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SUPPLEMENTARY MATERIALS AND METHODS 
 
Screening EuroDBA network registries and exome sequencing. After routine diagnostic 

referral, exomes of affected children and parents from Family A were enriched using the 

SureSelectXT Clinical Research Exome V2 (Agilent, elid S30409818, genome build GRCh37) 

and sequenced on an Illumina Novaseq 6000. The sequencing data was processed with an 

in-house developed pipeline DxNextflowWES v1.0.1, based on the Genome Analysis Toolkit 

(GATK v3.8-1-0-gf15c1c3ef) best practices guidelines.1,2 The read pairs were mapped with 

BWA-MEM v0.7.17,3 marking duplicates and merging lanes using Sambamba v0.7.0 and 

realigning indels using GATK IndelRealigner.4 GATK Haplotypecaller was used to call single 

nucleotide polymorphisms and indels, creating variant call formatted (vcf) files.  
 

Analysis was performed using Alissa Interpret software (Agilent). In the first step, an 

intellectual disability gene panel comprising 816 genes (available on request) was analyzed. 

Variant were filtered using a population allele frequency of 0.05% or 0.5% (gnomAD 

database5) for the dominant or recessive inheritance model, respectively.  

 

In a second step, often performed when the first step did not result in a diagnosis, the whole 

exome was analyzed, where variant filtering for a de novo or recessive inheritance model was 

done. All de novo variants were analyzed, but variants in putative recessive genes were only 

analyzed if both alleles showed a potential deleterious effect on the coding regions. Larger 

deletions/duplications, missense, synonymous, and intronic variants affecting protein function 

of other genes cannot be excluded. Variants that matched predefined and validated quality 

criteria were not validated by Sanger sequencing. Based on putative function, inheritance and 

segregation only one homozygous variant in the HEATR3 gene remained as candidate 

variant.  

 

For the Turkish samples (Family B), the DBA registry in Hacettepe University Medical 

Genetics Exome Facility was used to search for a putative mutation in HEATR3. In this 

registry, WES data from a total of 22 individuals with unsolved DBA were screened. Briefly, 

DNA libraries from peripheral blood leukocytes for WES was prepared by Ion AmpliSeq 

Exome RDY kit (ThermoFisher Scientific) and subsequently sequenced by Ion Proton 

semiconductor sequencer (ThermoFisher Scientific). The IonReporter software was used for 

alignment, variant calling and annotation. HEATR3 variant observed in P3 was verified and 

available family members were genotyped by Sanger sequencing. Further peripheral 

leukocyte DNA obtained from 20 individuals were sequenced by Sanger’s method for all 15 
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coding exons of HEATR3. Identified variants were screened in gnomAD and in-house exome 

databases for non-DBA individuals (n=131). 

 

For French samples (Family C), out of 412 alive DBA affected patients, we were able to identify 

one patient from the DBA patients with no characterized genotype after an extensive targeted 

NGS and CGH screening. P4, the French DBA patient and relatives have been identified by 

WES and confirmed by Sanger technique. Genomic DNA was extracted from leucocytes. 

Exome capture was performed with the SureSelect Human All Exon kit (Agilent Technologies). 

Agilent Sure Select Human All Exon (51Mb V5 or 54Mb Clinical Research Exome) libraries 

were prepared from 3 µg of genomic DNA sheared with an Ultrasonicator (Covaris) as 

recommended by the manufacturer. Barcoded exome libraries were pooled and sequenced 

with a HiSeq2500 system (Illumina) generating paired-end reads. After demultiplexing, 

sequences were mapped on the human genome reference (NCBI build 37, hg19 version) with 

BWA. After demultiplexing, Variant calling was carried out with the Genome Analysis Toolkit 

(GATK), SAMtools, and Picard tools. The mean depth of coverage of the exome libraries was 

greater than ~100-120X with >98 to 99% of the targeted exonic bases covered at least by 15 

independent reads and >93 to 98% at least 30 independent sequencing reads (98-99% at 15X 

and 93 to 98% at 30X). Single-nucleotide variants were called with GATK Unified Genotyper, 

whereas indel calls were made with the GATK IndelGenotyper_v2. All variants with a read 

coverage ≤ 2x and a Phred-scaled quality of ≤ 20 were filtered out. All the variants were 

annotated and filtered with PolyWeb, an in-house-developed annotation software. 

 

For Family D, blood sample of P5 was analyzed by the whole exome plus test service (version 

2, Feb 9, 2018) from Blueprint Genomics. Individual P6 from Family D was diagnosed by 

Sanger sequencing verification of the variant identified by exome sequencing in P5 and this 

variant was verified by Sanger sequencing in the parents of P5 and P6. 

