones for the first time, providing the fertile evidences to their claim. Therefore, 

the manuscript will provide a critical contribution in photonics, acoustics, electronic 

circuits, and related fields in terms of accessing non-Euclidean degrees of freedom and their 

interactions with topological phenomena. 

However, for the publication with significant impact on the related research fields, the 

current manuscript should be revised thoroughly due to some critical issues on the flow of 

the manuscript, the review of previous works, and insufficient analysis and details of their 

results (see below for details). Therefore, the reviewer suggests the major revision of the 

manuscript. 

1. In the manuscript, Figs. 1 and 2 treat topological states in topological hyperbolic lattices 

developed from the Haldane model, while Figs. 3 and 4 handle zero modes originating from 

deformed hyperbolic lattices (weaker coupling in the outer region of the system). While the 

former and latter discussion is nearly disconnected, the demonstration of the topological 

nature of zero modes is absent in the manuscript, though some phenomenological 

description of the similarity with corner states in higher-order topological crystalline 

insulators was included. In order to coherently describe the authors’ work with a viewpoint 

based on topological states, more efforts on demonstrating topological properties of the 

observed corner states should be included, for example, differentiating topological corner 

states from edge states or trivial corner states in hyperbolic lattices. 

2. In a similar context, as described in [ref. 7] or Supplementary Materials of [ref. 32], 

hyperbolic lattices inherently lead to enhanced degeneracies, which may lead to trivial edge 

or corner states due to the interference between the degenerate eigenmodes of the same 

energy (or flat band systems). The verification of topological natures of the zero modes in 

Figs. 3 and 4 is thus essential to support the authors’ main claim. 

3. While the first theoretical discovery on topological states using the non-Euclidean 

generalization of the Landau gauge was shown in [ref. 32], the introduction part of the 

manuscript does not fairly review this previous work. More detailed review and comparison 

with [ref. 32] and the following work [arXiv:2111.05779] are necessary. For example, the 

Haldane model allows for more direct (or Euclidean-like) assignment of the gauge field and 

Berry curvature (in contrast to the tree-like design of the Landau gauge in [ref. 32]) but is 

difficult to be realized in high-frequency regimes such as photonics due to the next nearest 

neighbor couplings. 

4. The authors stated that the given finite hyperbolic lattice is topologically equivalent with 

successive quasi-concentric rings. The reviewer has difficulty in understanding this 

statement because in terms of the concentric rings, the hyperbolic lattice is apparently 

composed of disconnected lines with inter-connection between rings, which should be 



topologically different from simple concentric rings. More comprehensible descriptions 

about “quasi-“concentric rings are thus required. 

5. In understanding the results in Fig. 2, the theoretical comparisons with trivial cases of (i) 

NN coupling (λ = 0) and (ii) NN & NNN couplings (φ = 0 with reciprocal or non-reciprocal 

coupling) are certainly helpful. Because the geometry of hyperbolic lattices has edge-

dominant features, there usually exist trivial edge states, as demonstrated in [ref. 32]. 

Therefore, the comparison with trivial cases, for example, by using the calculation of the 

real-space Chern number, will enhance the novelty and impact of the authors’ findings. 

6. Several notations are confusing. For example, the letter φ was employed to express 

different physical quantities: the eigenmode φ(ε), temporal field evolution (φ(t), which is 

the superposition of the eigenmode), and gauge field φ. All the quantities should be 

distinguished. 

7. The definition of P_d for the on-site energy and the value of original on-site energy are 

missing. 

8. The input wave packet is not related well to the band of hyperbolic lattices. The authors 

may depict the gaussian bandwidth of the input signal in Fig. 2d. 

9. Although the authors stated that the edge confinement (0.9) of one-way topological 

states is much larger than that of the Euclidean counterpart, the value for the Euclidean one 

is absent. 

10. The compactness may not be the advantage of hyperbolic lattices because the 

underlying physics of hyperbolic lattices requires more complex and intense coupling than 

the Euclidean one. The edge confinement requires such complex geometry despite the 

suppression of the field inside the bulk region. 

11. For general readers in topological wave mechanics, it may be helpful to include the 

discussion on the meaning of the impedance peaks, which corresponds to the transmission 

peaks in topological photonics or acoustics. 

12. While the authors stated that the broadening in experimental results originates from 

the loss of elements, the theoretical results, including the loss in each element, may be 

included in Supplementary Materials for the completeness of the manuscript. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors propose theoretically and realize experimentally an analog of the well-known 

Haldane model of a Chern insulator on a hyperbolic lattice. By numerical diagonalization in 

a disk geometry, the authors show the energy spectrum contains a spectral region near 

zero energy where eigenstates have dominant support on the sample boundary. The 

authors then calculate an energy-dependent real-space Chern number, and show that this 

Chern number exhibits a quantized plateau in roughly the same region where boundary 

states exist. A wave packet injected near the sample edge is shown to propagate 

unidirectionally and in a manner undisturbed by defects on the boundary. 

 

The theoretical predictions are then tested experimentally on an electric circuit network. 

The physical system exhibits lossy (resistive) behavior that is not present in the theoretical 

model, but the agreement between theory and experiment is altogether good 

notwithstanding. In particular, the measurements demonstrate the key features expected 

of a Chern insulator: localized edge states within a bulk gap, chiral edge propagation, and 

protection against backscattering. Finally, the authors also argue that with suitable 

modifications, the model Hamiltonian and experimental system can support corner modes 

indicative of higher-order topology. 

