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1. Data Collection

a. Systematic Review Methodology
Search Procedure

We searched Serotracker using “household and community samples” and “persons living in slums”
in the “demographics” field. We also searched MedRxiv, PubMed, Google Scholar, Biorxiv, SSRN,
Twitter, and the Pan American Health Organization database using the pre-specified search term
“COVID-19 seroprevalence”. Then we cross-checked with recently published systematic reviews of
worldwide seroprevalence (1-4), while identifying further studies by searching the grey literature
and government websites where appropriate. This included searching using the term “COVID-19
seroprevalence” on Google in languages on Google Translate such as Portuguese, Spanish, English,
French, German, and Italian, with an additional search for "inquérito sorolégico, COVID-19".
Duplicates were reviewed by authors on Google sheets and resolved independently.

We completed searches on October 22", 2020, and at least monthly afterwards until July 14, 2021.
We also performed searches monthly until September 22, 2021 during initial drafting of our paper.
After our completing initial draft, we performed additional searches monthly up to December 17,
2021, which represented the final cut-off date for studies included in our analysis. Only studies with
results from an official source were included, such as a published paper, pre-print, presentation by
government officials, or the website of the institution that performed the study. If a press report or
another unofficial source was found, we performed more detailed searches using information from
the unofficial source to find a matching official source. Study authors were contacted by email or
Twitter for further information, when needed. We also ran detailed searches after September 22,
2021 on older studies for which preliminary results were found by September 22, but for which
updates were posted after September 22. We include links to the studies at each location in the
appendix folder of our GitHub repository.

Searches were conducted by one member of the team and then repeated to ensure consistency by
another. Data were similarly extracted by one member then cross-checked by another. No data
collection was automated. This process was recorded by the team working across regions in Google
sheets. Data collection is more fully described below but included extracting seroprevalence
information from included studies by age where available, as well as death data specific to COVID-19
from each country/region with valid seroprevalence information. Where serology data was not
evident in publicly available reports, we reached out to researchers and public health officials using
both email and social media. For death data we largely relied on publicly available official reports.

Studies were reviewed by two authors and screened for inclusion. Disagreements were resolved
through discussion between all authors at weekly meetings and via email. Where essential data
were missing despite efforts to access them, we excluded the study from our synthesis, as noted in
supplementary appendix section 1.b. Our aim was to provide the most robust estimate of age-
specific IFR in developing countries, and thus we considered it inappropriate to rely on potentially
flawed assumptions regarding these studies in our analysis.
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Exclusion of Convenience Samples

Blood donor studies are widely used as blood donors are a convenient population from which to
draw a population estimate — donors already have blood taken, can be tested easily, and tend to
include people from a relatively wide area (5). However, as has been noted in research prior to the
pandemic, donors are a highly selected sample and donor studies often have a large bias in terms of
estimates of seroprevalence for other diseases (6, 7). Moreover, in many areas, particularly at initial
stages of the pandemic, donating blood was one of few methods available to access a serological
test. It is unclear which direction this bias generally runs, especially considering the dynamics of a
novel pathogen in the community (8).

Residual sera studies examine clinical blood samples taken initially for other reasons. These samples
have an obvious bias in that they are representative of people going to have blood taken for reasons
other than SARS-CoV-2 tests, a group that may not be representative of the general population (9).
Bayesian procedures can be used to incorporate studies of convenience samples (such as residual
sera from blood donors or commercial lab tests) in producing estimates of population infection rates
by accounting for uncertainty about the magnitude and direction of bias (10); however, we excluded
such studies from our analysis to avoid introducing these additional sources of bias. Convenience
sampling of such populations may be sufficient for other purposes, but probabilistic selection from a
representative sample frame better facilitates accurate estimation of population-wide infection
rates (3, 11).

Risk of Bias

In assessing the risk of bias for each location, we considered three specific factors: (1) the serology
study’s rate of non-response; (2) the risk of bias due to seroreversion if the study used an assay with
high risk of seroreversion but information was not sufficient for adjusting sensitivity accordingly; and
(3) the risk of death undercounting was elevated due to low proportion of well-certified deaths.
These risk of bias assessments are provided in the appendix folder of our GitHub repository.

Publication Bias

In this context, publication bias in which studies exhibiting certain findings are more likely (or not) to
be published, is very unlikely to have an impact, as studies with both high and low seroprevalence
estimates are of interest to the scientific literature. Consistent with this, in prior work we found no
evidence of publication bias for seroprevalence studies from high-income countries (12). However,
to mitigate the risk of publication bias influencing our results, we included lengthy searches of grey
literature, following up on media reports of seroprevalence studies to ensure that every age-
stratified that we were able to identify was in our metasynthesis.

b. Full Inclusion / Exclusion Criteria
We included only studies that met both of the following conditions:

1. Report seroprevalence from a representative sample in developing countries, meaning:
random selection of participants from a sample frame representative of the general
population, such as household sampling, or sampling >50% of the general population by
census (13-15), conducted in countries classified by the International Monetary Fund as
“Emerging and Developing Economies” (16).

2. Available online and accessible in English, or via translatable text if not in English.

Levin AT, et al. BMJ Global Health 2022; 7:e008477. doi: 10.1136/bmjgh-2022-008477



Supplemental material

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
placed on this supplemental material which has been supplied by the author(s) BMJ Global Health

For studies with no reported age-stratified seroprevalence, but sufficient information to otherwise
calculate age-stratified IFRs, we calculated these IFRs assuming equal seroprevalence across age-
groups instead of excluding the study. When total sample size and age-specific seroprevalence were
known, but age-specific sample sizes were not precisely reported, age-specific sample size was
imputed based on the age-distribution of the general population. We excluded:

1.

Convenience samples (3), including those utilizing residual sera from clinical specimens and
blood donors (see the “Blood Donors and Residual Sera” section below), dialysis centres,
healthcare workers, and actively recruited participants constituting less than 50% of the
total population sampled (3, 12, 17).

Studies sampling a high-income country, as classified by the International Monetary Fund
(16), or a wealthy micronation such as Andorra or Monaco.

Studies in which sampling extended after February 2021, to help mitigate the risk of
seroreversion on longer timeframes (see supplementary appendix section 2.a).

If gender ratios were reported and less than 35% of the sample reported as male or female,
in the absence of cited evidence that the study’s gender ratio matched the general
population.

Studies that used the Wondfo serology assay, for the reasons discussed in section 2.b below.
Studies that did not report the total number of individuals tested or seroprevalence.
Studies using serology assays with insufficient data for estimating sensitivity and specificity
from a known number of tested samples.

IFR estimate excluded if: A) the sampling start-week or end-week was not known to allow
for accurate determination of the corresponding number of COVID-19 deaths, B) test-
adjusted population-wide seroprevalence overlapped with 0%, or C) samples were taken
during an accelerating outbreak in which reported COVID-19 deaths increased by a factor of
three or more from the midpoint date of sampling to 4 weeks later (12).

Seroprevalence estimate excluded if both of the following conditions were met: A) IFR
estimate was excluded for other reasons listed above, and B) the study overlapped
geographically with another included study. This geographical exclusion avoided
oversampling the same location (12). IFR estimates that met condition B but not condition A
are discussed in the out-of-sample analysis below.

Our “out-of-sample” analysis included studies that met at least one of the following conditions:

1.