 

Identification of homozygous stretches in consanguineous families. Unannotated vcf 

files obtained from WES data from individuals P1 (family A), P2 (family B), P3 (family B) and 

P5 (family D) with consanguineous parents were analyzed for long contiguous stretches of 

homozygosity (LCSH) >5Mbp6 using HomSI7. LCSHs were identified visually for each 

individual and common regions were compared for all autosomes. Variants between 

[GRCh37]chr16:15,000,000 and [GRCh37]chr16:65,000,000, which surround the only 

common region ([GRCh37]chr16:25,263,278-53,191,470) was compared and illustrated 

through MS excel spread sheets. Illustrations were colored according to allele fractions (AF) 

for individual variants. Following assumptions were mad efor determining zygosity of 

varaiants: AF<0.20, homozygous for reference (grey); 0.20≤AF<0.80, heterozygous (yellow); 
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AF≥0.80 homozygous for alternative. Individual variants with no AF were considered either 

homozygous for reference or uncovered (grey). 

 

Sanger sequencing of blood samples and LCLs. mRNA from LCLs was isolated with Trizol 

(ThermoFisher) for generation of cDNA using the QuantiTect Reverse Transcription Kit 400 

(Qiagen) per the manufacturers’ instructions. Primers used for Sanger sequencing of the 

HEATR3 variant in LCLs were for P2 FW: 5’-TGCAAAGCAGGCATTCATAG-3’ and REV: 5’- 
GAGGCTCTTTCGGCTTCTTT-3’, and for P3 FW: 5’-TCTGCCTCTCCCATGAAGTT-3’ and 

REV:5’- ACATCCAGGAGGGACACAAG-3’. For P4, genomic DNA was extracted from a 

whole blood sample and analyzed with primers for exon 3 FW: 5’-

GGAAATCTCTGGATTGGTTCTG-3’ and exon 3 REV: 5’-AGCAGATTGGTGTTTCCAGG-3’; 

exon 6 FW: 5’- ATTTGCGCATATCACCCTG-3’ and exon 6 REV: 5’-

CAACTGCTTGAAGTAAGGGTCTC-3’. For P5 and P6 and their parents, genomic DNA 

extracted from whole blood samples was analyzed using HEATR3 primers FW: 5’-

GTTTGTAAGGATTCGACTGGCTTG-3’ and REV: 5’-TAGCAGCCTGGGTACTGCTAT-3’. 

 

Yeast strains. To produce yeast strains expressing wild-type or mutated versions of HA-

tagged Syo1, a syo1Δ and its BY4741 haploid isogenic strains obtained from Euroscarf were 

transformed with suitable plasmids (see Table A). To produce the plasmids, the following 

steps were followed: first, a plasmid expressing Syo1-Gly522Ala (pDL1008) was generated 

by homologous recombination in yeast cells by co-transforming a synthetic DNA fragment 

(gDL0019) harboring the Syo1-Gly522Ala gene and a linearized recipient low copy (ARS-

CEN)/HIS3 plasmid (pFL36 digested with Xho I and Bam HI)8 into the haploid strain BY4741. 

To produce plasmids expressing wild-type Syo1 and Syo1-Gly522Glu, point mutations were 

introduced directly into pDL1008 using a site directed mutagenesis kit (Quick change, Agilent, 

#200523). To produce plasmids expressing HA-tagged versions of Syo1, DNA sequences 

carrying wild-type or mutated versions of Syo1 were recovered by PCR amplification with 

oligonucleotides LD4496 and LD4497 using plasmids pDL1020 (Syo1), pDL1008 (Syo1-

Gly522A), or pDL1077 (Syo1-Gly522Glu) as template, and co-transformed with a recipient 

linearized plasmid (pTL6/pDL923 digested with Nco I and Sac I)9 into strain BY4741. All yeast 

clones were selected on synthetic medium lacking leucine. All plasmids were diagnosed by 

restriction digest and DNA sequencing. The plasmids and the oligonucleotides used for site-

directed mutagenesis and DNA sequencing are listed below in Tables A and B. 
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Name Information 

pFL36 ARS-CEN LEU2 

pDL923 pTL6 

pDL1020 Syo1-WT 

pDL1008 Syo1-G522A 

pDL1077 Syo1-G522E 

pDL1071 HA-Syo1 

pDL1072 HA-Syo1-G522A 

pDL1073 HA-Syo1-G522E 

pDL1034 HA-HEATR3 

pDL1035 HA-HEATR3-C446Y 

 

Table A. Plasmids used for studies in yeast 
 

 