 

In my opinion, this is an important work that produces two key advances: a theoretical 



generalization of the Haldane model to hyperbolic space, and its experimental simulation 

using classical circuit networks. The connection between the tight-binding model and the 

classical circuit equations is well explained, and the experimental demonstration compelling 

(within the unavoidable limitation of small system sizes). The relevant literature is 

appropriately cited, and this work will significantly advance the burgeoning field of exotic 

“hyperbolic matter”. (The additional discussion of higher-order topology is somewhat less 

convincing, in my opinion, but I discuss this further below.) 

 

Before I can recommend publication, I would like the authors to address the following 

issues/questions. 

 

- Although the evidence from the real-space Chern number is compelling, one would like to 

further check that the presence of edge states is really due to the topology of the model, as 

opposed to the unusual boundary/bulk ratio in the Poincaré disk, which is purely a 

geometrical effect. To that end, could the authors also present theoretical results in the 

“trivial insulator” phase, e.g., for a value of the NNN phase φ for which the real-space 

Chern number is zero? Ideally, one would like to see that in such a trivial insulator, there 

are no edge states near zero energy, and that a wave packet injected near the boundary 

spreads out into the bulk instead of propagating unidirectionally along the boundary. In my 

opinion, such a comparison between trivial and topological regimes would significantly 

strengthen the authors’ claims. 

- Where Fig. 2b-c are discussed in the text, the discussion seems to imply that the 

measured impedance spectrum is simply related to the local density of states (LDOS) of the 

corresponding quantum tight-binding model. Is there such a relation? If so, it would be nice 

to have a mention and/or derivation of this (e.g. in the supplementary material). 

- The part of the paper I find somewhat less clear/compelling is the discussion of higher-

order topological modes. First, it is not clear how the authors arrived at the model with two 

different coupling strengths γ<sub>1</sub> and γ<sub>2</sub>. Is this motivated by a 

Euclidean equivalent? This should be further discussed. 

- Related to the previous point, I am not sure if the corner modes are really a consequence 

of bulk topology, as opposed to trivial boundary modes arising from a cleverly engineered 

confining potential. It looks like the dependence of couplings on the layer index n implies 

the model is not translationally invariant away from the boundaries. If the authors’ model 

were extended to the infinite lattice L→∞, would it have the full periodicity of the {6,4} 

tiling? 

- In Fig. 1d and/or the corresponding text, the authors should explain that the color scale 

corresponds to V(ε), which is not clear in the current version. 

- For the real-space Chern number Eq. (2), the authors should rather cite the original 

reference by A. Kitaev, Ann. Phys. 321, 2 (2006). 

- In the discussion after Eq. (6) in the SM, perhaps it would be best to leave out 

“symmorphic”. I believe hyperbolic triangle groups do not generally have a semidirect 

product decomposition, though this may have to be checked. 

- In Fig. S3a, the times indicated on the figure do not match those quoted in the text and 

the figure caption. 

- In Eqs. (9-12) in the SM, it would be preferable to use brackets (…) or […] for matrices 

and vectors, instead of |…|, since the latter can be confused as a determinant. Also, Eq. (9) 

seems to be missing a closing parenthesis “)”. 

- There are several typos in the text: “reach” -> “research” (p. 2); “observe above” -> 

“observe the above” (p. 6); “impendence” -> “impedance” several times throughout the 

manuscript; “eigenspectral” -> “eigenspectra” (p. 12); “remained” -> “remaining” (p. 15); 

“atom limit” -> “atomic limit” (p. 9 of SM). Also, the phrase “with extremely fewer trivial 

regions” at the end of the abstract is rather unclear. I would suggest something like “which 

maximize the topological edge response”. 



Response Letter to Reviewers 

We are grateful for the constructive comments on this manuscript (NCOMMS-22-06101-T) from 

two reviewers.  

 

In the text below, reviewer comments are quoted in blue and followed by our detailed response. We 

have also revised the manuscript and the Supplemental Materials based on the reviewer comments, 

and these updates are highlighted in red in those files. In the text below, these updates are also 

highlighted in Italics. 

 

 

Response to comments of the reviewer #1 

In this manuscript, Zhang et al. investigated topological states in hyperbolic lattices using circuit 

platforms. The authors explored topological states in the Haldane model and zero modes in 

deformed lattices. For both phenomena, the authors conducted in-depth theoretical (real-space 

Chern number and fractal-like grouping), numerical (tight-binding, coupled mode, and circuit 

eigenequation), and experimental (circuit network) demonstration. The analysis results of the 

manuscript were well-developed and supported one another. 

The critical impact of this manuscript is on the first experimental demonstration of topological 

hyperbolic lattices, in comparison with the first experimental work on hyperbolic lattices [ref. 7] 

and the first theoretical work on topological hyperbolic lattices [ref. 32]. When considering the 

increasing interest in exploiting non-Euclidean geometry to wave phenomena, the manuscript 

handles a timely issue. Furthermore, the studies of the manuscript experimentally verified intriguing 

features of topological states (edge dominance) and zero modes (enhanced degeneracy) in 

hyperbolic geometry compared with Euclidean ones for the first time, providing the fertile evidences 

to their claim. Therefore, the manuscript will provide a critical contribution in photonics, acoustics, 

electronic circuits, and related fields in terms of accessing non-Euclidean degrees of freedom and 

their interactions with topological phenomena. 

However, for the publication with significant impact on the related research fields, the current 

manuscript should be revised thoroughly due to some critical issues on the flow of the manuscript, 

the review of previous works, and insufficient analysis and details of their results (see below for 

details). Therefore, the reviewer suggests the major revision of the manuscript. 