IFR estimate for a location that geographically overlapped with an included study, and thus
inclusion of both estimates risked oversampling the same location. IFR estimates for those
locations are provided in supplementary appendix section 3.i.

Zero COVID-19 deaths reported for the sampled location, making the calculated IFR non-
robust (18). Consequently, our GitHub repository includes seroprevalence estimates for
these out-of-sample locations, but IFR estimates were not computed.

The total population from which the sample was drawn was less than 30,000, which may not
reflect the wider population of the region. Consequently, our GitHub repository includes
seroprevalence estimates for these out-of-sample locations, but IFR estimates were not
computed.

Seroprevalence data from five cities in Pakistan did not become available until after our final
cutoff.
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c. PRISMA Flow Diagram
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d. Death Data

Building on our prior work (12), we assess the length of the lag between the midpoint of serology
sampling and the time at which COVID-19 deaths were reported. The time interval between
symptom onset and death had an interquartile range (IQR) of:

- 7 to 22 days for Argentina (19)
- 9 to 24 days for Colombia (20)
- 10 to 26 days for the Brazilian states of Espirito Santo (21) and Parana (22)

These intervals largely agree with IQRs reported for the USA as:

-9 to 24 days for ages 18-64
-7 to 19 days for ages >64 (12)

The IQR for the interval between death and official reporting for the USA was 2 to 19 days (12).
This largely matches the interval ranges for Argentina (19), Colombia (20), and Paraguay (23) before
March 2021 when included seroprevalence studies stopped collecting samples (see section 1.b),

as shown below:

Figure Al — Death Reporting Lags
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Argentina, Colombia, and Paraguay may be outliers with respect to the systematic collection and
publication of vital statistics during the pandemic (24); so other developing countries may have
substantially longer reporting lags that may not be documented in the absence of detailed case data.
The time interval between symptom onset and official death reporting thus appears roughly similar
in developing countries as in our previous analysis of high-income countries such as the USA (12).

For some study locations, we were able to extract COVID-19 fatality data from case databases that
specified the actual date of death; in those instances, we used the cumulative number of fatalities as
of two weeks after the midpoint date of serology specimen collection. In other locations, fatality
data was only available from official epidemiological bulletins, in which the official number of
cumulative deaths announced at a particular date reflected reporting lags. In those instances, as in
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our previous work (12), we extracted death information four weeks after the midpoint of specimen
collection. These timing specifications reflect approximate 95 percentiles as follows:

- 2-week interval between symptom onset and seropositivity,
- 4-week interval between symptom onset and death,
- 2-week interval between death and official reporting.

There is also the question of what is the most appropriate death data to use. In most countries there
are two sets of COVID-19 deaths: confirmed or suspected. In some countries the government will
also present a third tally of deaths, which is modelled using excess mortality statistics or similar.
Confirmed COVID-19 deaths may under-estimate the total number of COVID-19 deaths due to
insufficient testing (25-28). This may be detected by comparing reported COVID-19 deaths with
excess deaths, as reflected in the Peruvian government increasing their tally of reported deaths in a
manner that better approximated total excess deaths (24, 29). Nepal’s government also later
substantially increased their reported tally of COVID-19 deaths (30).

Problems with death reporting are well-illustrated by the case of Mexico, a country whose vital
statistics system has notable gaps and which experienced a huge number of COVID-19 deaths. When
looking at the raw data on individuals, 90% of those who died did not have a date of death entered
into the publicly available data. Previous research also demonstrated that large numbers of people
who died from COVID-19 in Mexico failed to access a test and thus are not included in the country’s
mortality statistics (28). This means that the reported death data available for Mexico is not
sufficient to derive a high-quality COVID-19-related IFR. We therefore instead used an alternative
official source in Mexico that accounted for this COVID-19 death under-estimation (31).

So for the purposes of the primary analysis, we included the confirmed + suspected death figures
where available instead of only confirmed deaths, as confirmed + suspected is the more robust
estimate of reported COVID-19 deaths in developing countries. Death data were extracted from
national datasets in each country where possible, with alternative sources noted where applicable.
Where death data were not immediately available, we contacted the national or local authority
through email or social media. We also attempted to confirm death data using the most robust
source, and in most cases took the estimate directly from the relevant health authority rather than
data aggregation websites. We include our informal assessment of risk of COVID-19 death under-
estimation in the appendix folder of our GitHub repository. This is assessment is based on
percentage of deaths well-certified in the past decade (32), and on comparison of reported COVID-
19 deaths to excess deaths.

e. Assay Characteristics and Seroconversion

For the assays used in the serology studies that were included in our analysis, we catalogued the
assay manufacturer’s estimates of sensitivity and specificity as well as third-party assessments of its
performance characteristics. In addition, we conducted a review to assess serological assays for risk
of seroreversion. This review was restricted to studies that tested the same individuals at two
different time-points separated by at least two months, or tested individuals at least two months
after their first known positive test for SARS-CoV-2. We placed emphasis on commercial assays or
assays used in seroprevalence studies.

The search used the terms “COVID-19 seroreversion” and “COVID-19 longitudinal, antibody waning”
in Medrxiv, Biorxiv, Google Scholar, and SSRN. Searches were completed at least monthly from
March 2021 to June 2021, with the final search performed on June 30, 2021. We supplemented this
with seroreversion studies found during searches up to July 14 for seroprevalence studies with
representative sampling, and for which further information was released after July 14 (see
“Systematic Review Methodology”). Finally, we selected the studies that contained information
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about assays that had been used in the serology studies included in our analysis (as described in the
preceding subsections of this appendix).

Our systemic review of assay characteristics revealed that the Wondfo assay exhibited extreme
variations in test sensitivity across batches, apparently reflecting defects in its manufacturing
process (33-35); consequently, any serology study which used this assay was excluded from our
analysis.

For seroprevalence to approximate the number of people infected, almost all infected people need
to seroconvert by increasing antibody levels after infection. Studies of large populations suggest that
>85% or >90% of SARS-CoV-2-infected individuals seroconvert by approximately 2 weeks after
infection (36-39). This increases confidence in the accuracy of seroprevalence-based infection
estimates that use tests with sufficiently high sensitivity (36, 40, 41). Moreover, >50% of the total
population seroconverted in several locations, which would not occur if a substantial proportion of
infected individuals failed to seroconvert. Table Al illustrates this with studies reporting >50%
seroprevalence before the onset of widespread SARS-CoV-2 vaccination:

These high seroprevalence estimates may shed light on high vs. low herd immunity thresholds (42-
44). For example, Leticia suffered another wave of SARS-CoV-2 infections after reported
seroprevalence of 62%, as did Delhi after reported seroprevalence of 56%, the state of Maranhdo
after reported seroprevalence of 40%, and Jordan after reported seroprevalence of 34% (20, 45, 46).
Cross-reactivity also likely does not account for elevated seroprevalence in many of the regions
listed in table A1, since cross-reactivity did not significantly reduce test specificity in locations such
as Colombia, Ethiopia, and Iran (47-49). These high seroprevalence estimates instead imply that the
vast majority of infected individuals seroconverted, increasing the reliability of seroprevalence-
based infection estimate (50).

