Supporting Information for Original article

One-step synthesis of site-specific antibody–drug conjugates by reprograming IgG glycoengineering with LacNAc-based substrates

Wei Shi^{a,b,c}, Wanzhen Li^d, Jianxin Zhang^d, Tiehai Li^a, Yakai Song^a, Yue Zeng^a, Qian Dong^a, Zeng Lin^a, Likun Gong^a, Shuquan Fan^e, Feng Tang^{a,b,*}, Wei Huang^{a,b,c,*}

^aCAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China

^bSchool of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

^dSchool of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China ^eSchool of Life Science, Liaocheng University, Liaocheng 252059, China

*Corresponding authors. Tel: +86 21 20231000 2509 (Feng Tang), +86 21 20231000 2517 (Wei Huang); fax: +86 21 50807088.

E-mail addresses: <u>tangfeng2013@simm.ac.cn</u> (Feng Tang); <u>huangwei@simm.ac.cn</u> (Wei Huang). Received 29 September 2021; received in revised form 17 November 2021; accepted 14 December 2021

Contents

1. Supplementary scheme and figures	S2
2. Experimental section	S9
3. NMR profiles	S24
4. References	S44

1. Supplementary scheme and figures

A. +Endo-S B. +Endo-S D233Q C. +Endo-S2 an 1.0 - 09/25/2 F:\disaccharide data-\8233-0090-12.txt: NL: 7.40e+006 S/N: 346 +0 mod. F:\disaccharide data-\8233-0090-11.txt: NL: 6.94e+006 S/N: 139 +0 mod. F:\disaccharide data-\8233-0090-13.txt: NL: 6.25e+006 S/N: 155 +0 mod. 1 mod. +1 mod. +1 mod. 1480 Mas 148 Ma 142000 152000 154000 142000 14600 1440 14400 14200 NL: 6.89e+005 S/N: 122 NL: 5.82e+005 S/N: 124 NL +005 S/N: 139 1 in D. +Endo-S2 D184M F. +Endo-F3 D165A E. +Endo-F3

G. +Endo-D

H. +Endo-D Q431A

agTran 1.0 - 09/25/21

I. +Endo-D N322Q

gTran 1.0 - 09/25/21

Figure S1 LC–MS profiles of transglycosylation of GlcNAc(Fuc)-trastuzumab with GlcNAc-ox and various ENGases. In each LC–MS spectrum, the deconvolution data (full mass) are shown in upper section and the multiple-charge data (m/z) are shown in lower section.

Figure S2 LC–MS profiles of Endo-S2 catalyzed transglycosylation of GlcNAc(Fuc)-trastuzumab with various glycan oxazoline substrates. In each LC–MS spectrum, the deconvolution data (full mass) are shown in upper section and the multiple-charge data (m/z) are shown in lower section.

Figure S3 Endo-S2 enables efficient one-step glycoengineering of wild type trastuzumab with LacNAc oxazoline.

Figure S4 LC–MS profiles of Endo-S2 catalyzed transglycosylation of trastuzumab with various LacNAc derivatives. In each LC–MS spectrum, the deconvolution data (full mass) are shown in upper section and the multiple-charge data (m/z) are shown in lower section.

Figure S5 Digestion of Trastuzumab and gsADC-2 with PNGase F or IdeS protease to identify the conjugation site. (A) Cy3 and FITC conjugation with Az-LacNAc-Tras indicated the fluorescence of heavy chains. (B) IdeS treatment demonstrated the conjugation of drugs on the Fc domain. (C) PNGase F treatment proved the site-specific conjugation on *N*-glycosylation site of trastuzumab.

Figure S6 Preparation of gsADC-3 based on sialylated complex type glycan.

Figure S7 Preparation of one ADC based on Cys random conjugation (DAR~3.5).

2. Experimental section

2.1 synthesis of glycan oxazoline 2a-h

GlcNAc-ox 2a

ESI-MS calcd. for C₈H₁₃NO₅[M+H]⁺ m/z= 204.0872, found m/z= 204.0809.

¹H NMR (600 MHz, deuterium oxide) δ 6.01 (d, J = 7.3 Hz, 1H), 4.04 (ttd, J = 6.2, 4.4, 3.9, 2.4 Hz, 1H), 3.90 (t, J = 3.6 Hz, 1H), 3.74–3.70 (m, 1H), 3.60 (dd, J = 12.5, 6.3 Hz, 1H), 3.57–3.51 (m, 1H), 3.29 (ddd, J = 8.9, 6.3, 2.5 Hz, 1H), 1.97–1.95 (m, 3H).

GalNAc-ox 2b

¹H NMR (600 MHz, deuterium oxide) δ 6.00 (d, J = 7.2 Hz, 0.85H), 5.14 (d, J = 3.7 Hz, 0.15H), 4.02–3.97 (m, 1H), 3.86–3.84 (m, 1H), 3.81 (ddd, J = 7.0, 4.9, 1.8 Hz, 1H), 3.76 (td, J = 7.1, 1.3 Hz, 1H), 3.70–3.59 (m, 2H), 1.94 (d, J = 1.3 Hz, 3H).

LacNAc-ox 2c

ESI-MS calcd. for C₁₄H₂₃NO₁₀[M+H]⁺ m/z= 366.14, found m/z= 366.1421. ¹H NMR (600 MHz, deuterium oxide) δ 6.01 (d, J = 7.3 Hz, 0.84H), 4.67 (s, 0.16H), 4.34 (d, J = 7.9 Hz, 1H), 4.32 (dd, J = 3.2, 1.8 Hz, 1H), 4.11 (ddq, J = 6.8, 3.5, 1.7 Hz, 1H), 3.84 (dd, J = 3.4, 1.1 Hz, 1H), 3.76–3.52 (m, 7H), 3.42 (dd, J = 9.9, 7.8 Hz, 1H), 3.37 (ddd, J = 8.8, 6.2, 2.5 Hz, 1H), 1.98 (d, J = 1.8 Hz, 3H).

(GlcNAc)₂-ox 2d

ESI-MS calcd. for $C_{16}H_{26}N_2O_{10}[M+H]^+ m/z = 407.1665$, found m/z = 407.1636.

¹H NMR (600 MHz, deuterium oxide) δ 6.00 (d, J = 7.3 Hz, 1H), 4.49 (d, J = 8.4 Hz, 1H), 4.33 (dd, J = 3.2, 1.6 Hz, 1H), 4.11 (ddp, J = 6.7, 3.5, 1.7 Hz, 1H), 3.84 (dd, J = 12.5, 2.1 Hz, 1H), 3.69 (dd, J = 12.5, 5.0 Hz, 1H), 3.63–3.54 (m, 3H), 3.53–3.45 (m, 2H), 3.42–3.34 (m, 2H), 3.20 (ddd, J = 8.9, 6.5, 2.4 Hz, 1H), 1.98–1.94 (m, 6H).

(GlcNAc)₃-ox 2e

ESI-MS calcd. for C₂₄H₃₉N₃O₁₅[M+H]⁺ m/z= 610.2459, found m/z= 610.2451. ¹H NMR (600 MHz, deuterium oxide) δ 5.99 (d, J = 7.3 Hz, 1H), 4.52–4.45 (m, 2H), 4.34–4.32 (m, 1H), 4.10 (ddq, J = 7.0, 3.3, 1.8 Hz, 1H), 3.85–3.20 (m, 16H), 2.00–1.90 (m, 9H).

NeuNAc- α 2,3-LacNAc-ox 2f

ESI-MS calcd. for C₂₅H₄₀N₂O₁₈[M+H]⁺ m/z= 657.2354, found m/z= 657.2351. ¹H NMR (600 MHz, deuterium oxide) δ 5.97 (d, J = 7.3 Hz, 1H), 4.39 (d, J = 7.8 Hz, 1H), 3.96 (dd, J = 9.8, 3.2 Hz, 1H), 3.83 (d, J = 3.2 Hz, 1H), 3.79–3.32 (m, 17H), 2.51 (1H), 1.97–1.90 (m, 6H), 1.67 (t, J = 12.1 Hz, 1H).