Protein or 
mutant Name Sequence Purpose 

Syo1 LD4471 GCAAATAAGGAGATTGGGCAGTTCTTCATACAAAC Site directed 
mutagenesis 

Syo1 LD4472 GTTTGTATGAAGAACTGCCCAATCTCCTTATTTGC Site directed 
mutagenesis 

Syo1-G522A gDL0019 

GTCACGACGTTGTAAAACGACGGCCAGTGAATTCGAGCTCGGTACCCGGG…[
on chromosome IV SYO1 DNA sequence from  338272 bp to  340134 bp mutated 
at position 339957 (G in C)] 
…AGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC 

Plasmid 
construction 

Syo1-G522E  
LD4473 GCAAATAAGGAGATTGAGCAGTTCTTCATAC Site directed 

mutagenesis 

LD4474 GTATGAAGAACTGCTCAATCTCCTTATTTGC Site directed 
mutagenesis 

Syo1-HA  

LD4496 CGTCGTACCTTTTATATCGATACAAATAAAAATAAAATTATACCATGTACCCCT
ACGACGTGCCCGACTACGCCGGCAGATCAAAGAAAAGATCAAGAGC 

Plasmid 
construction 

LD4497 CTTAGGTAAATAGTATACAAGCACTTACATAATTGATAAGAGAGCCTATTGGTT
AGTAGAATTTTCATTCATTTTGTAGTG 

Plasmid 
construction 

Syo1 LD4477 CTGAACAATTCAGGATTCGC Sequencing 

Syo1 LD4486 AGAAATCGACTTTTTAGGGC Sequencing 

Syo1 LD4487 TTACTGTCGTTAGTGGTGGC Sequencing 

Syo1 LD4488 GCAATCATTGAGATAGTTGC Sequencing 

 

Table B. Oligonucleotides used for studies in yeast 

 
Polysome gradient analysis of yeast. Yeast cells were grown overnight in synthetic medium 

lacking leucine to OD600 of ~0.8. Cycloheximide (250 µg/ml final) was added to the cultures 

which were incubated on ice for 30 min. Cell extracts and sucrose gradients (10–50%) were 

prepared exactly as described previously.10 Fractions were collected on a density gradient 

fractionation system (Teledyne ISCO). 
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Yeast drop test assay. For serial dilution growth assays, yeast cells were grown overnight in 

synthetic medium lacking leucine. Cultures were harvested at OD600 of ~0.3 and serially diluted 

10x. 2.5 µl of diluted cultures was spotted on agar plates containing synthetic medium lacking 

leucine and incubated at 16°C for 6 days. 

 

Western blot analysis of yeast. Yeast strains expressing wild-type and mutants HA-tagged 

versions of Syo1 were grown to mid-log phase in synthetic medium lacking leucine. Growth 

was monitored by OD600 with an Ultrospec 10 (Amersham Biosciences). Total protein fractions 

were separated on 10% SDS-polyacrylamide gels and transferred to a PVDF membrane. 

Western blotting signals were captured with a Chemidoc (Biorad). The following antibodies 

were used: anti-GAPDH (Sigma, 1:5000) and anti-HA antibodies (Sigma, 1:5000). 

 

Co-translational capturing assay. HeLa cells were transfected with plasmids expressing 

HA-HEATR3 (pDL1034), or HA-HEATR3-C446Y (pDL1035), or with an empty plasmid 

(control), using lipofectamine 3000 (Thermofischer). Total extract of transfected HeLa cells 

were used in ChIP assays as described.11 Ribosomes were stalled by brief cycloheximide 

treatment. The material co-precipitated following affinity purification with an anti-HA antibody 

was amplified by RTqPCR. The qScript cDNA SuperMix kit (QuantaBio) for the reverse 

transcription and the Perfecta SYBR Green SuperMix (QuantaBio) for the RTqPCR, were 

used. Amplicons specific to the uL18/RPL5 mRNA or, as control to the uL5/RPL10 mRNA 

were amplified and quantitated. cDNAs were amplified with the following oligonucleotides: 

RPL5-fwd 5'-TTGTCAGATTGCTTATGCCC-3', RPL5-rev 5'- GCCAAACCTATTGAGAAGCC-

3', RPL10-fwd 5'-ACTTCCTGTCCACCTATGTC-3', RPL10-rev 5'-AGTGTTTTTCAACCTAC 

TGCC-3'. The experiment was performed on a Roche Applied Science LightCycler 480. The 

data shown are a representative example of a triplicate. Calculation of the relative enrichment 

of RP encoding mRNAs was performed as in Pausch et al., 2015. The threshold cycle (Ct) 

was determined for each qPCR. Then, the ΔCt between the average of the triplicate ‘total RNA' 

qPCRs and each of the triplicate eluate qPCRs were calculated. These values were then 

expressed as fold difference in template abundance between eluate and total extract (ratio 

eluate/total) for RPL5 and RPL10 mRNAs. These values represent the relative enrichment of 

the RPL5 and RPL10 encoding mRNAs. 