Some serological assays exhibit significantly lower specificity in African populations, possibly due to
cross-reactivity with other pathogens (48, 51). This may contribute to divergent seroprevalence
estimates between two studies performed in Addis Ababa, Ethiopia (49, 52) (see supplementary
appendix section 3.i). However, specificity likely remains high in African populations for many of the
assays used in our included studies (49, 53, 54).

Finally, it should be noted that the Gladen-Rogan procedure of adjusting for assay specificity and

sensitivity (55)) assumes that those characteristics are precisely known, without accounting for the
uncertainty that comes with inferring characteristics from a limited number of tested samples (56).
By contrast, our statistical model uses Bayesian methods that incorporate this form of uncertainty.
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Table A1l - Locations with Seroprevalence Exceeding 50%

Region Location Reported seroprevalence Number tested for
seroprevalence estimate
Argentina: Buenos Aires 53.4% 873
(Barrio Padre Mugica) (Cl: 52.8 - 54.1%)
Argentina: Metropolitan Area 56.7% 300
of Buenos Aires (Cl: 55.8 - 57.6%)
(17 de Noviembre)
Colombia, 10 cities: 53% 1426
Barranquilla (Cl: 41 - 65%)
Latin Colombia, 10 cities: Guapi 78% 721
America (Cl: 65 - 91%)
Colombia, 10 cities: Leticia 62% 1417
(Cl: 51 - 73%)
Colombia, Cordoba: Monteria 55.3% 1368
(Cl: 52.5 - 57.8%)
Peru: Iquitos; July, 70% (Cl: 67 - 73%) 716
August 66% (Cl: 62 - 70%) 621
Africa Ethiopia: 54.2% 218
Addis Ketema (Cl: 47.5 - 60.7%)
Afghanistan: Kabul 53% (Cl: < +/-6%) -
Middle Iran, 18 cities: Qom, 58.5% (Cl:37.2 - 83.9%) 108
East Rasht 72.6% (Cl: 53.9-92.8%) 99
Iraq: Duhok city 62.6% 743
Bangladesh: Dhaka (“slums”) 74% -
India: Delhi 56.1% 28,169
(CI: 55.5 - 56.8%)
India: Hyderabad 54.2% 9363
(Cl: 53.2 - 55.2%)
India: Karnataka (urban 53.8% 453
areas) (Cl: 48.4 - 59.2%)
South | India: Mumbai, 3 “slums” (in: 56.4% 4202
Asia Chembur West, 55.1% (Cl: 52.4 - 57.8%) 1511
Dahisar, 51.1% (Cl: 46.4 - 55.8%) 570
Matunga) 57.0% (Cl: 54.7 - 59.2%) 2121
India: Pune, 5 subwards 51.3% (Cl: 39.9% - 62.4%) 1659
(Lohiyanagar-Kasewadi, 66.4% (Cl: 57.8% - 74.1%) 307
Navi Peth-Parvati, 54.1% (Cl: 48.3% - 61.7%) 331
Yerwada) 55.5% (Cl: 46.6% - 64.1%) 367

Notes: Cl refers to confidence interval. This analysis is restricted to studies with at least 75 people
tested. Links to these studies are provided in the Appendix folder of our GitHub repository.
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f. Covariates

We extracted data from the most recent year prior to the pandemic, which in most cases was 2019
or earlier. For some estimates such as workforce, we relied on the best available data, some of
which was several years old for some countries.

The covariates are:

GDP per capita

Healthcare spending

GNI per capita

Hospital beds per capita

Life expectancy at birth

Healthy life expectancy at age 60
Global health security index

Skilled healthcare workers per capita
. Universal health coverage index

10. % of deaths well-certified (32)

©CENOU A WN P

Briefly, these covariates were chosen because they either relate to the expected quality of the
health system itself (i.e. doctors/nurses per population) or to how likely a country was to be
accurately recording the burden of COVID-19 (WHO indicators, human development index). We also
included the ratio of life expectancy between age 60 and 20 to account for the potential for
survivorship bias — if there was a significant element of survivorship bias in the countries examined,
we would expect the ratio to be higher as more elderly people survived longer periods in places with
higher mortality in youth.
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2. Statistical Methodology

a. Adjustment for Seroreversion

Seroreversion occurs when the specific antibodies a serological assay tests decline to below the
assay’s level of detection, preventing the assay from identifying infected individuals. As many studies
conducted in developing countries were performed long after initial COVID-19 waves passed, the risk
of seroreversion could be high. This could lead to underestimation of the proportion of infected
people and thus unreliable estimates in our computed IFRs. Moreover, any modelling using
assumptions about seroreversion for one serological test would almost certainly lead to errors in
other places as different tests can substantially differ in characteristics (57).

For all other assays that were used in the serology studies included in our analysis, we classified
each assay’s risk of seroreversion (high, medium, or low) based on two sources of data:

e longitudinal serology studies, in which specimens were collected periodically from a given
sample of individuals over an extended period of time.

e Serology analysis of prior RT-PCR positive cases, i.e., collection of specimens from individuals
who had previously tested positive for COVID-19.

Some seroprevalence studies tested a representative sample of the general population, including
those with a prior positive SARS-CoV-2 PCR test weeks or months before serological testing, a
previous COVID-19 diagnosis weeks or months before serology, etc. If many of these prior-positive
individuals later tested seronegative, then that is unlikely to represent failed seroconversion, as
previously discussed. It instead likely indicates a high risk of seroreversion during the time following
their initial positive test (58). A threshold of <75% sensitivity was selected for this risk of
seroreversion because at least 75% of prior-positives tested seropositive using the Roche assay that
is at low risk of seroreversion (see Table A2), and the vast majority of sources reported sensitivity of
at least 75% before seroreversion, as shown in the input data of our GitHub repository.

Table A2 indicates our assessment of the seroreversion risk of each assay for which sufficient
information was available from longitudinal data or analysis of prior confirmed RT-PCR positive
cases. For each assay, this table also shows the locations for which we have estimated IFR from
serology results obtained using that assay.

Although not shown in the table, three of these assays were also used to estimate seroprevalence in
“Sero-Only” locations where IFR could not be estimated due to lack of corresponding fatality data:
(1) Roche Elecsys (anti-nucleocapsid) was used in Duhak, Irag; Hyderabad and Rourkela, India; Gaza
and West Bank, Palestine; and Jourberton, South Africa. (2) Euroimmun IgG was used in Tirana,
Albania; Pune, India. (3) Wantai IgG/IgM was used in Cox’s Bazar Rohingya camps, Bangladesh;
Georgia (4 districts); Malaysia (nationwide); Mongolia (nationwide), Klerksdorp & Pietermaritzburg,
South Africa; and Phuket, Thailand.

For every location for which the assay used in serology was classified as having high risk of
seroreversion, we made corresponding adjustments to the data on assay sensitivity as follows:

o Abbott Architect assay. We used information from prior studies to assess how the sensitivity
of this assay diminishes over time following the onset of infection at each monthly interval
from 0 to 6 months. For each of the seven locations where this assay was used, we
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computed its weighted sensitivity as of the midpoint date of the serology study, where the
weights were determined by the time path of confirmed SARS-CoV-2 cases in that location.