NeuNAc- α 2,6-LacNAc-ox **2g**

ESI-MS calcd. for C₂₅H₄₀N₂O₁₈[M+H]⁺ m/z= 657.2354, found m/z= 657.2343 ¹H NMR (600 MHz, deuterium oxide) δ 5.96 (d, J = 7.3 Hz, 1H), 4.32–4.25 (m, 1H), 3.88–3.31 (m, 20H), 1.94 (d, J = 1.8 Hz, 3H), 1.91 (s, 3H), 1.56 (t, J = 12.2 Hz, 1H).

Gal- β 1,4-(Fuc α 1,3)GlcNAc-ox **2h**

ESI-MS calcd. for C₂₀H₃₃NO₁₄[M+H]⁺ m/z= 512.1979, found m/z= 512.1966.

¹H NMR (600 MHz, deuterium oxide) δ 6.01 (d, J = 7.3 Hz, 1H), 5.10 (d, J = 4.0 Hz, 1H), 4.38 (dd, J = 3.0, 1.2 Hz, 1H), 4.34 (d, J = 7.8 Hz, 1H), 4.28–4.24 (m, 1H), 4.11 (q, J = 6.5 Hz, 1H), 3.96 (dt, J = 8.7, 1.4 Hz, 1H), 3.84–3.32 (m, 12H), 1.98 (d, J = 1.8 Hz, 3H), 1.12 (3H).

2.2. LacNAc transglycosylation optimization via Endo-S2

A solution of wild-type trastuzumab (50 μ g) and LacNAc-ox (5 nmol) in a PB buffer (50 mmol/L, pH 7.0, 10 μ L) was incubated with Endo-S2 (4 μ g) at 30 °C for 2 h. After 2–3 h, LC–MS monitoring indicated the complete reaction of wild-type trastuzumab to give the transglycosylation product carrying LacNAc **3c**.

Figure S9 MS spectra of glycoengineered antibody 3c.

2.3. Synthesis of LacNAc derivatives

Figure S10 The synthetic route of LacNAc derivatives. a. $\alpha(2,3)$ -sialyltransfererase, CMP-sialic acid, cacodylate buffer, pH 7.6; b. $\alpha(2,6)$ -sialyltransferase (Pd2,6ST), CMP-sialic acid, 100 mmol/L Tris, pH 8.0; c. $\alpha(1,3)$ -fucosyltransferase; d. GOase, HRP, catalase, O₂, 50 mmol/L PB, pH 7.0, 30 °C; e. *O*-(2-Azidoethyl)-hydroxylamine hydrochloride, pH 7.2, rt; f. *O*-(2-Propynylethyl)-hydroxylamine hydrochloride; g. Biotin-ONH₂, pH 7.2, rt; h. Coumarin-NH₂, NaCNBH₃, pH 6.0, 0 °C; i. 3-azido-1-propanamine, NaCNBH₃, pH 6.0, 0 °C; j. 2-Propynylamine, NaCNBH₃, pH 6.0, 0 °C; k. NH₂OH·HCl, Na₂CO₃, CH₃OH/H₂O, rt; NaBH₄, NiCl₂·6H₂O, 0 °C; l. DBCO-CONHS, pH 7.4, rt; m. *N*-Benzylthiourea, pH 8.0, rt.

Synthesis of Gal- β l,4-(Fuc α l,3)GlcNAc **2h**. To a solution of LacNAc (20 mmol/L), GDP-Fuc (30 mmol/L, 1.5 eq), MnCl₂ (5 mmol/L) in Tris-HCl buffer (100 mmol/L, pH 7.5) was added Hp α 1,3FT (40 µg/mL), and the mixture was incubated at 37 °C for overnight. TLC analysis (ethyl acetate/methanol/water/acetic acid 5:2:2:0.5) showed the conversion of LacNAc into a major product. The reaction mixture was centrifuged, and the resulting supernatant was loaded on Bio-Gel P2 column (eluent: 50 mmol/L NH₄HCO₃). Product containing fractions were combined and lyophilized to give α 1,3-Fuc-LacNAc as a white

amorphous solid.

Synthesis of NeuNAc- $\alpha 2,6$ -LacNAc **2g**. To a solution of LacNAc (20 mmol/L), CMP-Neu5Ac (30 mmol/L, 1.5 eq) in Tris-HCl buffer (100 mmol/L, pH 8.0) was added Pd2,6ST (20 µg/mL), and the mixture was incubated at 37 °C for 6 h. TLC analysis (ethyl acetate/methanol/water/acetic acid 5:2:2:0.5) showed the conversion of LacNAc into a major product. The reaction mixture was centrifuged, and the resulting supernatant was loaded on Bio-Gel P2 column (eluent: 50 mmol/L NH₄HCO₃). Product containing fractions were combined and lyophilized to give $\alpha 2,6$ -Neu5Ac-LacNAc as a white amorphous solid.

Synthesis of NeuNAc- $\alpha 2,3$ -LacNAc **2f**. To a solution of LacNAc (20 mmol/L), CMP-Neu5Ac (30 mmol/L, 1.5 eq) in Tris-HCl buffer (100 mmol/L, pH 8.0) was added PmST1 (5 µg/mL), and the mixture was incubated at 37 °C for 30 min. TLC analysis (ethyl acetate/methanol/water/acetic acid 5:2:2:0.5) showed the conversion of LacNAc into a major product. The reaction mixture was centrifuged, and the resulting supernatant was loaded on Bio-Gel P2 column (eluent: 50 mmol/L NH₄HCO₃). Product containing fractions were combined and lyophilized to give $\alpha 2,3$ -Neu5Ac-LacNAc as a white amorphous solid.

Synthesis of CHO-LacNAc¹

To a stirred solution of LacNAc **1c** (20 mg) in 50 mmol/L phosphate buffer (pH 7.0, 1 mL) was blowed oxygen for 10 min and galactose oxidase (47.6 U), HRP (480 U) and catalase (9.52 kU) was added respectively. The reaction mixture was stirred for 3 h and monitored by LC–MS. After that, the solution was subjected to a Bio-gel P2 column, the corresponding product CHO-LacNAc was combined and lyophilized to give a white powder. ESI-MS calcd. for $C_{14}H_{23}NO_{11}$ [M+H]⁺ m/z= 382.1349, found m/z=382.1331. ¹H NMR (500 MHz, deuterium oxide) δ 5.15 (q, J = 1.4 Hz, 1H), 5.08 (ddd, J = 7.4, 3.2, 1.4 Hz, 1H), 4.43 (dt, J = 7.7, 1.7 Hz, 1H), 4.04 (dt, J = 3.1, 1.5 Hz, 1H), 3.96–3.89 (m, 1H), 3.88–3.74 (m, 3H), 3.70–3.52 (m, 3H), 3.41 (dq, J = 7.5, 1.5 Hz, 1H), 1.99 (d, J = 1.2 Hz, 3H).