Reply: We would like to thank the reviewer for the careful review, positive evaluation and valuable 

suggestions of our work. In the following, we will give a detailed response to all points proposed 

by the reviewer. 

 

1. In the manuscript, Figs. 1 and 2 treat topological states in topological hyperbolic lattices 

developed from the Haldane model, while Figs. 3 and 4 handle zero modes originating from 

deformed hyperbolic lattices (weaker coupling in the outer region of the system). While the former 

and latter discussion is nearly disconnected, the demonstration of the topological nature of zero 

modes is absent in the manuscript, though some phenomenological description of the similarity with 

corner states in higher-order topological crystalline insulators was included. In order to coherently 

describe the authors’ work with a viewpoint based on topological states, more efforts on 



demonstrating topological properties of the observed corner states should be included, for example, 

differentiating topological corner states from edge states or trivial corner states in hyperbolic lattices. 

2. In a similar context, as described in [ref. 7] or Supplementary Materials of [ref. 32], hyperbolic 

lattices inherently lead to enhanced degeneracies, which may lead to trivial edge or corner states 

due to the interference between the degenerate eigenmodes of the same energy (or flat band systems). 

The verification of topological natures of the zero modes in Figs. 3 and 4 is thus essential to support 

the authors’ main claim. 

Reply: We would like to thank the reviewer for the comment. The above two comments are all about 

the demonstration of topological properties of hyperbolic zero-modes. In the following, we illustrate 

the topological properties of our proposed hyperbolic zero-energy corner states from three aspects. 

Firstly, we focus on the topological phase transition induced by the unbalanced site coupling 

in the deformed hyperbolic lattice. As shown in Figs. R1a-R1c, we plot the calculated eigen-spectra 

of the deformed hyperbolic lattice with the ratio of γ1/γ2 being 10, 1 and 0.1, respectively. The color 

bar corresponds to the participation ratio (PR) of each eigen-mode. We set L=6, where the influence 

of finite size effect could be neglected. It is clearly shown that when the coupling strength in the 

outermost layer is the larger one (γ1/γ2=10), the edge states are gapped around the zero energy, and 

there is no midgap corner state. In such a case, this bandgap is a trivial gap. The topological phase 

transition could appear with closing and reopening of the bandgap. It is shown that the gap is closing 

(around the zero-energy) with balanced values of γ1 and γ2 (γ1/γ2=1), corresponding to the original 

{6,4} hyperbolic lattice. By further decreasing the ratio to the case with a smaller coupling strength 

in the outermost layer (γ1/γ2=0.1), the gap of edge states is reopened, and the midgap corner modes 

appear. Such a gap closing and reopening phenomenon associated with the appearance of midgap 

corner states is a convenient evidence for the topological phase transition.  

 

Fig. R1. The calculated eigen-spectra of the deformed hyperbolic lattice with the ratio between 

γ1 and γ2 being 10, 1 and 0.1, respectively. Here, we set L=6. The color bar corresponds to the PR 

of each eigen-energy. 

 

Next, we show that the topological phase transition appearing in the deformed hyperbolic 

lattice is similar to the Euclidean counterpart of the C6-symmetric higher-order topological insulator 

(Ref. 44 and Ref. 45). To clearly prove this similarity, we consider the C6-symmetric higher-order 

topological insulator, as shown in Fig. R2a, where the different values of intra-cell (γ1) and inter-



cell (γ2) couplings exist. In the following calculations, the finite C6-symmetric {6,3} lattice 

containing 37 units is considered. As shown in Fig. R2b-R2d, we calculate the eigen-spectra of the 

system with the ratio between γ1 and γ2 being 10, 1 and 0.1, respectively. We can see that, by tuning 

the ratio of intra- and inter-cell couplings, the topological phase transition accompanied with the 

closing and reopening of bandgap happens. And, the midgap corner state could appear in the non-

trivial bandgap. This phenomenon is identical to the above discussed hyperbolic topological phase 

transition. In this case, due to the same topological phase transition and identical symmetries (the 

C6 rotation, the time reversal, and chiral symmetries), we deduce that midgap higher-order zero 

modes in deformed hyperbolic lattices possess similar characteristics to the filling anomaly induced 

0D corner states in C6-symmetric higher-order topological crystalline insulators.  

 

Fig. R2. (a) The schematic diagram of the C6-symmetric higher-order topological insulator, where 

the intra-cell (γ1) and inter-cell (γ2) couplings exist. (b)-(d) The eigen-spectra of the C6-symmetric 

lattice with the ratio between γ1 and γ2 being 10, 1 and 0.1, respectively. Here, in the calculation, 

the finite C6-symmetric lattice contains 37 units.  

 

 

Fig. R3. (a) and (b) The calculated eigen-spectra with disorder strength being W=0.1 and W=0.2, 

respectively. Other parameters are set as γ1=1, γ2=10 and L=6. (c) The zero-mode distribution with 

W=0.2. 

 



Finally, to further differentiate topological corner states from edge states or trivial corner states, 

we investigate the robustness of the midgap zero modes in the deformed hyperbolic lattice. Here, 

we introduce a little disorder to the onsite potential [-W, W] at all bulk sites and edge sites, and keep 

the onsite potential of corner sites unchanged. Other parameters are set as γ1=1, γ2=10 and L=6. Figs. 