Other assays with high risk of seroreversion. For each of the three locations that used such
assays, we extracted information about the seropositivity of specimens from individuals with
a prior positive RT-PCR test. This approach automatically accounts for the variation in time
intervals since infection, because each of these serology studies used a representative
sample of the general population, and is consistent with prior work on how waning of
antibodies reduces the proportion of prior-positives who test seropositive (58, 59).

Table A2 — Seroreversion Assessments and Sources

Seroreversion Data

South Africa: Mitchells Plain

>

Risk Sequential Prior
Category Assay IFR Locations Tests Positives Citations
High Abbott Architect 1gG Ethiopia: Dire Dawa X
Hungary (nationwide) X
Bosnia & Herzegovina: X
Republika Sprska X (37, 60-70)
India: Chennai, Mumbai, X
Pimpri-Chinchwad, Srinagar X
Erbalisa IgG India: Paschim Medinipur X (71,72)
Zydus Kavach IgG India: Delhi X (71)
Luminex S South Africa: Gauteng X (58)
Moderate  Euroimmun IgG Zambia: Lusakq & Ndola X X (67, 73.77)
Poland: Katowice X
Roche Elecsys IgG/1gM Brazil: Maranhao, Sao Paulo X
(anti-nucleocapsid) Chile: 3 urban areas X X
India: Berhampur, X X (6397 73(;3 76:
Bhubaneswar, Puducherry X X 7’8—8’3) !
Mexico (nationwide) X
Pakistan: Karachi, Lahore X
Low COVIDAR IgG ArgenFma: Buenos Aires City, X (84, 85)
Hurlingham
DiaSorin Liaison 1gG Brazil: Cuiabd, Mato Grosso, X
) 3 , (37,57, 60,
Pitangueiras, Vdrzea Grande X 69, 70, 86)
Oman (nationwide) X
Genetico CoronaPass Russia: St. Petersburg X (63, 65)
Total
Ortho Vitros 1gG India: Tamil Nadu X (57)
Roche Elecsys 1gG/IgM
(anti-spike) N/A X (64, 87)
Siemens Advia I1gG/IgM Colombia: Barranquilla, X
Bogotd, Bucaramanga, X (69, 70)
Cali, Cucuta, Ipiales, Leticia, X !
Medellin, Villavicencio X
Unl\{er5|ty . Brazil: Rio Grande do Sul X (33, 88)
of Rio de Janeiro
Wantai SARS-CoV-2 Total Jordan (nationwide) X
Kenya: Nairobi X
Nepal (nationwide) X (64, 89, 90)
Senegal (nationwide) X

Note: This table shows the seroreversion risk category assigned to each assay for which sufficient

informa

tion was available.
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e Assays with medium risk of seroreversion. For locations that used either of these assays,
we extracted information about the seropositivity of specimens from individuals with a prior
positive RT-PCR test, and we utilized that data if the seropositivity rate was less than 75%
(corresponding to a significant degree of seroreversion in that location.)

Given the seroreversion-adjusted sensitivity for each location, we imputed the corresponding
number of seropositive specimens that would be obtained using the actual sample size for that
serology study, and then those values serve as inputs to the Bayesian model described below.
This approach is conceptually similar to prior studies that have imputed the number of specimens
and the number of confirmed cases by inverting seroprevalence confidence intervals (10, 91).

Finally, Table A3 lists the assays for which seroreversion could not be assessed due to insufficient
information. For each assay, this table shows the IFR and “Sero-Only” locations for which we relied
on the baseline characteristics of that assay.

Table A3 - Assays with Unknown Seroreversion

Assay
Abbott PanBio IgG/IgM

Beijing Kewei IgG/IgM
Bioscience 1gG/IgM

Core Technology 1gG
Coretest IgG/IgM

CTK Biotech Onsite 1gG/IgM
ECO IgG/IgM

GenBody IgG

Healgen IgG/1gM

INgezim DR 1gG/IgM/IgA
Karwa Kavach 1gG

Luminex N

Orient Gene Biotech IgG/IgM
Pishtaz Teb IgG/IgM
Proprietary assay #1
Proprietary assay #2
Proprietary assay #3
Proprietary assay #4

Qingdao Hightop IgG/IgM
RightSign IgG/1gM
Shenzhen iFlash IgG

Standard Q 1gG/IgM

THSTI IgG
UNCOV-40 IgG/IgM

IFR Locations

Mozambique: Maputo

Paraguay: Asuncion & Central Dept.
China: Wuhan, Hubei ex. Wuhan
Ethiopia: Addis Ababa

Peru: Lambayeque

Brazil: Distrito Federal

Brazil: Pitangueiras

Colombia: Cdrdoba
India: Malegaon

Brazil: Iquitos, Loreto
Iran (nationwide)
Brazil: Foz do Iguagu

India: Tamil Nadu
Ecuador: Cuenca
Peru: Lima & Callao
Bolivia: Santa Cruz
India: Karnataka

Sero-Only Locations
Mozambique: Beira, Chokwe,
Matola, Quelimane, Xai-Xai
Pakistan: Islamabad

China: 3 provinces
Ethiopia: 3 towns

Dominican Republic: 10 provinces
Yemen: Aden

India: Indore, Jabalpur
Dem. Rep. of Congo: Kinshasa

Laos: 5 provinces

Zimbabwe: Budiriro & Highfield

South Sudan: Juba

Mozambique: Chimoio, Tete,
Massinga, Maxixe, Pemba

Libya: Benghazi

Mozambique: Nampula

Nigeria: Niger State
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b. Bayesian Model for Estimating Seroprevalence and IFR

Model for COVID-19 infections

Let Rl*,A be the number of individuals who tested seropositive in age group A at location [, and nj 4
give the number of individuals tested in that age group for this location. We model the number of
individuals with a positive serology test in the study as

Ry, ~ Binomial(ny 4, py4), where (1)

Pia = sensy T4 + (1 - spectl) (1 - nl_A). (2)

To account for the error rates of the test, the test positivity probability, pj 4, is defined as a function
of test sensitivity (sensy,), test specificity (spectl), and the true seroprevalence (m 4) for the
associated location and age group at the time of the study. For many studies, we did not have
seropositivity by age, in which case A represented all ages.

To account for uncertainty in the test characteristics, we model the lab validation data directly. Let
Nsens,: denote the number of positive specimens tested with test t, and Xsens,: the number of positive
specimens that correctly tested positive. Similarly, let Nspec,:and Xspec,: denote the number of negative
specimens tested and the number of negative specimens that correctly tested negative with test t,
respectively. We model these quantities as follows:

Xsens,t ~ BinOl’nia'(nsens,t, senst) (3)
Xspect ~ Binomial(nspect, spec:). (4)
Model for COVID-19 deaths

Let leA give the number of recorded COVID-19 deaths, for age group A at location 1. Note that if only
a single death record is available, then A represents the entire age range. We model the recorded
COVID-19 deaths as

Dy ~ Poisson(Ny 4 X 1y 4 X IFR 4) (5)

where N, 4 gives the number of individuals at location [l in age group A. Then N, 4 X m; 4 gives the
expected number of infected individuals, and IFR) 4 is the infection fatality rate for location 1 and age
group A, representing the probability an individual dies from COVID-19, given the individual had
COVID-19. Note, the Poisson distribution reflects the relative rarity of a COVID-19 fatality relative to
the entire population.