 

uL18 subcellular distribution by widefield and confocal microscopy analysis. Cells were 

fixed with 4% paraformaldehyde for 10 min. Cells were incubated overnight at 4°C with anti-

uL18/RPL5 antibodies (Abcam, Ref. ab86863) at 1:200, and then one hour at room 
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temperature with chicken anti-rabbit IgG (H+L)/Alexa Fluor 488 secondary antibody 

(Invitrogen, Ref. A-21441) at 1:1000. Imaging was performed on a Zeiss Axio Observer.Z1 

microscope with a motorized stage, driven by MetaMorph (MDS Analytical Technologies, 

Canada). Images were captured on an HQ2 camera in widefield mode (with CoolLED 

illumination), or in confocal mode using a Yokogawa spin-disk head and a laser bench from 

Roper (405 nm 100 mW Vortran, 491 nm 50 mW Cobolt Calypso and 561 nm 50 mW Cobolt 

Jive) and a 20x, or 40x objective (Plan NeoFluar, Zeiss).  

 

Analysis of total RNA extracts by northern blot. Total RNAs were extracted with Trizol from 

cell pellets containing ~20 x 106 cells. The aqueous phase was extracted with phenol-

chloroform-isoamylic alcohol (25:24:1; Sigma), then with chloroform. Total RNAs were 

recovered after precipitation with 2-propanol. For northern blot analyses, total RNAs were 

separated on a 1.2% agarose gel containing 1.2% formaldehyde and Tri/Tri buffer (30 mM 

triethanolamine, 30 mM tricine, pH 7.9) (3 µg/lane), prior to be transferred to a Hybond N+ 

nylon membrane (GE Healthcare). Sequential hybridizations with the following 5’-radiolabeled 

oligonucleotide probes were performed as previously described: 5’ITS1 (5’-

CCTCGCCCTCCGGGCTCCGTTAATGATC-3’), ITS1-5.8S (5’-CTAAGAGTCGTACGAGG 

TCG-3’), ITS2 (5'-CTGCGAGGGAACCCCCAGCCGCGCA-3' and 5'-GCGCGACGGC 

GGACGACACCGCGGCGTC-3'), 18S (5'-TTTACTTCCTCTAGATAGTCAAGTTCGACC-3'), 

28S (5'-CCCGTTCCCTTGGCTGTGGTTTCGCTAGATA-3'). After exposure to an intensifying 

screen, signals were acquired with a Typhoon Trio PhosphoImager (GE Healthcare) and 

quantified using the MultiGauge software. 

 

Polysome profiling analysis of LCLs. 600 µg of total protein from freshly lysed LCLs was 

loaded onto 10-50% sucrose gradients as previously described.12 The tubes were centrifuged 

at 4°C and at 36,000 rpm for 2 hours in a SW41 rotor (Optima L100XP ultracentrifuge; 

Beckman Coulter). The gradient fractions were measured at OD254 using a syringe pump 

and UV detector (Brandel) and collected with a Foxy Jr. gradient collector (Teledyne Isco).  

 

Western blot analysis of LCLs. LCLs were plated at 100,000 per well of a 6 well dish 

overnight. For p53 stabilization assays, camptothecin (100 nM in DMSO) (Sigma), MG-132 (1 

µM in DMSO) (Sigma) or an equal volume of DMSO as a vehicle control was added to wells 

for 4-6 hours. For all assays cells were lysed in RIPA buffer supplemented with phosphatase 

and protease inhibitor cocktails (Sigma). 4-12% Bis-Tris polyacrylamide gels (Invitrogen) were 

run for detection of HEATR3 (Abcam # ab221085), p53 (Thermo Fisher #MA5-12557), uL18 

(RPL5) (Abcam, #ab86863), uL5 (RPL11) (Santa Cruz #sc-25931), and actin (Sigma #A4700). 
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Quantitative PCR analysis. LCLs were plated six times at 100,000 cells per well of a six-well 

dish overnight and lysed the following day with Trizol for total RNA extraction. cDNA was 

generated from 1 µg total RNA with the QuantiTect® Reverse Transcription Kit (Qiagen) 

according to the manufacturer’s specifications for a final volume of 14 µL (diluted 1:20 for 

qPCR reaction). Six cDNA samples were generated, one from each well of the six-well dish, 

and analyzed in tandem each with a technical duplicate. Per qPCR reaction, a 4 µL LC480 

SYBR Green® I Master mix (Roche #4707516001) was added with 1 µL forward and reverse 

primer mix (final primer concentration 10µM of each), 2 µL diluted cDNA, and 1 µL H20. 