Synthesis of N₃-ON=CH-LacNAc 4a

To a stirred solution of CHO-LacNAc (18 mg) in 50 mmol/L phosphate buffer (pH 7.4, 200 μ L) was added *O*-(2-azidoethyl)hydroxylamine hydrochloride (5.3 mg), the reaction mixture was stirred at room temperature for 2 h and monitored by LC– MS. The solution was subjected to a semi-preparative column, the corresponding product **4a** was combined and lyophilized to get a white powder. ESI-MS calc. for C₁₆H₂₇N₅O₁₁ [M+H]+ *m/z*= 466.1785, found *m/z*= 466.1732. ¹H NMR (500 MHz, deuterium oxide) δ 7.57 (dd, *J* = 4.1, 1.7 Hz, 0.7H), 6.91 (dd, *J* = 4.6, 3.1 Hz, 0.3H), 5.16 (q, *J* = 1.5 Hz, 0.7H), 4.80 (ddd, *J* = 4.7, 3.5, 1.2 Hz, 0.3H), 4.67–4.65 (m, 0.3H), 4.49 (d, *J* = 7.9 Hz, 0.65H), 4.46 (dd, *J* = 7.9, 1.6 Hz, 0.35H), 4.42 (ddd, *J* = 4.1, 2.8, 1.2 Hz, 0.7H), 4.29–4.19 (m, 2H), 4.04 (dt, *J* = 2.8, 1.3 Hz, 1H), 3.97–3.89 (m, 1H), 3.88–3.78 (m, 3H), 3.73–3.60 (m, 3H), 3.54 (m, 3H), 2.00 (d, *J* = 1.8 Hz, 3H).

Synthesis of N₃-NH-LacNAc 4b

To a stirred solution of CHO-LacNAc (18 mg) in 0.2 mol/L phosphate buffer (pH 6.0, 400 µL) was added 3-azido-1propanamine (23.6 mg) and NaCNBH₃ (59.5 mg) respectively, the reaction mixture was stirred at 0 °C for 4 h and monitored by LC–MS. The solution was subjected to a Bio-gel P2 column, the corresponding product N₃-NH-LacNAc **4b** was combined and lyophilized to get a white powder (16 mg, yield 72.8%). ESI-MS calcd. for C₁₇H₃₁N₅O₁₀ [M+H]+ m/z = 466.2149, found m/z = 466.2132. ¹H NMR (500 MHz, deuterium oxide) δ 5.14 (d, J = 3.3 Hz, 1H), 4.47 (dd, J = 7.8, 2.3 Hz, 1H), 3.96–3.70 (m, 7H), 3.70–3.60 (m, 1.65H), 3.51 (m, 1.35H), 3.45 (td, J = 6.4, 1.5 Hz, 2H), 3.35 (dd, J = 13.4, 9.3 Hz, 1H), 3.28 (t, J = 3.0 Hz, 0.65H), 3.26 (t, J = 3.0 Hz, 0.35H), 3.21–3.09 (m, 2H), 1.99 (s, 3H), 1.93 (dq, J = 14.5, 7.5, 6.9 Hz, 2H). ¹³C NMR (126 MHz, D2O) δ 174.77, 174.50, 102.24, 94.96, 90.73, 76.59, 76.25, 74.97, 72.33, 72.18, 70.76, 70.54, 70.29, 70.25, 69.18, 69.09, 59.75, 59.68, 56.39, 53.85, 48.27, 48.19, 45.86, 25.00, 24.97, 22.20, 21.93.

Synthesis of Alkyne-ON=CH-LacNAc 4c

To a stirred solution of CHO-LacNAc (18 mg) in 50 m mol/L phosphate buffer (pH 7.4, 200 µL) was added *O*-(2-propynylethyl)-hydroxylamine hydrochloride (5.6 mg), the reaction mixture was stirred at room temperature for 2 h and monitored by LC–MS. The solution was subjected to a semi-preparative column, the corresponding product **4c** was combined and lyophilized to get a white powder. ESI-MS calc. for $C_{17}H_{26}N_2O_{11}$ [M+H]+ m/z= 435.1615, found m/z= 435.1610. ¹H NMR (500 MHz, deuterium oxide) δ 7.56 (dd, J = 4.4, 1.8 Hz, 0.75H), 6.94 (dd, J = 4.6, 2.7 Hz, 0.25H), 5.15 (d, J = 2.4 Hz, 0.6H), 4.77 (m, 0.3H), 4.68 (d, J = 2.5 Hz, 0.4H), 4.66 (dd, J = 2.5, 1.1 Hz, 2H), 4.49 (dd, J = 7.9, 1.1 Hz, 0.72H), 4.45 (dd, J = 7.9, 1.2 Hz, 0.28H), 4.41 (ddd, J = 4.3, 2.9, 1.2 Hz, 0.7H), 4.21 (dt, J = 2.8, 1.4 Hz, 0.22H), 4.03 (dq, J = 3.0, 1.9, 1.3 Hz, 0.78H), 3.96–3.87 (m, 1H), 3.87–3.78 (dd, J = 12.1, 4.9 Hz, 3H), 3.71 (dt, J = 9.9, 3.0 Hz, 0.5H), 3.66 (m, 1.5H), 3.59–3.49 (m, 1H), 2.9–2.84 (m, 1H), 1.99 (d, J = 1.3 Hz, 3H). ¹³C NMR (126 MHz, D₂O) δ 174.66, 174.40, 150.58, 149.62, 149.60, 103.04, 102.55, 94.92, 94.86, 90.59, 90.55, 79.41, 79.29, 78.98, 78.56, 78.25, 76.23, 76.13, 74.78, 72.42, 72.36, 72.10, 72.04, 70.73, 70.64, 70.46, 70.35, 70.22, 70.10, 69.57, 69.20, 69.13, 68.83, 61.65, 61.46, 60.07, 59.93, 59.87, 56.24, 53.85, 53.74, 22.21, 21.92.

Synthesis of Alkyne-NH-LacNAc 4d

To a stirred solution of CHO-LacNAc (18 mg) in 0.2 mol/L phosphate buffer (pH 6.0, 400 μ L) was added propargylamine (13 mg) and NaCNBH₃ (59.5 mg) respectively, the reaction mixture was stirred at 0 °C for 4 h and monitored by LC–MS. The solution was subjected to a Bio-gel P2 column, the corresponding product alkyne-NH-LacNAc **4d** was combined and lyophilized to get a white powder (16 mg, yield 72.8%). ESI-MS calcd. for C₁₇H₂₈N₂O₁₀ [M+H]+ *m/z* = 421.1822, found *m/z* = 421.1876. ¹H NMR (500 MHz, deuterium oxide) δ 5.15 (d, *J* = 3.2 Hz, 1H), 4.47–4.40 (m, 1H), 3.95–3.75 (m, 6H), 3.75–

3.56 (m, 5H), 3.51 (m, 2H), 3.19–2.97 (m, 2H), 1.99 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (126 MHz, D₂O) δ 174.80, 174.77, 174.58, 174.50, 102.46, 102.42, 94.96, 90.66, 77.33, 77.01, 75.37, 75.02, 72.43, 72.39, 72.15, 71.00, 70.93, 70.53, 69.40, 69.15, 68.58, 61.03, 59.91, 59.82, 56.43, 53.89, 47.63, 36.81, 22.20, 21.91.

Synthesis of NH₂-LacNAc 4e

To a stirred solution of CHO-LacNAc (18 mg) in 50 mmol/L phosphate buffer (pH 7.0, 200 µL) was added hydroxyamine hydrochloride (3.6 mg), CH₃OH (180 µL) and Na₂CO₃ (2.6 mg) respectively, the reaction mixture was stirred at room temperature for 3 h. After that, NiCl₂·6H₂O (28 mg) and NaBH₄ (26.8 mg) were added to the mixture, the reaction was stirred at 4 °C overnight and monitored by LC–MS. The solution was subjected to a Bio-gel P2 column, the corresponding product NH₂-LacNAc was combined and lyophilized to get a white powder. ESI-MS calc. for C₁₄H₂₆N₂O₁₀ [M+H]+ *m/z*= 383.1665, found *m/z*= 383.1661. ¹H NMR (500 MHz, deuterium oxide) δ 5.01 (s, 0.7H), 4.34–4.19 (m, 1.3H), 3.83–3.27 (m, 11H), 3.11–2.97 (m, 1H), 1.85 (d, *J* = 6.2 Hz, 3H).