Accounting for data collected in varying age bins

Notice that the models above for deaths and infections in (1) and (5) are functions of prevalence and
IFR, respectively, defined on discrete age bins. However, the discrete age bins are not necessarily the
same for the death data and the seroprevalence studies. The following adjustments were made to
match serology and death age bins:

¢ Death bins nested within a serology bin: We aggregate deaths for each location to match the
respective serology age bins to avoid placing assumptions about the variability of prevalence
across ages within a single serology age bin.

¢ Serology bins nested within a death bin: The average seroprevalence for the death age bin is
calculated as an average of the serology age bins, weighted by the percent of the population in
each age bin.
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¢ Bin endpoints slightly off: When age bins were within one or two years of matching, serology
age bins were adjusted to match the corresponding death age bins.

All modifications to age bins are documented in a spreadsheet in the data folder.
Population Age Distribution

Let fi(a) denote the number of individuals of age a at location [ for a € (0,1,...,84+). Note, if
population age structure is only available in 5 year age bins, then define
fi([b,b +5)
- 3 Ae5)

be[o,5,...80]

1 [b,b+5) (a)

where £i([b, b + 5)) is the proportion of the population ages [b, b + 5).

In cases where the location specific age structure is only available in large bins, but the national age
structure is available in 5 year age bins, we leverage the national age structure to inform the location
specific age structure as follows. Let A denote an interval the location specific age structure is
available for (e.g., [0,18)). If f(A) is the proportion of the population at location [ with an age in A and
fala) is the proportion of the population aged a at the national level, then we estimate fi(a), the
proportion at location 1 that is age g, as

fi(a) = fA)—L9__ (6)

Theann fn(d)’

Essentially, we rescale fn(a) such that the total mass in A matches the observed total massin A at
location [, f(A). Since we model seroprevalence as constant past age 85, we let fj(85) represent the
proportion of the population aged 85 or older, rather than just the proportion aged 85.

Calculating Average Seroprevalence within a Death Age Bin

Define the population age density for age bin A as

_ @
fal@) =g 2wy @ € (OL . 84+) (7)

in order to truncate fj(a) to age bin A.

The prevalence for age bin B =U ¢4 4 is then defined

mp = ZAEJI[”I,A Ybeann fia (b)]- (8)

For the locations where we only have serology study information with no corresponding fatality
data, the proportion of all study participants that were in a given age bin was assumed
representative of the proportion of the population in each age bin since the studies were designed
to have representative samples. For the locations with both serology and fatality data, population
data were recorded in the Population Distributions tabs with citations.
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Priors

Because there are infinitely many combinations of prevalence, sensitivity, and specificity that can
result in the same test positivity rate, we used weakly informative priors for the seroprevalence
parameters and informative priors for sensitivity and specificity to avoid a multimodal posterior,
similar to Gelman and Carpenter (2020). For the seroprevalence parameters, ) 4, we used
independent, weakly informative priors:

m,4 ~ Beta(2,6) foralll, A. (9)

These priors assume a mode around 0.15 with a prior probability of 0.8 that m) 4 falls between
0and 0.8.

We also used independent priors for the test sensitivities and specificities. For each test assay t, the
priors on the sensitivity and specificity were

sens; ~ Beta(10,1) (10)
spec: ~ Beta(50,1). (112)

To further narrow the seroprevalence, sensitivity, and specificity combinations, we used
independent, mildly informative priors for each IFR parameter based on expert knowledge. IFR for
COVID-19 is known to increase with age. We also expect IFR to be more extreme (smaller than
average or larger than average) when the age bin is small. For example, we would expect an age bin
from 20-80 to look similar to the country average, but we would expect an age bin from 70-80 to be
much higher than the country average. To formulate a prior that reflects these characteristics, we

modeled
IFR; 4 ~ Beta(1, IFR{"}™) (12)
where
prior __ _ U,a=50 (., Uia—Lia
IFRYL = 30 — 20 [24-20 (1 - 2—ua))] (13)

The lower and upper bounds of age bin A at location [ are given by L; 4 and Uy 4, respectively. For
open-ended upper ages, we set Uy, = 100. As an example, IFRP (", o) = 30, while IFR} g0 1) = 14,
allowing for larger IFR estimates when focusing on the older individuals.

Model Implementation

The model was implemented in version 4.0.2 of the programming language R, and posterior samples
were obtained via the software package Stan (version 2.21.1). We ran three chains for 10,000
iterations, where the first 5,000 iterations were discarded as warm-up samples. All parameters had
an effective sample size greater than 1,200. Additionally, the R value was within 0.0016 of 1 for each
parameter, suggesting convergence. Examination of traceplots also suggested convergence.

Out-of-sample observation were run as a separate model, so information on test sensitivity and
specificity was not pooled between in-sample observations and out-of-sample observations.
Traceplots, effective sample size (minimum of 2100), and R values (within 0.0029 of 1) suggested
convergence of the out-of-sample model as well.

We compared plugin estimates for parameters to the posterior distribution for each parameter to
check model fit. In each case there was good agreement, or the Bayesian estimate was superior. For
example, in Figure A2, we compare the posterior distribution of the sensitivity and specificity
estimates to the raw estimate. In most cases, the middle 50% of the posterior distribution contains
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the raw estimate. However, for test kit ID 11 (Qingdao Hightop Biotech IgM/IgG Duo), the raw
estimate of specificity is outside the range of the posterior draws. In the case of this test, it was used
in locations with extremely low prevalence, such that the Gladen-Rogan (55) adjustment results in a
negative estimate of prevalence (meaning the expected number of false positives is greater than the
number that tested positive.) Since this is unreasonable, the Bayesian model raises the specificity
estimate, lowering the expected number of false positives.

Figure A2 - Sensitivity and Specificity Posterior Distributions

A: Sensitivity B: Specificity
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Note: These boxplots show the posterior distribution of each assay’s sensitivity (panel A) and
specificity (panel B) compared to the raw estimate (red dot) based on lab validation data. Further
details (including the name of each assay) are given in the appendix folder of our GitHub repository.

Model Outputs

For each model parameter, we use the posterior mean as the point estimate and produce 95%
equal-tail credible intervals to describe uncertainty.

Total seroprevalence

Similar to calculating the average seroprevalence for a death age bin, we estimate total
seroprevalence for a location by taking an average of the age bin seroprevalences, weighting by the
population distribution at that location:

T,[0,100+) = ZAEJQ[T[LA Yveann fia (b)] (14)
where A, are the serology age bins associated with location 1.
Assessing Uniformity of Seroprevalence Across Age

We calculated total seroprevalence for younger adults and middle aged adults, compared to older
adults. The age bins used for each location were selected as follows:

¢ Younger adults (approximately 18 to 59): Any age bins such that 15 < lower age <60 and 20 <
upper age < 65 were included
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¢ Middle aged adults (approximately 40 to 59): Any age bins such that 40 < lower age < 60 and
40 < upper age < 65 were included

¢ Older adults (approximately 60 and older): Any age bins such that 60 < lower age were
included.

This resulted in sets of bins where the 18-59 bins and the 40-59 bins did not overlap the 60+ bins.

We then calculated total seroprevalence from age a to b using appropriate age bins, A, similar to
equation (8)

n,a
Ma-b = DacATA Soean (15)
BeA 1B
where 5 nl"; estimates the percent of the total population in that age bin, assuming
BeA B

representative age distributions in the serology studies.