R3a and R3b plot the calculated eigen-spectra with W being 0.1 and 0.2, respectively. The colormap 

corresponds to the PR. We can see that the random onsite potential could alter the eigen-energies 

and localizations of trivial edge states. While, the midgap zero modes are always fixed, and the 

corresponding mode distribution, as shown in Fig. R3c with W=0.2, also keeps the same. These 

numerical results manifest the robustness of hyperbolic zero modes. Because, disorders should 

break the enhanced energy degeneracies and interference effects in the trivial hyperbolic lattice, 

which makes the robust property cannot exist in the interference-induced trivial edge and corner 

states in hyperbolic lattices sustaining flat bands.  

 

Action taken: 

In the revised manuscript, we have added the following discussion in page 12 to illustrate the 

topological properties of hyperbolic zero modes: “While, the required translational symmetry for 

defining the topological index related to the higher-order topological insulator in Euclidean space44 

is absent for the hyperbolic lattice. This makes the definition of a topological invariant for the 

higher-order zero mode become difficult. In Supplementary Note 9, we further illustrate topological 

properties of our proposed hyperbolic zero-energy corner states from three aspects. Firstly, we find 

that the topological phase transition manifested by the closing and reopening of the zero-energy 

bandgap associated with the appearance of midgap corner states could appear by tuning the 

unbalanced site coupling in the deformed hyperbolic lattice. Moreover, we also show that the 

topological phase transition appearing in the deformed hyperbolic lattice is similar to the Euclidean 

counterpart of the C6-symmetric higher-order topological insulator44,45. Finally, the robustness of 

the midgap zero modes in the deformed hyperbolic lattice is also proved, which cannot exist in the 

interference-induced trivial edge and corner states in hyperbolic lattices sustaining flat bands22, 32. 

These features further demonstrate the topological properties of hyperbolic zero modes.”. 

 In the Supplementary Note 9, we have added numerical results to demonstrate the topological 

properties of higher-order zero modes of deformed hyperbolic lattices. 

 

3. While the first theoretical discovery on topological states using the non-Euclidean generalization 

of the Landau gauge was shown in [ref. 32], the introduction part of the manuscript does not fairly 

review this previous work. More detailed review and comparison with [ref. 32] and the following 

work [arXiv:2111.05779] are necessary. For example, the Haldane model allows for more direct (or 

Euclidean-like) assignment of the gauge field and Berry curvature (in contrast to the tree-like design 

of the Landau gauge in [ref. 32]) but is difficult to be realized in high-frequency regimes such as 

photonics due to the next nearest neighbor couplings. 

Reply: We would like to thank the reviewer for the kind suggestion. In the revised manuscript, we 

have added the following discussion in the introduction part to review these important works:  

 “Recently, the hyperbolic topological state has been theoretically proposed based on a tree-

like design of the Landau gauge in periodic and open systems32,28.”. 

 “We note that the Haldane model allows for more direct (or Euclidean-like) assignment of the 

gauge field and Berry curvature compared to the tree-like design of the Landau gauge32, but it 



is difficult to be realized in high-frequency regimes (such as photonics) due to the requirement 

of next nearest neighbor couplings. Hence, in experiments, the suitably designed circuit 

network, where the long-range site coupling is easily to be realized, is used to construct the 

hyperbolic Haldane model.”. 

 

4. The authors stated that the given finite hyperbolic lattice is topologically equivalent with 

successive quasi-concentric rings. The reviewer has difficulty in understanding this statement 

because in terms of the concentric rings, the hyperbolic lattice is apparently composed of 

disconnected lines with inter-connection between rings, which should be topologically different 

from simple concentric rings. More comprehensible descriptions about “quasi-“concentric rings are 

thus required. 

Reply: We would like to thank the reviewer for the comment. The property of hyperbolic tight-

binding lattice model depends on the connection pattern of all vertices, and is regardless of the 

configuration of all vertices. In this case, the hyperbolic lattice model could also be illustrated by 

arranging the vertices in the hyperbolic lattice to quasi-concentric rings, and maintaining the 

connection pattern of all vertices unchanged.  

Action taken: 

 In the revised manuscript, we have added the following discussion in page 4 to give a more 

comprehensible descriptions about quasi-“concentric rings: “It is noted that the property of 

hyperbolic tight-binding lattice model depends on the connection pattern of all vertices, and is 

regardless of the configuration of all vertices. Hence, the hyperbolic lattice model could also 

be illustrated by arranging the vertices in the form of quasi-concentric rings, and maintaining 

the connection pattern of all vertices unchanged. In this case, the finite hyperbolic lattice {6, 

4} with a sixfold rotation invariance in Poincaré disk (shown in Fig. 1b) is equivalent to 

successive quasi-concentric rings, as shown in Fig. 1c, with L=4 layers.”. 

 

5. In understanding the results in Fig. 2, the theoretical comparisons with trivial cases of (i) NN 

coupling (λ = 0) and (ii) NN & NNN couplings (φ = 0 with reciprocal or non-reciprocal coupling) 

are certainly helpful. Because the geometry of hyperbolic lattices has edge-dominant features, there 

usually exist trivial edge states, as demonstrated in [ref. 32]. Therefore, the comparison with trivial 

cases, for example, by using the calculation of the real-space Chern number, will enhance the 

novelty and impact of the authors’ findings. 

Reply: We would like to thank the reviewer for the comment. We calculate the eigen-spectra, the 

corresponding real space Chern numbers, and the dynamics of injected wave packet for systems 

without NNN couplings λ = 0 (shown in Fig. R4), and with real-valued NNN couplings λ = 0.2 and 

φ = 0 (shown in Fig. R5). We can see that the real-space Chern number is trivial around the zero-

energy, and the one-way propagation of edge state is also absence. 