Synthesis of LacNAc derivatives 4f

To a stirred solution of CHO-LacNAc (20 mg) in 50 mmol/L phosphate buffer (pH 8.0, 200 µL) was added *N*-benzylthiourea (9.4 mg in 100 µL DMF), the reaction mixture was stirred at room temperature for 8 h and monitored by LC–MS. The solution was subjected to a semi-preparative C18 column, the corresponding product **4f** was combined and lyophilized to get a white powder (17 mg, yield 62%). ESI-MS calc. for $C_{22}H_{22}N_3O_{10}S$ [M+H]+ m/z= 532.1965, found m/z= 532.1911. ¹H NMR (500 MHz, deuterium oxide) δ 7.37 (td, J = 7.4, 4.5 Hz, 2H), 7.33–7.25 (m, 3H), 5.14 (d, J = 2.9 Hz, 0.65H), 4.68 (0.35H) 4.67–4.64 (m, 1H), 4.33 (s, 1H), 3.89 (m, 1H), 3.86–3.70 (m, 6H), 3.68–3.61 (m, 1H), 3.60–3.50 (m, 3H), 3.46 (dt, J = 10.0, 7.4 Hz, 2H), 1.95 (d, J = 8.6 Hz, 3H). ¹³C NMR (126 MHz, D2O) δ 174.63, 174.33, 128.88, 127.57, 126.84, 102.97, 102.89, 94.93, 90.51, 78.99, 78.58, 74.88, 73.15, 72.39, 72.36, 70.88, 70.32, 69.09, 68.85, 68.82, 60.15, 60.01, 56.19, 53.75, 22.19, 21.88.

Synthesis of DBCO-LacNAc 4g

To a stirred solution of NH2-LacNAc 4e (15 mg) in 50 mmol/L phosphate buffer (pH 7.4, 200 µL) was added DBCO-CONHS

(23.7 mg in 100 µL DMF), the reaction mixture was stirred at room temperature for 4 h and monitored by LC–MS. The solution was subjected to a semi-preparative C18 column, the corresponding product DBCO-LacNAc was combined and lyophilized to get a white powder (22 mg, yield 83.7%). ESI-MS calc. for $C_{33}H_{39}N_3O_{12}$ [M+H]+ *m/z*= 670.2612, found *m/z*= 670.2661. ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.77–7.54 (m, 4H), 7.41 (dt, *J* = 21.2, 7.7 Hz, 2H), 7.35–7.19 (m, 4H), 4.97 (d, *J* = 14.0 Hz, 1H), 4.90–4.80 (m, 1H), 4.39 (t, *J* = 7.9 Hz, 0.25H), 4.19–4.05 (m, 0.75H), 3.76–3.64 (m, 1H), 3.64–3.52 (m, 3H), 3.28–2.94 (m, 14H), 2.53 (dtd, *J* = 15.0, 7.5, 3.3 Hz, 2H), 2.26–2.14 (m, 2H), 2.03–1.92 (m, 1H), 1.77–1.67 (m, 3H). ¹³C NMR (126 MHz, DMSO) δ 172.27, 172.20, 172.17, 171.61, 171.59, 169.70, 152.11, 152.09, 148.92, 148.88, 132.98, 132.90, 130.13, 130.10, 129.44, 128.60, 128.51, 128.48, 128.16, 127.26, 127.24, 125.62, 123.02, 121.88, 121.88, 114.72, 114.69, 108.65, 104.23, 104.08, 90.87, 90.82, 81.88, 81.66, 73.45, 73.42, 73.21, 71.68, 70.95, 70.93, 70.44, 68.92, 68.60, 60.99, 60.86, 60.82, 55.38, 54.39, 54.33, 30.69, 30.64, 29.93, 22.97.

Synthesis of Biotin-ON=CH-LacNAc 4h

To a stirred solution of CHO-LacNAc (18 mg) in 50 m mol/L phosphate buffer (pH 7.4, 200 µL) was added Biotin-ONH₂ (22.6 mg), the reaction mixture was stirred at room temperature for 8 h and monitored by LC–MS. The solution was subjected to a semi-preparative column, the corresponding product **4h** was combined and lyophilized to get a white powder. ESI-MS calc. for C₂₈H₄₆N₆O₁₄S [M+H]+ *m/z*= 723.2871, found *m/z*= 723.2877. ¹H NMR (500 MHz, deuterium oxide) δ 7.64 (dd, *J* = 4.0, 2.6 Hz, 0.81H), 6.93 (dd, *J* = 4.5, 3.2 Hz, 0.19H), 5.14 (d, *J* = 3.2 Hz, 0.65H), 4.86 (td, *J* = 4.1, 3.7, 1.2 Hz, 0.25H), 4.80–4.75 (m, 2H), 4.68 (m, 0.35H) 4.58–4.50 (m, 3H), 4.47 (d, *J* = 7.9 Hz, 1H), 4.42 (ddd, *J* = 5.4, 4.1, 1.3 Hz, 0.75H), 4.39–4.35 (m, 1H), 4.27–4.24 (m, 0.2H), 4.04 (td, *J* = 3.2, 1.1 Hz, 0.8H), 3.95–3.74 (m, 4H), 3.69 (tt, *J* = 7.7, 3.2 Hz, 1H), 3.66–3.59 (m, 1H), 3.58–3.50 (m, 1H), 3.38–3.20 (m, 4H), 2.97–2.90 (m, 1H), 2.73 (d, *J* = 13.0 Hz, 1H), 2.19 (t, *J* = 7.3 Hz, 2H), 1.99 (d, *J* = 1.1 Hz, 3H), 1.73–1.47 (m, 4H), 1.35 (m, 2H). ¹³C NMR (126 MHz, D₂O) δ 177.11, 177.08, 174.55, 174.27, 172.32, 172.29, 172.04, 165.35, 150.16, 150.13, 103.23, 103.17, 94.91, 90.59, 90.48, 79.80, 79.36, 77.26, 74.73, 72.37, 72.32, 72.19, 72.07, 70.62, 70.40, 70.14, 69.45, 69.41, 69.11, 68.81, 62.10, 60.28, 59.91, 56.19, 55.34, 53.75, 39.71, 38.51, 38.42, 38.29, 35.54, 27.91, 27.87, 27.71, 25.12, 22.21, 21.91.

Synthesis of coumarin LacNAc 4i

To a stirred solution of 7-(diethylamino)coumarin-3-carboxylic acid (10 mg) in DMF (200 μ L) was added HATU (29 mg), mono-Fmoc ethylene diamine hydrochloride (18.3 mg) and DIPEA (19 μ L) respectively, the mixture was stirred at 37 °C for 4 h and monitored by LC–MS. After 2 h, the solution was subjected to a semi-preparative column, the corresponding product NH₂-coumarin was combined and lyophilized to get a white powder (8.7 mg, yield 75%). ESI-MS calcd. for C₁₆H₂₁N₃O₃ [M+H]+ m/z = 304.1661, found m/z = 304.1615.

To a stirred solution of CHO-LacNAc (32.7 mg) in 0.2 mol/L phosphate buffer (pH 6.0, 400 μ L) was added NH₂-coumarin (8.7 mg) and NaCNBH₃ (18 mg) respectively, the reaction mixture was stirred at 0 °C overnight and monitored by LC–MS. The solution was subjected to a semi-preparative column, the corresponding product coumarin LacNAc was combined and lyophilized to get a white powder (12 mg, yield 63%). ESI-MS calcd. for C₃₀H₄₄N₄O₁₃ [M+H]+ *m*/*z* = 669.2983, found *m*/*z* = 669.2941.