For each draw from the posterior distribution, we calculated m ,_, for each of our three age

T T,
ZL60t and —£%* for each draw.

T),18-59 T),40-59

intervals of interest. We then calculated the ratios

Total IFR and Comparison to High-income (EJE) Prediction
Total IFR
Suppose location [ has death age bins «A,. Let Ypeann fia;,(b) = pop, , for A € A,. Then

number of deaths

IFR =
total ™ 1 uimber of infections

_ Yiaea, R4 X T4 X pop; 4

YBed, Mg X Pop; g

T, 4XPOP) 4 )
YBeA, T1,BXPOP| g

= e, PR X (16)
estimates the total IFR for location 1. By calculating IFRwtai for each posterior sample, we can then
obtain posterior mean and credible intervals for IFRotal.

High-income country benchmark

We compare the IFR estimate to a high income country benchmark based on results from Levin et.
al. (4) which found a log-linear relationship between age and IFR. Define

f‘”lL 10-327+0.0524a4, if q < 85
HICB, =4 | 10 ) (17)
= 10—3.27+0.0524(85) ifa>85
100 =
Then HICB, represents the IFR predicted by the high-income countries line averaged over the interval
[a,a+ 1) for ages less than 85 and assumes the high-income countries line flattens out and becomes

uniform for ages 85 and older.

Then if we assume uniform prevalence for a location, the total IFR estimate over age bin A for high-
income countries is

YaeaEEgxf1(a)
HICB, = =—/—/F—"———=. 1
CBa Ybea f1(b) (18)
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Subsetting to ages 18-65

To estimate the IFR between ages 18 and 65, we used the same strategy in picking age bins as we did
when testing uniform prevalence. That is, we selected B, to be the death age bins in A such that the
lower age of the bin is greater than or equal to 18 and the upper age of the bin is less than 66. We
then applied equation (16), replacing A, with B,. We were not able to calculate the IFR between 18
and 65 for locations there were no age bins in B,.

Baseline population

In order to compare the impact of the age specific IFR while controlling for population age
distribution, we calculated the Total IFR substituting fi(a) for a baseline population age distribution,
f(a) in (16). We calculated £, (a) following (7). The baseline population was calculated as a median
across locations for each age, then rescaled to sum to one:

f.(a) = median{ fi(a) | lis one of the observed locations with fatality data } (19)
ey L@
N =5 (20)

We also considered taking the mean across locations for each age and taking the mean across
locations for each age after removing the top five and bottom five locations for that age (a censored
mean). All three approaches gave similar values as shown in Figure A3.

Baseline age distribution

Various estimates of baseline age distribution (mean, median, and censored mean) plotted on age
distribution for observed locations in grey:

Figure A3 — Estimates of Baseline Age Distribution
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To get an average total IFR estimate for each country, we took a weighted average of the total IFR
estimate of the locations within that country. We chose to weight by 1/4/n in order to give more
weight to locations with more certain seroprevalence estimates. In locations with multiple age bins,
we took the average across n) 4 as nj. We weighted by certainty in the seroprevalence estimates
rather than the IFR estimates because larger IFR estimates tend to be due to small seroprevalence
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estimates and consequently have more uncertainty (i.e., small differences in the denominator,
seroprevalence, can result in large changes in the IFR estimate when seroprevalence is small). We
did not want to bias the average by down weighting all of the larger IFR estimates.

We followed the same process to estimate the country average IFR between 18 and 65, with the
added step of removing any locations in the country where B, was empty.
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c. National Serology Studies of High-Income Countries

As shown in Table A4, many high-income countries succeeded in limiting SARS-CoV-2 transmission
during 2020 and early 2021 (92-94). Japan and South Korea (as well as several other East Asian
countries) were particularly successful at limiting infection rates (95, 96). Some subnational high-
income country locations reported higher seroprevalence, e.g., about 21% in New York City, USA
(97), up to 25% in some Swiss cantons (59), and 42% at an Austrian ski area (18). However, the
available serology data, based on representative samples of the general population, indicates that
no location in any high-income country experienced non-vaccine-induced seroprevalence above 45%
prior to March 2021.

Table A4 —National Seroprevalence Estimates for High-Income Countries

Timeframe Location Reported seroprevalence Midpoint date

April 2020 to Slovenia 0.9% (Cl: 0.4-1.4%) April 25
Sept. 2020 Spain 5.0% (Cl: 4.7-5.4%) May 4
France 4.5% (Cl: 3.9 -5.0%) May 17

Italy 2.5% (Cl: 2.3-2.6%) June 19
United Kingdom 6.0% (Cl:5.8-6.1%) July 1

Canada 1.9% (Cl: 1.4 - 2.0%) July 15

South Korea 0.01% July 19

Germany 0.7% July 21

Denmark 2.0% (Cl: 1.7-2.4%) Sept. 19

Netherlands 4.7% (Cl: 4.0-5.5%) Sept. 28

Oct. 2020 to USA 11.9% (CI: 10.5 - 13.5%) Oct. 30
January 2021 England 5.6% (Cl: 5.4-5.7%) Nov. 3
Germany 1.1% (Cl: 0.9-1.3%) Nov. 6

Slovenia 4.1% (Cl:3.0-5.2%) Nov. 11

Austria 4.7% (Cl: 3.8 - 5.6%) Nov. 13

South Korea 0.1% Nov. 21

Spain 9.9% (Cl: 9.4 - 10.4%) Nov. 22

France 6.2% (CI:5.9-6.6%) Nov. 26

Denmark 4.1% (Cl: 3.1-4.9%) Dec. 16

Norway 0.9% (ClI: 0.7 - 1.0%) Jan. 5
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Table A5 - Variants of Benchmark Metaregression for High-Income Countries

Description # Observations Intercept Slope Coefficient

-3.27 0.0524
Benchmark

104 (0.073) (0.0013)
Exclusion of 68 -3.32 0.0532
Convenience Samples (0.089) (0.0015)
Adjustment for 104 -3.22 0.0516
Seroreversion (0.070) (0.0012)
Adjustment for Death 104 -3.18 0.0526
Undercounting (0.075) (0.0013)

d. Metaregression benchmark for high-income countries

To provide a benchmark for our analysis of IFR in developing countries, we consider the findings
from a prior meta-analysis of age-specific IFRs for high-income countries (12). That study conducted
a metaregression using 104 observations on age-specific IFRs from 28 locations (using samples
collected between April and July 2020) and obtained the following results:

logi¢(IFR) = -=3.27 + 0.0524 xage
(0.07) (0.0013)

where the standard error for each estimated coefficient is given in parentheses.

To determine whether those results can serve as a suitable benchmark, we must consider several
distinct methodological issues. First, the prior study used serology data from convenience samples as
well as from representative samples of the general population, whereas our present analysis
excludes convenience samples. Second, the prior study computed assay-adjusted seroprevalence
using the baseline characteristics of each assay, whereas our present analysis incorporates
adjustments for seroreversion over time. Third, the prior study used official reports on confirmed
COVID-19 deaths, without incorporating any information about underreporting of COVID-19
fatalities, but subsequent analysis has shown that such underreporting has been substantial in some
locations in high-income countries.