 

Fig. R4. (a)-(c) The calculated eigen-spectrum, the real space Chern numbers, and the dynamics of 

injected wave packet for systems with the NNN coupling being λ = 0. The color bar corresponds to 

the localization degree at the boundary. 

 

Fig. R5. (a)-(c) The calculated eigen-spectrum, the real space Chern numbers, and the dynamics of 

injected wave packet for systems with parameters being λ = 0.2 and φ = 0. The color bar corresponds 

to the localization degree at the boundary. 

Action taken: 



 In the revised manuscript, we have added the following discussion in page 5: “And, the results 

of trivial hyperbolic lattice models are also provided in Supplementary Note 5 to further 

illustrate the difference between topological edge states and trivial edge states.”. 

 In the Supplementary note 5, we have added numerical results of the trivial hyperbolic lattice 

model to further illustrate the difference between topological edge states and trivial edge states. 

 

6. Several notations are confusing. For example, the letter φ was employed to express different 

physical quantities: the eigenmode φ(ε), temporal field evolution (φ(t), which is the superposition 

of the eigenmode), and gauge field φ. All the quantities should be distinguished. 

Reply: We would like to thank the reviewer for the comment. We re-define these quantities, where 

𝝓𝑖(𝜀) corresponds to the eigen-mode, |𝝍𝑖(𝑡)| corresponds to the temporal field evolution, and φ 

represents the gauge field. 

 

7. The definition of P_d for the on-site energy and the value of original on-site energy are missing. 

Reply: We would like to thank the reviewer for the comment. In page 5 of the revised manuscript, 

we have added the following discussion to illustrate the distribution of the on-site energy: “The 

onsite potential is Pd =5 on the defect, and it equals to zero on other sites.”. 

 

8. The input wave packet is not related well to the band of hyperbolic lattices. The authors may 

depict the gaussian bandwidth of the input signal in Fig. 2e. 

Reply: We would like to thank the reviewer for the comment. The frequency spectrum of the 

injected voltage packet is shown in Fig. 2f. The gaussian bandwidth and the central frequency of 

the input signal (in Fig. 2e) are 0.02MHz and 1.708MHz, respectively. And the frequency-range 

from 1.67 MHz to 1.75 MHz corresponds to the eigenenergy possessing nontrivial edge states 

(determined by the formula 𝜀 = 𝑓0
2/𝑓2 − 3 − 4𝐶𝛾/𝐶 − 8𝐶𝜆/𝐶). Hence, the frequency spectrum 

of input voltage packet is located in the range sustaining topological edge states, making only 

nontrivial edge states be excited.  

Action taken: 

 In page 9 of the revised manuscript, we have added the following discussion to depict the 

gaussian bandwidth of the input signal: “The gaussian bandwidth of the input signal is 

0.02MHz. The main components of the frequency spectrum are located in the range sustaining 

topological edge states, making only nontrivial edge states be excited.”. 

 

9. Although the authors stated that the edge confinement (0.9) of one-way topological states is much 

larger than that of the Euclidean counterpart, the value for the Euclidean one is absent. 

Reply: We would like to thank the reviewer for the comment. Boundary sites always occupy a finite 

portion of the total site regardless of the size for the hyperbolic lattice. This is completely contrary 

to the case of Euclidean lattices, where the ratio between the number of boundary sites to the total 

sites approaches to zero in the thermodynamic limit. This effect makes the edge confinement of 

one-way hyperbolic edge states could be much larger than that of the Euclidean counterpart 

(approaching to zero in the thermodynamic limit).  

Action taken: 

 In the page 5 of the revised manuscript, we have added the following discussion to illustrate 

the difference of edge confinements between hyperbolic and Euclidean counterparts: “It is 



worthwhile to note that the ratio of the one-way topological channel (boundary sites) to bulk 

sites in the {6, 4} hyperbolic Chern insulator is about 0.9 (even with L being infinite), which is 

much larger than the Euclidean counterpart (approaching to zero in the thermodynamic 

limit).”. 

 

10. The compactness may not be the advantage of hyperbolic lattices because the underlying physics 

of hyperbolic lattices requires more complex and intense coupling than the Euclidean one. The edge 

confinement requires such complex geometry despite the suppression of the field inside the bulk 

region. 

Reply: We would like to thank the reviewer for the comment. It is true that more complex and 

intense couplings are required around boundaries in the hyperbolic lattice. In practice, such an effect 

may not always be the advantage when the simple edge connection is required. In addition, we also 

except that the enhanced topological edge response could also improve the efficiency of some 

particular applications.  

Action taken: 

 In the page 5 of revised manuscript, we have added the following discussion: “Hence, such an 

enhanced topological edge response may improve the efficiency of some topological devices.”. 

 

11. For general readers in topological wave mechanics, it may be helpful to include the discussion 

on the meaning of the impedance peaks, which corresponds to the transmission peaks in topological 

photonics or acoustics. 

Reply: We would like to thank the reviewer for the comment. The impedance peaks are related to 

the local density of states of the corresponding quantum tight-binding model (as proved in Ref. 38).  

Action taken: 

 In the page 9 of the revised manuscript, we have added the following discussion to illustrate 

the meaning of impendence responses: “We note that the impedance responses are related to 

the local density of states of the corresponding quantum tight-binding model38.”. 

 

 

12. While the authors stated that the broadening in experimental results originates from the loss of 

elements, the theoretical results, including the loss in each element, may be included in 

Supplementary Materials for the completeness of the manuscript. 