Synthesis of derived LacNAc oxazolines

To a solution of LacNAc derivatives 4a-4i, 2g (5 µmoL) in D₂O (100 µL) was added 2-chloro-1,3-dimethyl-1*H*-benzimidazol-3-ium chloride (CDMBI, 5.4 mg, 25 µmoL) and K₃PO₄ (16 mg, 75 µmoL), The reaction mixture was incubated at 0 °C for 12 h and treated by Waters Sep-Pak Vac column before LC–MS monitoring, the mixture was directly subjected to NMR analysis.

N₃-ON=CH-LacNAc-ox 5a

ESI-MS calc. for $C_{16}H_{25}N_5O_{10}$ [M+H]+ m/z= 448.1679, found m/z= 448.1662.

¹H NMR (600 MHz, deuterium oxide) δ 7.57 (d, J = 4.8 Hz, 0.65H), 6.91 (d, J = 4.6 Hz, 0.35H), 6.01 (dd, J = 7.3, 2.3 Hz, 1H), 4.43 (d, J = 7.8 Hz, 0.7H), 4.38 (d, J = 7.9 Hz, 0.3H), 4.34 (m, 0.3H), 4.33–4.3 (m, 1H), 4.25–4.15 (m, 3H), 4.11 (m, 1H), 3.98 (dd, J = 3.4, 1.1 Hz, 0.7H), 3.74 (m, 1H), 3.67–3.57 (m, 3H), 3.53–3.44 (m, 3H), 3.40–3.35 (m, 1H), 1.99 (t, J = 1.9 Hz, 3H).

N₃-NH-LacNAc-ox 5b

ESI-MS calc. for $C_{17}H_{29}N_5O_9$ [M+H]+ m/z= 448.2043, found m/z= 448.2022.

¹H NMR (600 MHz, deuterium oxide) δ 5.97 (d, J = 7.3 Hz, 1H), 4.29 (d, J = 7.9 Hz, 1H), 4.27 (dd, J = 3.0, 1.6 Hz, 1H), 4.07 (m, 1H), 3.72 (d, J = 3.5 Hz, 1H), 3.69 (dd, J = 12.3, 2.5 Hz, 1H), 3.63–3.58 (m, 1H), 3.56–3.49 (m, 2H), 3.40–3.35 (m, 1H), 3.31 (m, 1H), 3.29 (t, J = 6.7 Hz, 3H), 2.93 (q, J = 7.4 Hz, 2H), 2.68 (q, J = 7.3 Hz, 2H), 1.95 (d, J = 1.7 Hz, 3H), 1.67 (p, J = 7.1 Hz, 2H).

Alkyne-ON=CH-LacNAc-ox 5c

ESI-MS calc. for $C_{17}H_{24}N_2O_{10}$ [M+H]+ m/z= 417.1509, found m/z= 417.1511.

¹H NMR (600 MHz, deuterium oxide) δ 7.53 (d, J = 4.9 Hz, 0.65H), 6.95 (d, J = 4.8 Hz, 0.35H), 5.98 (d, J = 7.3 Hz, 1H), 4.61 (d, J = 9.9 Hz, 4H), 4.43–4.25 (m, 2H), 4.15–4.05 (m, 1.3H), 3.95 (d, J = 3.4 Hz, 0.7H), 3.76–3.67 (m, 1H), 3.65–3.53

(m, 3H), 3.46 (dd, *J* = 10.1, 7.8 Hz, 1H), 3.36 (m, 1H), 1.96 (d, *J* = 1.6 Hz, 3H).

Alkyne-NH-LacNAc-ox 5d

ESI-MS calc. for $C_{17}H_{26}N_2O_9$ [M+H]+ m/z= 403.1716, found m/z= 403.1741. ¹H NMR (600 MHz, deuterium oxide) δ 5.97 (d, J = 7.3 Hz, 1H), 4.33–4.23 (m, 2H), 4.11–4.03 (m, 1H), 3.74 (d, J = 3.6 Hz, 1H), 3.69 (dd, J = 12.3, 2.5 Hz, 1H), 3.63–3.58 (m, 1H), 3.56–3.48 (m, 2H), 3.40–3.35 (m, 1H), 2.90–2.86 (m, 3H), 2.67–2.62 (m, 2H), 1.95 (d, J = 1.8 Hz, 3H).

NH₂-LacNAc-ox 5e

ESI-MS calc. for C₁₄H₂₄N₂O₉ [M+H]+ m/z= 365.156, found m/z= 365.1551.

Benzyl-LacNAc-ox 5f

ESI-MS calc. for C₂₂H₃₁N₃O₉S [M+H]+ m/z= 514.1859, found m/z= 514.1858.

¹H NMR (600 MHz, deuterium oxide) δ 7.32 (t, J = 7.6 Hz, 2H), 7.25 (dd, J = 7.9, 5.7 Hz, 3H), 5.97 (d, J = 7.3 Hz, 1H), 4.34–4.21 (m, 2H), 4.04 (d, J = 7.2 Hz, 1H), 3.70 (dd, J = 12.3, 2.5 Hz, 3H), 3.56 (dd, J = 12.3, 6.4 Hz, 3H), 3.52–3.44 (m, 1H), 3.39 (dd, J = 9.9, 7.8 Hz, 1H), 3.34 (ddd, J = 8.9, 6.4, 2.4 Hz, 1H), 1.97 (d, J = 1.8 Hz, 3H).

DBCO-LacNAc-ox 5g

ESI-MS calc. for $C_{33}H_{37}N_3O_{11}$ [M+H]+ m/z= 652.2506, found m/z= 652.2525.

¹H NMR (600 MHz, DMSO-*d*₆) δ 7.74 (dd, *J* = 6.8, 2.7 Hz, 1H), 7.68 (d, *J* = 7.4 Hz, 1H), 7.65 (q, *J* = 5.5 Hz, 1H), 7.58–7.48 (m, 2.5H), 7.47–7.33 (m, 3H), 7.29–7.01 (m, 1.5H), 5.95 (dd, *J* = 7.3, 3.0 Hz, 1H), 5.09 (d, *J* = 14.1 Hz, 1H), 4.21 (dt, *J* = 11.8, 2.1 Hz, 1H), 4.17–4.12 (m, 1H), 4.00–3.88 (m, 1H), 3.66 (m, 2H), 3.60–3.51 (m, 5H), 3.34 (m, 2H), 3.29–3.27 (m, 2H), 3.26–3.14 (m, 3H), 2.66 (dt, *J* = 16.0, 7.8 Hz, 1H), 2.34 (dt, *J* = 15.4, 7.6 Hz, 1H), 2.10 (td, *J* = 15.2, 13.6, 6.0 Hz, 1H), 2.00–

Biotin-ON=CH-LacNAc-ox 5h

ESI-MS calc. for $C_{28}H_{44}N_6O_{13}S$ [M+H]+ m/z= 705.2765, found m/z= 705.2711. ¹H NMR (600 MHz, deuterium oxide) δ 7.61 (d, J = 4.4 Hz, 0.65H), 6.75 (d, J = 4.8 Hz, 0.35H), 5.97 (t, J = 6.9 Hz, 1H), 4.47 (m, 3H), 4.39 (d, J = 7.5 Hz, 1H), 4.29 (d, J = 37.8 Hz, 3H), 4.06 (d, J = 15.6 Hz, 1H), 3.96 (s, 1H), 3.75–3.68 (m, 1H), 3.64–3.53 (m, 2H), 3.46 (m, 1H), 3.35 (m, 1H), 3.33–3.20 (m, 5H), 3.13 (d, J = 23.1 Hz, 1H), 2.85 (dd, J = 13.1, 4.9 Hz, 1H), 2.65 (d, J = 13.1 Hz, 1H), 2.15–2.06 (m, 2H), 1.96 (dd, J = 5.7, 2.0 Hz, 3H), 1.57 (s, 1H), 1.53–1.38 (m, 3H), 1.24 (s, 2H).