To assess the significance of these methodological issues, we have replicated the prior
metaregression analysis along with three variants. In the first variant, the metaregression excludes
36 observations from convenience samples. In the second variant, we make seroreversion
adjustments for two locations (Italy and Spain) that utilized the Abbott Architect assay, using the
same approach as in our present analysis described above. In the third variant, we adjust fatalities
using IHME estimates of COVID-19 death undercounts. Table A5 reports the results of this sensitivity
analysis. Evidently, the results for each variant are nearly identical to those of the prior benchmark
regression, with no statistically significant differences in the estimates of the intercept or slope
coefficient. These results underscore the robustness of this metaregression for high-income
countries and support its use as a benchmark for assessing IFR in developing countries.

21

Levin AT, et al. BMJ Global Health 2022; 7:e008477. doi: 10.1136/bmjgh-2022-008477



BMJ Publishing Group Limited (BMJ) disclaims al liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Global Health

3. Additional Results

a. Seroreversion Estimates

Table A6: Seroreversion Adjustments and Assay Sensitivity

Country Location Assay Baseline (%) Adjusted (%) Ratio
Chile 3 urban areas Elecsys 99.5 68.8 0.69
Ethiopia Diredawa Abbott 100 86.8 0.87
Hungary National Abbott 100 87.2 0.87
India Delhi Kawach 92.1 65.2 0.71
Pimpri-Chinchwad Abbott 100 77.9 0.78

Paschim Medinipur Erbalisa 98.3 36.7 0.37

Chennai Abbott 100 83.2 0.83

Srinagar Abbott 100 78.1 0.78

Mumbai Abbott 100 76.9 0.77

South Africa Gauteng Luminex 100 46.7 0.47

Note: This table shows the characteristics of the assay used in the serology study of each of the
specified locations, including the assay sensitivity at baseline, the seroreversion-adjusted sensitivity,
and the ratio of adjusted to baseline sensitivity. In denoting these assays, Elecsys refers to the
Elecsys Anti-SARS-Cov-2 Roche assay, Abbott refers to the Abbott Architect IgG assay, Kavach refers
to the Kawach IgG assay, Erbalisa refers to the Erbalisa IgG assay, and Luminex refers to the Luminex
protein trimer assay.

Table A7: Implications for Seroprevalence and IFR

Seroprevalence (%)

Baseline Seroreversion- Seroprevalence IFR
Country Location Sensitivity Adjusted Sensitivity Ratio Ratio
Chile 3 urban areas 10.1 13.8 14 0.73
Ethiopia Diredawa 4.4 5.0 1.2 0.87
Hungary National 0.4 0.5 1.4 0.79
India Delhi 31.2 43.2 1.4 0.72
Pimpri-Chinchwad 329 40.7 1.2 0.83

Paschim Medinipur 6.8 12.6 1.9 0.55

Chennai 221 26.3 1.2 0.84

Srinagar 40.2 50.4 1.3 0.80

Mumbai 40.1 52.0 13 0.78

South Africa Gauteng 18.8 33.2 1.8 0.56

Note: For each location, this table reports the seroprevalence estimate obtained using the baseline
sensitivity of the assay used in that serology study as well as the corresponding estimate obtained
using the seroreversion-adjusted sensitivity for that assay. The penultimate column shows the ratio
of seroreversion-adjusted to baseline-adjusted seroprevalence, while the final column shows the
ratio for the corresponding estimates of population IFR for that location.
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b. Seroprevalence Estimates

Figure A4 — Population-wide Seroprevalence
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Notes: The green shading represents the range of national seroprevalence for high-income countries
in Table A4. Links to these studies are in the Appendix folder of our GitHub repository.
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Figure A5 — Ratio of Seroprevalence for Older Adults (60+ years) Compared to
Younger Adults (18-59 years)
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Note: The green shading represents the range of national seroprevalence for high-income countries
from our prior work (12). Links to these studies are in the Appendix folder of our GitHub repository.
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c. Age-specific IFR curves by location
Figure A6 — Age-Specific IFR Curves By Location
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Note: For each location, this figure shows the posterior estimate and 95% credible interval of IFR for each of the age
brackets reported in the serology study of that location; each estimate reflects the reported number of COVID-19
fatalities for that age bracket in that location and has not been adjusted for death undercounting.
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d. Age-specific IFRs by Age Cohort
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Figure A7 — IFR Estimates for Children
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Figure A9 - IFR Estimates for Middle-aged Adults
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Figure A10 — IFR Estimates for Older Adults
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Note: Links to these studies are in the Appendix folder of our GitHub repository.
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e. Metaregression Results

Percent
3

Figure A1l — Age-specific IFR Metaregression in Levels

/
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Note: Links to the studies at each location and categorization by percentage of deaths well-certified
are provided in the appendix folder of our GitHub repository.

31

Levin AT, et al. BMJ Global Health 2022; 7:e008477. doi: 10.1136/bmjgh-2022-008477



BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Global Health

f. Population IFR

Figure A12 — Population IFR (ages 18 to 64)
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Note: This figure shows IFR estimates for the population aged 18-64 based on the age structure and age-specific seroprevalence in each location.
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g. IFR Estimates from Other Sources

Table A8 compares reported IFRs from studies included in our literature search to our meta-analysis
IFR estimates for the corresponding locations, while Table A9 lists reported IFRs from studies
identified in our literature search that were excluded from our IFR analysis. It should be noted that
IFRs based on reported COVID-19 deaths may be biased due to death undercounting, especially for

countries that have a low percentage of well-certified deaths (32).

Table A8 — Comparison of Meta-analysis IFRs to Reported IFRs

Location

IFR stated in the study

Meta-analysis IFR

Brazil: Maranhdo*

0.14% (Cl: 0.13 - 0.16%) [reported deaths]
0.28% (Cl: 0.25 - 0.32%) [excess deaths]

0.13% (Cl: 0.12 - 0.14%)

Chile: Coquimbo-La
Serena, Greater
Santiago, and Talca

1.67% (Cl: 1.64 - 1.70%)

1.23% (Cl: 1.04 - 1.45%)

Colombia:
Cordoba (8 cities)*

0.24% (Cl: 0.23 - 0.25%)

0.34% (Cl: 0.29 - 0.43%)

Mexico: National

0.47% (Cl: 0.44-0.50%)

0.46% (Cl: 0.44-0.48%)

Peru: Lambayeque

0.5%

0.49% (Cl: 0.43 - 0.56%)

Poland: Katowice
region

0.62% (Cl: 0.53 - 0.74%)

0.62% (Cl: 0.50 - 0.76%)

Russia: St. Petersburg*

0.83% (Cl: 0.62 - 1.00%) [excess deaths]

0.54% (Cl: 0.41 - 0.73%)

Ethiopia: 20.09% 0.20% (Cl: 0.09 - 0.63%)
Addis Ababa #2
Kenya: Nairobi County* 0.04% 0.06% (Cl: 0.05 - 0.07%)

South Africa:
Gauteng province

0.28% (Cl: 0.27 - 0.30%) [reported deaths]
0.67% (Cl: 0.64 - 0.71%) [excess deaths]

0.12% (CI: 0.10- 0.17%)

South Africa:
Mitchells Plain

0.3% (Cl: 0.3 - 0.4%) [in-hospital deaths]
0.5% (Cl: 0.4 - 0.6%) [excess deaths]