Reply: We would like to thank the reviewer for the comment. We have added the simulated 

impendence responses of hyperbolic circuits with different losses (with the effective series 

resistances of inductance being 20 𝑚Ω, 50 𝑚Ω, 100 𝑚Ω, and 150 𝑚Ω) in the Supplementary note 

6. We find that the impedance peaks are broadening with increasing the series resistances of 

inductance of both hyperbolic Chern circuit and deformed hyperbolic circuit with zero modes. 

 

 

 

 

 

 

 



Response to comments of the reviewer #2 

The authors propose theoretically and realize experimentally an analog of the well-known Haldane 

model of a Chern insulator on a hyperbolic lattice. By numerical diagonalization in a disk geometry, 

the authors show the energy spectrum contains a spectral region near zero energy where eigenstates 

have dominant support on the sample boundary. The authors then calculate an energy-dependent 

real-space Chern number, and show that this Chern number exhibits a quantized plateau in roughly 

the same region where boundary states exist. A wave packet injected near the sample edge is shown 

to propagate unidirectionally and in a manner undisturbed by defects on the boundary. 

The theoretical predictions are then tested experimentally on an electric circuit network. The 

physical system exhibits lossy (resistive) behavior that is not present in the theoretical model, but 

the agreement between theory and experiment is altogether good notwithstanding. In particular, the 

measurements demonstrate the key features expected of a Chern insulator: localized edge states 

within a bulk gap, chiral edge propagation, and protection against backscattering. Finally, the 

authors also argue that with suitable modifications, the model Hamiltonian and experimental system 

can support corner modes indicative of higher-order topology. 

In my opinion, this is an important work that produces two key advances: a theoretical generalization 

of the Haldane model to hyperbolic space, and its experimental simulation using classical circuit 

networks. The connection between the tight-binding model and the classical circuit equations is well 

explained, and the experimental demonstration compelling (within the unavoidable limitation of 

small system sizes). The relevant literature is appropriately cited, and this work will significantly 

advance the burgeoning field of exotic “hyperbolic matter”. (The additional discussion of higher-

order topology is somewhat less convincing, in my opinion, but I discuss this further below.) 

Before I can recommend publication, I would like the authors to address the following 

issues/questions. 

Reply: We would like to thank the reviewer for the careful review, positive evaluation and valuable 

suggestions of our work. In the following, we will give a detailed response to all points proposed 

by the reviewer. 

 

- Although the evidence from the real-space Chern number is compelling, one would like to further 

check that the presence of edge states is really due to the topology of the model, as opposed to the 

unusual boundary/bulk ratio in the Poincaré disk, which is purely a geometrical effect. To that end, 

could the authors also present theoretical results in the “trivial insulator” phase, e.g., for a value of 

the NNN phase φ for which the real-space Chern number is zero? Ideally, one would like to see that 

in such a trivial insulator, there are no edge states near zero energy, and that a wave packet injected 

near the boundary spreads out into the bulk instead of propagating unidirectionally along the 

boundary. In my opinion, such a comparison between trivial and topological regimes would 

significantly strengthen the authors’ claims. 

Reply: We would like to thank the reviewer for the comment. We calculate the eigen-spectra, the 

corresponding real space Chern numbers, and the dynamics of injected wave packet for systems 

without NNN couplings λ = 0 (in Fig. R6), and with real-valued NNN couplings λ = 0.2, φ = 0 (in 

Fig. R7). We can see that the real-space Chern number is trivial for both systems. And, the one-way 

propagations of injected wave packets are also absence.  



 

Fig. R6. (a)-(c) The calculated eigen-spectrum, the real space Chern numbers, and the dynamics of 

injected wave packet for systems with the NNN coupling being λ = 0. 

 

Fig. R7. (a)-(c) The calculated eigen-spectrum, the real space Chern numbers, and the dynamics of 

injected wave packet for systems with parameters being λ = 0.2 and φ = 0. 

Action taken: 

 In the revised manuscript, we have added the following discussion in page 5: “And, the results 

of trivial hyperbolic lattice models are also provided in Supplementary Note 5 to further 

illustrate the difference between topological edge states and trivial edge states.”. 



 In the Supplementary note 5, we have added numerical results of the trivial hyperbolic lattice 

model to further illustrate the difference between topological edge states and trivial edge states. 

 

- Where Fig. 2b-c are discussed in the text, the discussion seems to imply that the measured 

impedance spectrum is simply related to the local density of states (LDOS) of the corresponding 

quantum tight-binding model. Is there such a relation? If so, it would be nice to have a mention 

and/or derivation of this (e.g. in the supplementary material). 

Reply: We would like to thank the reviewer for the comment. The impedance peaks are related to 

the local density of states of the corresponding quantum tight-binding model. Such a correspondence 

has been proved in Ref. 38.  

Action taken: 

 In the page 8 of the revised manuscript, we have added the following discussion to illustrate 

the meaning of impendence responses: “We note that the impedance responses are related to 

the local density of states of the corresponding quantum tight-binding model38.”. 

 

- The part of the paper I find somewhat less clear/compelling is the discussion of higher-order 

topological modes. First, it is not clear how the authors arrived at the model with two different 

coupling strengths γ1 and γ2. Is this motivated by a Euclidean equivalent? This should be further 

discussed. 

Reply: We would like to thank the reviewer for the comment. It is true that our proposed model with 

two different coupling strengths γ1 and γ2 is inspired by the C6-symmetric higher-order topological 

crystalline insulators in Euclidean space (Ref. 44 and Ref. 45). In particular, as for the Euclidean 

{6, 3} lattice model shown in Fig. R9 (as discussed below), by introducing a pair of unbalanced 

intra- and intercell couplings, the zero-energy higher-order corner mode could appear (see details 

in the next reply).  