Coumarin LacNAc-ox 5i

ESI-MS calc. for $C_{30}H_{42}N_4O_{12}$ [M+H]+ m/z= 651.2877, found m/z= 651.2834.

2.4 The internalization trace of HER2 receptor on SK-Br-3 tumor cell

Synthesis of biotin/Cy3-tagged LacNAc-trastuzumab

A solution of azido-LacNAc-trastuzumab (1 mg) in a phosphate buffer (50 mmol/L, pH 7.4, 200 μL) was incubated with DBCO-PEG₄-Biotin **8a** or DBCO-Cy3 **8b** (80 nmoL) at 37 °C for 2 h at dark. LC–MS monitoring indicated the complete reaction of azido-LacNAc-trastuzumab to give Biotin/Cy3-tagged LacNAc-trastuzumab. The reaction mixture was concentrated by centrifugal filtration (Millipore) to give the corresponding Biotin or Cy3-tagged LacNAc-trastuzumab (**9a** or **9b**).

Cell culture. SK-Br-3 cells were cultured in a 10% FBS-containing RPMI 1640 medium and incubated under 5% CO₂ at 37 °C in a water-saturated cell incubator (Thermo Scientific). Cells were transferred to an 8-well chamber for confocal microscopy analysis.

Imaging of glycoengineered trastuzumab uptake and HER2 internalization. For glycoengineered trastuzumab uptake assays, SK-Br-3 cells cultured on 8-well chamber were incubated with Cy3-tagged LacNAc-trastuzumab (10 μ g/mL) for 1 h on ice, then washed 3 times with 5% FBS-containing PBS buffer. After that, SK-Br-3 cells were cultured in a 10% FBS-containing RPMI 1640 medium and incubated under 5% CO₂ at 37 °C for 0–8 h. Then the cells were washed 3 times again with 5% FBS-containing PBS and were fixed at room temperature for 15 min with immune staining fix solution (200 μ L). The cell nuclei were stained with Hoechst 33258 (1:1000 dilution, 100 μ L) at room temperature for 15 min. All the cells in 8-wells were washed and preserved in cell grade 1 × PBS on ice at dark. Image analysis was performed on a Leica TCS-SP8 STED instrument. Hoechst 33258 was excited at 405 nm and the nuclei was detected within the window of 415–460 nm. Cy3 was excited at 552 nm and the internalization process was detected with the window of 562-590 nm.

2.5 Antibody glycosylation remodeling with extra sugar moiety

Synthesis of 1-azido-maltotriose. To a solution of maltotriose (10 mg) in ddH₂O (400 μ L) was added NaN₃ (64 mg), CDMBI (21.6 mg) and K₃PO₄ (64 mg) respectively, the reaction mixture was stirred at 0 °C overnight and monitored by LC–MS. The solution was subjected to a Bio-gel P2 column, the corresponding product 1-azido-maltotriose was combined and lyophilized to get a white powder. ESI-MS calcd. for C₁₉H₃₃N₃O₁₄ [M+H]⁺ m/z = 528.2041, found m/z = 528.2042.

Synthesis of glycoengineered trastuzumab with maltotriose by SPAAC reaction. A solution of DBCO-LacNAc-trastuzumab (50 μ g) in a phosphate buffer (50 mmol/L, pH 7.4, 10 μ L) was incubated with 1-azido-maltotriose (4 nmoL) at 37 °C for 2 h. LC–MS monitoring indicated the complete reaction of DBCO-LacNAc-trastuzumab to give maltotriose-extended LacNAc-trastuzumab. The reaction mixture was concentrated by centrifugal filtration (Millipore) to give the corresponding maltotriose-extended LacNAc-trastuzumab.

2.6 Synthesis of drug-linker 10 BCN-Lys(PEG24)-VC-PAB-MMAE

Synthesis of compound S1

To a stirred solution of CH₃O-PEG₂₄-COOH (50 mg) in CH₂Cl₂ (2 mL) was added SOCl₂ (two drops) under nitrogen protection, the reaction mixture was heated at 50 °C for 2 h. TLC analysis (CH₃OH: CH₂Cl₂=1:8) indicated that the reaction was completed. The reaction mixture was dried by rotary evaporation and redissolved in anhydrous THF to get a PEG solution. To a stirred solution of Fmoc-Lys-OH (16 mg) and NaHCO₃ (18 mg) in 900 µL THF and 300 µL ddH₂O was added the above PEG solution slowly, the reaction mixture was stirred at room temperature for 1 h and monitored by LC–MS. The solution was subjected to a semi-preparative column, the corresponding product **S1** was combined and lyophilized to get a white powder. ESI-MS calc. for $C_{73}H_{126}N_2O_{30}$ [M+2H]²⁺ m/z=756.4275, found m/z=756.4272.

Synthesis of compound S3

To a stirred solution of compound S1 (10 mg) in DMF (100 µL) was added HATU (7.8 mg), S2 (8.2 mg) and DIPEA (3.5 µL) respectively, the mixture was stirred at 37 °C for 2 h and monitored by LC-MS. The solution was subjected to a semipreparative column, the corresponding product S3 was combined and lyophilized to get a white powder (16 mg, yield 91%). ESI-MS calcd. for C₁₁₆H₂₀₈N₁₂O₃₉ [M+3H]³⁺ m/z = 798.8299, found m/z = 798.8298. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 8.26 (s, 0.8H), 8.12 (d, J = 7.3 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 8.02 (s, 0.2H), 7.90 (d, J = 8.7 Hz, 1H), 7.73 (d, J = 8.7 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 8.0 7.7 Hz, 6H), 7.64 (d, J = 8.5 Hz, 1H), 7.58 (t, J = 5.7 Hz, 3H), 7.39–7.24 (m, 6H), 7.21–7.12 (m, 1H), 6.08 (s, 1H), 5.05 (m, 3H), 4.69 (m, 1H), 4.50 (d, J = 5.8 Hz, 1H), 4.47–4.36 (m, 2H), 4.35–4.30 (m, 1H), 4.27–4.17 (m, 2H), 4.09–3.92 (m, 1H), 3.68-3.58 (m, 3H), 3.51 (s, 89H), 3.45-3.34 (m, 3H), 3.25 (m, 9H), 3.20 (d, J = 12.2 Hz, 4H), 3.12 (s, 2H), 3.05 (t, J = 10.3Hz, 1H), 2.97 (m, 2H), 2.87 (d, J = 18.0 Hz, 2H), 2.76 (m, 2H), 2.46–2.34 (m, 3H), 2.32–2.22 (m, 1H), 2.19–1.89 (m, 3H), 1.88–1.63 (m, 1H), 1.55 (m, 3H), 1.41–1.23 (m, 2H), 1.09–0.97 (m, 8H), 0.92–0.69 (m, 25H). ¹³C NMR (126 MHz, DMSO) δ 172.87, 172.05, 171.39, 170.98, 170.74, 170.33, 170.27, 169.24, 159.53, 159.12, 158.85, 158.59, 158.33, 144.13, 144.09, 139.04, 138.92, 138.90, 128.63, 128.24, 128.19, 127.17, 127.11, 126.93, 126.87, 119.46, 119.31, 118.33, 115.97, 85.89, 82.12, 75.29, 75.26, 71.76, 70.26, 70.15, 70.06, 69.94, 67.25, 63.81, 61.37, 60.73, 59.14, 58.65, 58.51, 57.92, 57.61, 57.57, 54.56, 53.57, 52.68, 50.24, 49.64, 47.67, 46.70, 44.21, 43.67, 39.23, 37.63, 36.40, 35.62, 32.29, 31.97, 31.71, 31.03, 29.80, 27.17, 27.10, 25.78, 24.80, 23.56, 22.68, 19.62, 19.34, 19.22, 19.01, 18.76, 18.48, 16.32, 16.08, 15.88, 15.79, 15.71, 15.42, 10.85, 10.74.