0.31% (CI: 0.27 - 0.37%)

India: national

0.08% (Cl: 0.07 - 0.09%) to
0.11% (Cl: 0.10 - 0.12%)

0.06% (Cl: 0.05 - 0.06%)

India: Chennai*

0.17% (Cl: 0.14 - 0.22%)

0.08% (Cl: 0.07 - 0.08%)

India: Delhi

0.079% (Cl: 0.076 - 0.081%)

0.055% (Cl: 0.05 - 0.06%)

India: Kashmir

0.03% (Cl: 0.03 - 0.04%)

0.03% (Cl: 0.026 -
0.030%)

India: Madurai district*

0.04% (Cl: 0.04 - 0.05%)

0.03% (Cl: 0.02 - 0.03%)

India: Mumbai (3 0.12% 0.08% (CI: 0.08 - 0.09%)
wards)*
India: Pimpri- 0.17% 0.22% (Cl: 0.20 - 0.23%)
Chinchwad
India: Puducherry* 0.08% 0.18% (CI: 0.15-0.22%)

Note: IFRs are based on reported deaths, not excess deaths, unless otherwise noted. Studies with

an asterisk also reported age-specific IFRs. Age-specific IFRs were also reported for Karnataka,

India (98).
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Table A9 — Reported IFRs for Sero-Only Studies

Location IFR stated in the study Type of Reason IFR estimate was
death not generated
Rio das Pedras: 0.2%; Maré: 0.3%;
Brazil: Rio de Rocinha: 0.3%; Cidade de no death data
Janeiro (multiple Deus: 0.4%; Realengo: 1.2%; reported 4 weeks post-midpoint,
regions of the city) Campo Grande: 1.8% insufficient information
on assay
wave 1: 0.12% (Cl: 0.09 — 0.20%) excess
South Africa: wave 1: 0.16% (Cl: 0.13-0.23%) | in-hospital no death data
Jouberton wave 2: 0.50% (Cl: 0.29-1.17%) excess 4 weeks post-midpoint
wave 2: 0.36% (Cl: 0.24 - 0.72%) | in-hospital
Klerksdorp:
South Africa: 0.3% (Cl: 0.2 -0.3%) in-hospital
Klerksdorp, 0.3% (Cl: 0.3 -0.3%) excess no death data
Pietermaritzburg Pietermaritzburg: 4 weeks post-midpoint
0.3% (Cl: 0.3-0.3%) in-hospital
0.6% (Cl: 0.5-0.6%) excess
no death data
4 weeks post-midpoint,
Sudan: 0.64% (Cl: 0.62 —0.75%) excess sampling after February
Omdurman* 2021
Iran: Guilan 0.12% reported no death data 4 weeks
province post-midpoint
no death data 4 weeks
Iran: Mazandaran 0.33% reported post-midpoint,
province no stated start-week and
end-week
Palestine 0.11% reported | no stated start-week and
end-week
India: Indore (city, 0.17% reported no death data 4 weeks
not district) post-midpoint
India: Pune, 5 0.21% reported no death data 4 weeks
subwards* post-midpoint
India: Tamil Nadu* 0.05% reported Tamil Nadu split into 2
regions based on assay

Note: IFRs are based on reported deaths, not excess deaths, unless otherwise noted. Studies with an
asterisk also reported age-specific IFRs.
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h. Covariates

Table A10 - Correlations Between Covariates, IFR, and Well-Certified Deaths

Covariate Population IFR Well-Certified Deaths

Human Development Index

0.63 (0.27-0.83)

0.90 (0.78-0.96)

Log of GDP per capita

0.60 (0.23-0.82)

0.88(0.73-0.95)

Log(Healthcare Spending)

0.60 (0.22-0.82)

0.93 (0.82-0.97)

Log of GNI per capita

0.60 (0.22-0.82)

0.88 (0.72-0.95)

Hospital Beds Per Capita

0.57 (0.18-0.80)

0.48 (0.06-0.76)

Universal Health Coverage Index

0.55(0.16-0.79)

0.95 (0.88-0.98)

Skilled Healthcare Workers Per Capita

0.49 (0.08-0.76)

0.69 (0.36-0.86)

Global Health Security Index

0.47 (0.05-0.75)

0.59 (0.21-0.81)

Life Expectancy at Birth

0.43(0.0-0.73)

0.71 (0.40-0.88)

Healthy Life Expectancy at Age 60

0.40 (-0.04-0.71)

0.83 (0.61-0.93)

This table demonstrates the relationship between various covariates (32), IFR, and the measure of
well-certified deaths. This shows that well-certified death is likely to be a primary explanatory

variable, which is confounded by relationships with GDP and other national measures when these
are used instead. An example of this is shown in the Directed Acyclic Graph below, made using the

Daggity online tool: http://www.dagitty.net/dags.html#

Figure A14 — Directed Acyclic Graph of Covariate Relationships
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i. Out-of-Sample Analysis

Our analysis excludes seroprevalence estimates that geographically overlap with an already included
location, as discussed in supplementary appendix section 1.b. The body of the paper also excludes
IFR estimates that overlap with an included IFR, though we still calculated population-wide IFRs for
these out-of-sample locations. The table below lists these IFR estimates:

Table Al11 - IFRs for Out-of-Sample Locations with Geographical Overlap

Location Excluded from body of paper Meta-analysis IFR
Brazil: Sdo Paulo* No 0.84% (Cl: 0.76 - 0.93%)
Brazil: Sdo Paulo #2* Yes 0.77% (Cl: 0.66 - 0.88%)
Ethiopia: Addis Ababa* No 0.11% (CI: 0.07 - 0.16%)
Ethiopia: Addis Ababa #2 Yes 0.20% (Cl: 0.09 - 0.63%)
Ethiopia: Addis Ababa #3* Yes 0.002% (Cl: 0.001 -
0.005%)
India: national* Yes 0.06% (Cl: 0.05 - 0.06%)
India: Kashmir (Srinagar district)* No 0.06% (Cl: 0.06 - 0.07%)
India: Kashmir* Yes 0.03% (Cl: 0.026 -
0.030%)
India: Tamil Nadu (Vitros districts) No 0.07% (CI: 0.06 - 0.07%)
India: Madurai district Yes 0.03% (CI: 0.02 - 0.03%)
(in Tamil Nadu)*
China: Wuhan* No 0.86% (Cl: 0.76 - 0.97%)
China: Wuhan #2* Yes 0.71% (Cl: 0.59 - 1.06%)

*age-specific seroprevalence also reported in the paper

IFRs from studies of the same location may differ by sampling time due to factors such as improved
treatment or new SARS-CoV-2 variants. Despite this, population-wide IFRs were relatively similar for
studies that sampled the same location, as illustrated in the table above. These consilient results
increase confidence that methodological differences between studies likely do not strongly bias our
IFR estimates, in contrast to the order of magnitude difference in IFR between locations stratified by
percentage of well-certified deaths, as shown in the body of the paper. Addis Ababa #3 remains the
only outlier, possibly due to lower test specificity resulting from cross-reactivity (see supplementary
appendix section 2.a), low sample size in comparison to the other two Addis Ababa studies, or
sampling in late April 2020 when under-estimation of COVID-19 deaths may have been greater than
the July/August 2020 time period during which the other two studies sampled.
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