 

- Related to the previous point, I am not sure if the corner modes are really a consequence of bulk 

topology, as opposed to trivial boundary modes arising from a cleverly engineered confining 

potential. It looks like the dependence of couplings on the layer index n implies the model is not 

translationally invariant away from the boundaries. If the authors’ model were extended to the 

infinite lattice L→∞, would it have the full periodicity of the {6,4} tiling? 

Reply: We would like to thank the reviewer for the comment. We note that all lattice sites in the 

deformed hyperbolic lattice are located on the vertices of {6,4} tiling with L approaching to infinite. 

And, it is true that the model is not translationally invariant with the existence of couplings 

depending on the layer index. Actually, previous works have demonstrated that higher-order 

topological corner states could exist in non-periodic systems, such as quasicrystals [Phys. Rev. 

Lett. 124, 036803], fractals [Phys. Rev. B 100, 155135 (2019)], and disordered systems [Phys. Rev. 

B 103, 085408 (2021); Phys. Rev. Lett. 125, 166801 (2020); Phys. Rev. Lett. 126, 146802 (2021)]. 

In the following, we demonstrate the topological properties of our proposed hyperbolic zero-energy 

corner states from three aspects. 

Firstly, we focus on the topological phase transition induced by the unbalanced site coupling 

in the deformed hyperbolic lattice. As shown in Figs. R8a-R8c, we plot the calculated eigen-spectra 

of the deformed hyperbolic lattice with the ratio of γ1/γ2 being 10, 1 and 0.1, respectively. The color 

bar corresponds to the participation ratio (PR) of each eigen-mode. We set L=6, where the influence 



of finite size effect could be neglected. It is clearly shown that when the coupling strength in the 

outermost layer is the larger one (γ1/γ2=10), the edge states are gapped around the zero energy, and 

there is no midgap corner state. In such a case, this bandgap is a trivial gap. The topological phase 

transition could appear with closing and reopening of the bandgap. It is shown that the gap is closing 

(around the zero-energy) with balanced values of γ1 and γ2 (γ1/γ2=1), corresponding to the original 

{6,4} hyperbolic lattice. By further decreasing the ratio to the case with a smaller coupling strength 

in the outermost layer (γ1/γ2=0.1), the gap of edge states is reopened, and the midgap corner modes 

appear. Such a gap closing and reopening phenomenon associated with the appearance of midgap 

corner states is a convenient evidence for the topological phase transition.  

 

Fig. R8. The calculated eigen-spectra of the deformed hyperbolic lattice with the ratio between 

γ1 and γ2 being 10, 1 and 0.1, respectively. Here, we set L=6. The color bar corresponds to the PR 

of each eigen-energy. 

 

Next, we will show that the topological phase transition appearing in the deformed hyperbolic 

lattice is similar to the Euclidean counterpart of the C6-symmetric higher-order topological insulator 

(Ref. 44 and Ref. 45). To clearly prove this similarity, we consider the C6-symmetric higher-order 

topological insulator, as shown in Fig. R9a, where the different values of intra-cell (γ1) and inter-

cell (γ2) couplings exist. In the following calculations, the finite C6-symmetric {6,3} lattice 

containing 37 units is considered. As shown in Fig. R9b-R9d, we calculate the eigen-spectra of the 

system with the ratio between γ1 and γ2 being 10, 1 and 0.1, respectively. We can see that, by tuning 

the ratio of intra- and inter-cell couplings, the topological phase transition accompanied with the 

closing and reopening of bandgap happens. And, the midgap corner state could appear in the non-

trivial bandgap. This phenomenon is identical to the above discussed hyperbolic topological phase 

transition. In this case, due to the same topological phase transition and identical symmetries (the 

C6 rotation, the time reversal, and chiral symmetries), we deduce that midgap higher-order zero 

modes in deformed hyperbolic lattices possess similar characteristics to the filling anomaly induced 

0D corner states in C6-symmetric higher-order topological crystalline insulators.  



 

Fig. R9. (a) The schematic diagram of the C6-symmetric higher-order topological insulator, where 

the intra-cell (γ1) and inter-cell (γ2) couplings exist. (b)-(d) The eigen-spectra of the C6-symmetric 

lattice with the ratio between γ1 and γ2 being 10, 1 and 0.1, respectively. Here, in the calculation, 

the finite C6-symmetric lattice contains 37 units.  

 

 

Fig. R10. (a) and (b) The calculated eigen-spectra with disorder strength being W=0.1 and W=0.2, 

respectively. Other parameters are set as γ1=1, γ2=10 and L=6. (c) The zero-mode distribution with 

W=0.2. 

 

Finally, to further differentiate the topological corner modes from edge states or trivial corner 

states, we investigate the robustness of the midgap zero modes in the deformed hyperbolic lattice. 

Here, we introduce a little disorder to the onsite potential [-W, W] at all bulk sites and edge sites, 

and keep the onsite potential of corner sites unchanged. Other parameters are set as γ1=1, γ2=10 and 

L=6. Figs. R10a and R10b plot the calculated eigen-spectra with W being 0.1 and 0.2, respectively. 

The colormap corresponds to the PR. We can see that the random onsite potential could alter the 

eigen-energies and localizations of trivial edge states. While, the midgap zero modes are always 

fixed, and the corresponding mode distribution, as shown in Fig. R10c with W=0.2, also keeps the 

same. These numerical results manifest the robustness of hyperbolic zero modes. Because, disorders 

should break the enhanced energy degeneracies and interference effects in the trivial hyperbolic 



lattice, which makes the robust property cannot exist in the interference-induced trivial edge and 

corner states in hyperbolic lattices sustaining flat bands.   