Synthesis of compound 10

To a stirred solution of compound **S3** (12.8 mg) in DMF (100 µL) was added BCN-O-PNP (3.4 mg) and Et₃N (1.5 µL), the mixture was stirred at 37 °C for 3 h and monitored by LC–MS. The solution was subjected to a semi-preparative column, the corresponding product **10** was combined and lyophilized to get a white powder (10 mg, yield 72.7%). ESI-MS calcd. for $C_{127}H_{220}N_{12}O_{41}$ [M+2H]²⁺ m/z = 1285.7825, [M+3H]³⁺ m/z = 857.524, found m/z = 1285.7848, 857.5232. ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.99 (s, 1H), 8.27 (s, 0.5H), 8.08 (d, J = 7.4 Hz, 1H), 8.01 (d, J = 8.5 Hz, 0.5H), 7.89 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 5.6 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1.5H), 7.57 (m, 4.5H), 7.48 (m, 3H), 7.42–7.24 (m, 10H),

7.24–7.14 (m, 1H), 6.01 (s, 1H), 5.16–4.91 (m, 3H), 4.69 (m, 1H), 4.50 (d, J = 5.9 Hz, 1H), 4.44 (d, J = 6.6 Hz, 1H), 4.37 (q, J = 7.5 Hz, 1H), 4.26 (dd, J = 13.8, 10.8 Hz, 1H), 4.17 (m, 2H), 3.99 (m, 2H), 3.78 (dd, J = 9.3, 2.4 Hz, 1H), 3.64–3.55 (m, 4H), 3.55–3.32 (m, 96H), 3.28–3.23 (m, 7H), 3.20 (d, J = 12.3 Hz, 4H), 3.12 (s, 2H), 3.08–2.92 (m, 4H), 2.86 (dd, J = 18.0, 4.2 Hz, 3H), 2.47–2.36 (m, 1H), 2.29 (t, J = 6.6 Hz, 3H), 2.22–1.87 (m, 5H), 1.87–1.62 (m, 2H), 1.63–1.40 (m, 3H), 1.39–1.12 (m, 9H), 1.08–0.97 (m, 7H), 0.93–0.72 (m, 29H). ¹³C NMR (126 MHz, DMSO) δ 172.87, 172.52, 172.28, 172.16, 171.35, 170.98, 170.34, 170.27, 169.25, 168.06, 159.43, 158.86, 152.27, 148.91, 144.11, 144.09, 132.86, 130.06, 129.91, 129.36, 128.62, 128.47, 128.26, 128.20, 127.25, 127.13, 126.92, 126.87, 125.61, 122.95, 121.87, 119.44, 119.30, 114.83, 108.63, 75.29, 75.28, 71.75, 70.25, 70.14, 70.05, 69.97, 67.33, 61.37, 58.51, 57.77, 57.61, 57.58, 55.26, 53.59, 36.60, 35.26, 34.36, 31.08, 29.76, 29.27, 25.79, 25.12, 24.94, 23.56, 23.28, 19.58, 18.43, 18.40, 18.05, 15.89, 15.79, 15.75, 15.42.

2.7 Synthesis of Drug-linker-LacNAc 11

Synthesis of compound S5

To a stirred solution of compound S4 (5.6 mg) in DMF (100 µL) was added HATU (13.5 mg), S2 (20 mg) and DIPEA (9.3 µL) respectively, the mixture was stirred at 37 °C for 2 h, LC–MS monitoring indicated the complete reaction, then Et₃N (100 µL) was added to the above solution. The reaction mixture was stirred at room temperature for another 1 h and monitored by LC–MS. The solution was subjected to a semi-preparative column, the corresponding product S5 was combined and lyophilized to get a white powder (16.5 mg, yield 89%). ESI-MS calcd. for C₆₀H₉₇N₁₁O₁₄ [M+H]⁺ m/z = 1196.7294, [M+2H] ²⁺ m/z = 598.8685, found m/z = 1196.7263, 598.8622. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.04 (s, 1H), 8.33 (d, J = 7.3 Hz, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.10 (m, 0.4H), 7.93 (d, J = 8.8 Hz, 0.6H), 7.89 (m, 0.6H), 7.73 (d, J = 8.5 Hz, 0.4H), 7.54 (d, J = 9.4 Hz, 2H), 7.28 (m, 6H), 7.13 (m, 1H), 5.19–4.91 (m, 2H), 4.77–4.58 (m, 1H), 4.53 (s, 2H), 4.5–4.25 (m, 6H), 3.72 (d, J = 9.4 Hz, 1H), 3.59–3.41 (m, 2H), 3.34–2.90 (m, 15H), 2.91–2.71 (m, 4H), 2.45–2.17 (m, 2H), 2.00 (m, 4H), 1.86–1.23 (m, 9H), 1.01 (dd, J = 13.5, 6.7 Hz, 6H), 0.79 (ddt, J = 43.6, 15.6, 7.3 Hz, 29H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 173.32, 173.16, 171.27, 171.03, 170.26, 169.58, 167.78, 159.89, 159.61, 159.33, 159.05, 158.78, 156.87, 156.29, 143.84, 143.70, 138.79, 132.42, 128.73, 128.59, 128.28, 127.24, 126.94, 119.64, 119.48, 117.74, 115.41, 85.68, 82.07, 78.13, 77.32, 75.46, 71.51, 66.60, 64.15, 61.34, 60.71, 59.12, 58.77, 57.83, 57.69, 57.58, 55.77, 54.63, 54.53, 53.82, 50.13, 49.60, 47.77, 46.80, 44.21, 43.73, 39.10, 37.43, 35.51, 32.24, 32.02, 31.08, 30.40, 30.03, 29.48, 27.01, 25.67, 24.70, 23.47, 19.44, 19.32, 19.20, 19.10, 18.85, 18.63, 18.31, 16.52, 16.00, 15.69, 15.22, 10.72, 10.67, 8.96.

Synthesis of compound S6

A solution of compound **S5** (10 mg) and CHO-LacNAc (3.3 mg) in DMF (100 µL) and a phosphate buffer (0.2 mol/L, pH 7.5, 100 µL) was stirred at 37 °C for 2 h and monitored by LC–MS. The solution was subjected to a semi-preparative column, the corresponding product **S6** was combined and lyophilized to get a white powder (10 mg, yield 74%). ESI-MS calcd. for $C_{74}H_{118}N_{12}O_{24}$ [M+2H]²⁺ m/z = 780.4265, found m/z = 780.4221. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.00 (d, *J* = 7.4 Hz, 1H), 8.27 (d, *J* = 7.2 Hz, 1H), 8.22 (s, 0.4H), 7.98 (s, 0.6H), 7.84 (1.5H), 7.68–7.50 (m, 4.5H), 7.37–7.21 (m, 6H), 7.14 (h, *J* = 6.5 Hz, 1H), 5.13–4.93 (m, 2H), 4.91 (d, *J* = 2.8 Hz, 1H), 4.71 (d, *J* = 5.7 Hz, 1H), 4.65–4.45 (m, 4H), 4.44–4.31 (m, 3H), 4.30–4.16 (m, 3H), 3.67–3.50 (m, 5H), 3.48–3.27 (m, 4H), 3.26–3.13 (m, 7H), 3.09 (s, 2H), 3.06–2.90 (m, 4H), 2.84 (dd, *J* = 18.6,

4.5 Hz, 3H), 2.38 (d, J = 15.9 Hz, 1H), 2.32–2.20 (m, 1H), 2.16–2.03 (m, 2H), 1.96 (m, 2H), 1.80 (d, J = 6.1 Hz, 3H), 1.69 (m, 1H), 1.63–1.24 (m, 4H), 0.99 (m, 6H), 0.93–0.63 (m, 28H). ¹³C NMR (126 MHz, DMSO) δ 172.91, 171.28, 170.97, 170.33, 170.30, 169.92, 169.29, 168.86, 168.63, 159.55, 156.73, 150.11, 144.08, 144.03, 139.01, 138.89, 132.47, 132.29, 128.63, 128.26, 128.21, 127.20, 127.14, 126.93, 126.88, 119.50, 119.34, 104.09, 90.82, 85.87, 82.12, 81.42, 78.16, 77.38, 75.31, 75.28, 72.98, 72.83, 72.72, 71.14, 71.10, 70.54, 70.49, 70.41, 68.96, 66.56, 66.49, 61.37, 60.73, 60.65, 59.14, 58.67, 57.63, 57.57, 57.53, 55.54, 54.65, 54.56, 54.39, 53.69, 50.23, 49.64, 47.69, 46.72, 44.22, 43.69, 37.61, 35.60, 32.29, 31.99, 31.30, 30.47, 30.42, 30.15, 29.73, 27.16, 27.07, 25.77, 25.75, 24.79, 23.56, 23.44, 23.03, 19.59, 19.32, 19.21, 18.99, 18.79, 18.76, 18.71, 18.51, 16.35, 16.08, 15.86, 15.75, 15.39, 10.84, 10.74.

Synthesis of compound 11

To a solution of compound **S6** (10 mg) in ddH₂O (100 μ L) was added CDMBI (6.9 mg) and K₃PO₄ (20.4 mg), the reaction mixture was stirred at 0 °C for 12 h, LC–MS monitoring indicated the oxazoline formed. The solution was subjected to a semi-preparative C18 column with base mobile phase, the corresponding product compound **11** was combined and lyophilized to get a white powder (7.2 mg, yield 72%). ESI-MS calcd. for C₇₄H₁₁₆N₁₂O₂₃ [M+2H]²⁺ m/z = 771.4215, found m/z = 771.4221.

2.8 Synthesis of glycosite-specific ADCs containing branched N-glycan chains with DAR 4

Synthesis of drug-linker **12** (BCN-VC-PAB-MMAE)

To a stirred solution of compound S2 (6 mg) in DMF (100 μ L) was added BCN-O-PNP (3.4 mg) and Et₃N (1.5 μ L), the mixture was stirred at 37 °C for 3 h and monitored by LC–MS. The solution was subjected to a semi-preparative column, the corresponding product 12 was combined and lyophilized to get a white powder (5 mg, yield 72.7%). ESI-MS calcd. for C₆₉H₁₀₆N₁₀O₁₄ [M+2H]²⁺ m/z = 650.4023, found m/z = 650.4011.

2.9 Synthesis of gsADC-3

Synthesis of azido-S2G2F-trastuzumab. The azido-S2G2F Trastuzumab was prepared as described previously. Briefly, the azido group was introduced to the terminal oxidized sialic acid of sialylglycpeptide (SGP) by oxime reaction. The purified azido oxime SGP (10 mg) was incubated with Endo-M (28 μ g) in a phosphate buffer (50 mmol/L, pH 6.2, 69 μ L) at 30 °C and monitored by LC–MS. After the complete hydrolysis, the reaction mixture was diluted to 10 mmol/L with water, and CDMBI (5 eq.) and K₃PO₄ (15 eq.) was added. The solution was incubated on ice for 2 h. Then, the reaction mixture was further diluted into 1.95 mL Tris buffer (50 mmol/L, pH 7.1) containing (Fuc α 1,6)GlcNAc-trastuzumab (11.5 mg) and Endo-S D233Q (340 μ g), and the mixture was incubated at 30 °C for 2 h. LC–MS monitoring indicated the complete reaction. The solution was immediately subjected to affinity chromatography via protein A resin following the above procedure to give the corresponding azido-S2G2F-Trastuzumab.

Synthesis of gsADC-3. A solution of azido-S2G2F-Trastuzumab (1 mg) and drug-linker **12** in a phosphate buffer (50 mmol/L, pH 7.4, 200 μ L) was incubated at 37 °C for 4 h. LC–MS monitoring indicated the complete reaction of azido-S2G2F-Trastuzumab to gsADC-3. The reaction mixture was concentrated by centrifugal filtration (Millipore) to give the corresponding gsADC-3.

2.10 Synthesis of positive control ADC (Cys random conjugation)

A solution of wild-type Trastuzumab (1 mg) in a phosphate buffer (50 mmol/L, pH 7.4, 200 μ L) was treated with TCEP (2.5 eq, 0.085 mmol/L) at rt for 2 h. Then, the Drug-Linker mc-VC-PAB-MMAE (10 eq, 0.33 mmol/L) was added to the above solution, the mixture was incubated at 37 °C for another 2 h. Reverse-phase (RP) HPLC and MS analysis indicated the DAR value was about 3.5. The reaction mixture was concentrated by centrifugal filtration (Millipore) to give the corresponding Cys random ADC.

2.11 Reaction sites confirmation

Light and heavy chain analysis. A solution of **6a** (50 µg) in a phosphate buffer (50 mmol/L, pH 7.4, 10 µL) was incubated with DBCO-Cy3 or DBCO-FITC (4 nmoL) at 37 °C for 4 h. SDS-PAGE analysis indicated that Cy3 or FITC was labeled on the heavy chain of trastuzumab.

IdeS protease treatment. A solution of Wild-type trastuzumab or (Fuc α 1,6)GlcNAc-trastuzumab or gsADC-2 (50 µg) in a phosphate buffer (50 mmol/L, pH 7.4, 10 µL) was incubated with IdeS protease (5 U) at 37 °C overnight. LC–MS monitoring indicated that drug-LacNAc complex were conjugated on the ScFc of trastuzumab.

PNGase F treatment. A solution of Wild-type trastuzumab or gsADC-2 or (Fuc α 1,6)GlcNAc-trastuzumab (50 µg) in a phosphate buffer (50 mmol/L, pH 7.4, 10 µL) was incubated with PNGase F (1 µg) at 37 °C overnight. LC–MS monitoring indicated that azido-tagged LacNAc was conjugated on the glycosylation site of the antibody.

3. NMR spectra:

¹H NMR of GalNAc-ox **2b**

 1 H NMR of (GlcNAc)₂-ox 2d

¹H NMR of NeuNAc- α 2,3-LacNAc-ox **2f**

 1H NMR of Gal- β l,4-(Fuc α l,3)GlcNAc-ox2h

¹H NMR of NeuNAc- α 2,3-LacNAc 4k

¹H NMR of Gal- β 1,4-(Fuc α 1,3)GlcNAc 4j

 $^{13}\mathrm{C}$ NMR of N₃-NH-LacNAc 4b

¹³C NMR of Alkyne-ON=CH-LacNAc 4c

¹³C NMR of Alkyne-NH-LacNAc 4d

¹H NMR of Benzyl-LacNAc 4f

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.(fl (ppm)

 $^1\mathrm{H}$ NMR of DBCO-LacNAc $4\mathrm{g}$

¹H NMR of Biotin-ON=CH-LacNAc 4h

Bl-Biotin-ON=CH-Disaccharide.3.1.1r Bl-Biotin-ON=CH-Disaccharide D20 13C-BB

S37

¹H NMR of Alkyne-ON=CH-LacNAc-ox 5c

S39

¹H NMR of Biotin-ON=CH-LacNAc-ox **5h**

¹³C NMR of Compound **S3**

Compound 10

S42

¹³C NMR of Compound 10

¹³C NMR of Compound **S5**

4. References

[1] K. Parikka, M. Tenkanen, Carbohydr. Res. 2009, 344, 14-20.