 

Action taken: 

 In the revised manuscript, we have added the following discussion in page 12 to illustrate the 

topological properties of hyperbolic zero modes: “While, the required translational symmetry 

for defining the topological index related to the higher-order topological insulator in 

Euclidean space44 is absent for the hyperbolic lattice. This makes the definition of a topological 

invariant for the higher-order zero mode become difficult. In Supplementary Note 9, we further 

illustrate topological properties of our proposed hyperbolic zero-energy corner states from 

three aspects. Firstly, we find that the topological phase transition manifested by the closing 

and reopening of the zero-energy bandgap associated with the appearance of midgap corner 

states could appear by tuning the unbalanced site coupling in the deformed hyperbolic lattice. 

Moreover, we also show that the topological phase transition appearing in the deformed 

hyperbolic lattice is similar to the Euclidean counterpart of the C6-symmetric higher-order 

topological insulator44,54. Finally, the robustness of the midgap zero modes in the deformed 

hyperbolic lattice is also proved, which cannot exist in the interference-induced trivial edge 

and corner states in hyperbolic lattices sustaining flat bands22, 32. These features further 

demonstrate the topological properties of hyperbolic zero modes.”. 

 In the Supplementary Note 9, we have added numerical results to demonstrate the topological 

properties of higher-order zero modes of deformed hyperbolic lattices. 

 

- In Fig. 1d and/or the corresponding text, the authors should explain that the color scale corresponds 

to V(ε), which is not clear in the current version. 

Reply: We would like to thank the reviewer for the kind suggestion. In the page 4 of the revised 

manuscript, we have added the following discussion to illustrate the colormap in Fig. 1d: “The 

colormap in Fig. 1d corresponds to the quantity 𝑉(𝜀) for the localization degree at the boundary.”. 

 

- For the real-space Chern number Eq. (2), the authors should rather cite the original reference by 

A. Kitaev, Ann. Phys. 321, 2 (2006). 

Reply: We would like to thank the reviewer for the kind suggestion. We have cited the original 

paper as Ref. [35]. 

 

- In the discussion after Eq. (6) in the SM, perhaps it would be best to leave out “symmorphic”. I 

believe hyperbolic triangle groups do not generally have a semidirect product decomposition, 

though this may have to be checked. 

Reply: We would like to thank the reviewer for the kind suggestion. We leave out the unsuitable 

word “symmorphic”. 

 

- In Fig. S3a, the times indicated on the figure do not match those quoted in the text and the figure 

caption. 

Reply: We would like to thank the reviewer for the comment. We have modified the incorrected 

times in the text and the figure caption. 



 

- In Eqs. (9-12) in the SM, it would be preferable to use brackets (…) or […] for matrices and 

vectors, instead of |…|, since the latter can be confused as a determinant. Also, Eq. (9) seems to be 

missing a closing parenthesis “)”. 

Reply: We would like to thank the reviewer for the kind suggestion. In the revised SM, we use […] 

for matrices. 

 

- There are several typos in the text: “reach” -> “research” (p. 2); “observe above” -> “observe the 

above” (p. 6); “impendence” -> “impedance” several times throughout the manuscript; 

“eigenspectral” -> “eigenspectra” (p. 12); “remained” -> “remaining” (p. 15); “atom limit” -> 

“atomic limit” (p. 9 of SM). Also, the phrase “with extremely fewer trivial regions” at the end of 

the abstract is rather unclear. I would suggest something like “which maximize the topological edge 

response”. 

Reply: We would like to thank the reviewer for the kind suggestion. We have modified these 

grammatical and spelling errors in the manuscript. 

 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

In this revised manuscript, the authors provided very careful and complete responses to the 

comments and suggestions raised by the reviewers. Most importantly, the authors successfully 

demonstrated the topological features of the zero modes, leading to the consistency of the entire 

manuscript. The other responses on comprehensible explanations of the concepts and revised 

notations and parameters also improved the completeness of the manuscript. The reviewer thanks the 

authors’ efforts during the revision and happily suggests the acceptance of the manuscript. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have answered my questions satisfactorily, and the new theoretical results they have 

added to the paper (in particular, results for a topologically trivial Hamiltonian, and a better 

explanation of the C6-protected higher-order zero modes) have significantly improved the manuscript. 

In my opinion, the manuscript is now suitable for publication in Nat. Commun. 



Response Letter to Reviewers 

(NCOMMS-NCOMMS-22-06101A) 
 

Response to comments of the reviewer #1 

In this revised manuscript, the authors provided very careful and complete responses to the 

comments and suggestions raised by the reviewers. Most importantly, the authors successfully 

demonstrated the topological features of the zero modes, leading to the consistency of the entire 

manuscript. The other responses on comprehensible explanations of the concepts and revised 

notations and parameters also improved the completeness of the manuscript. The reviewer thanks 

the authors’ efforts during the revision and happily suggests the acceptance of the manuscript. 

Reply: We would like to thank the reviewer for the acceptance of our revised manuscript. 

 

 

 

Response to comments of the reviewer #2 

The authors have answered my questions satisfactorily, and the new theoretical results they have 

added to the paper (in particular, results for a topologically trivial Hamiltonian, and a better 

explanation of the C6-protected higher-order zero modes) have significantly improved the 

manuscript. In my opinion, the manuscript is now suitable for publication in Nat. Commun. 

Reply: We would like to thank the reviewer for the acceptance of our revised manuscript. 
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