Reactions were run on a Lightcycler 480 (Roche) and according to the manufacturer’s 

instructions for SYBR Green® use (Roche #4707516001). Using a relative quantification 

method using the quantification cycle (Cq), healthy control LCL (NFT), the mean Reference 

Cq of three control genes, ACTB, 36B4, and GAPDH was calculated for each of the six cDNA 

samples, a ratio was calculated compared to the mean Cq of HEATR3 from the same cDNA 

samples, and normalized to one. Similar ratios were then calculated for a second healthy 

control LCL (NhnM) as well as both LCLs carrying the HEATR3 variants and compared to the 

normalized ratio. Primers used for HEATR3 p.(Gly584Glu) were FW: 5’- 
TGCAAAGCAGGCATTCATAG-3’ and REV: 5’- GAGGCTCTTTCGGCTTCTTT-3’, for HEATR 

p.(Cys446Tyr) FW: 5’- TCTGCCTCTCCCATGAAGTT-3’ and REV: 5’- 
ACATCCAGGAGGGACACAAG-3’. Pre-designed SYBR Green® primers for control genes 

were from Sigma.  

 

Lentiviral constructs. Plasmid (pDONR223-HEATR3) containing HEATR3 open reading 

frame (ORF) from the human ORFEOME library13 was generously provided by the Broad 

Institute Genetic Perturbation Platform (Boston, USA). The HEATR3 ORF was subcloned in 

the pTRIP lentiviral vector14 downstream a CMV promoter. An internal ribosomal entry site 

followed by the ORF encoding eGFP (retrieved from pIRES2-EGFP, Clonetech-Takara, 

Japan) was subcloned in 3' of the HEATR3 ORF in order to construct a bicistronic gene. This 

pTRIP-HEATR3-IRES-eGFP plasmid as well as a pTRIP-GFP plasmid15 were used together 

with plasmids pCMV-dR8.91 and pCMV-VSVG to produce lentiviral vector stocks by transient 

tri-transfection of HEK 293T cells.16 The lentiviral titer was estimated by ddPCR to be ~ 4.106  

TU/ml for both constructs. Patient and control LCLs were transduced with vector particles at 

a MOI 10. Briefly, 4x105 cells cultured in OPTI-MEM (Gibco-Invitrogen) were transduced with 

1mL aliquots of lentiparticles in the presence of 10µg/mL of protamine sulfate (Merck) 

overnight. Medium was changed the next day and cells were cultured until flow cytometry. 

Sorting of transduced cells was performed by FACS based on GFP fluorescence on a BD 

Influx cell sorter with the CellQuest Pro software (BD Biosciences FACS Software V1.2). 



 9 

HEATR3 synthesis was confirmed by western blot using an anti-HEATR3 antibody from 

Abcam (Ref. ab221085). 
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Family   A   B   C   D 
Individual  P1  P2  P3  P4  P5  P6 
 
PHKG2  

 
 

c.227G>A 
(p.Arg76Gln)  
homozygous 

  

 
 

c.227G>A 
(p.Arg76Gln)  
homozygous 

  

 
 

None  

 
 

None  

 
 

None  

 
 

N/A  

ZNF267  
 

c.1072G>A 
(p.Val358Ile)  
homozygous 

  

 
c.1072G>A 

(p.Val358Ile)  
homozygous 

  

 
None  

 
None  

 
None  

 
N/A  

ABCC12 
 

c.3224G>C 
(p.Arg1075Pro) 

homozygous 
  

 
c.3224G>C 

(p.Arg1075Pro) 
homozygous  

 
None 

 
None 

 
None 

 
N/A 

HEATR3 
 

c.1751G>A 
(p.Gly584Glu) 
homozygous  

 
c.1751G>A 

(p.Gly584Glu) 
homozygous  

 
c.1337G>A 

(p.Cys446Tyr) 
homozygous  

 
c.399+1G>T (p.?); 

c.719C>T 
(p.Pro249Leu) 

compound hetero. 

 
c.400T>C 

(p.Cys134Arg) 
homozygous  

 
c.400T>C 

(p.Cys134Arg) 
homozygous  

PARP4    c.3667-1G>A (p.?); 
c.3295T>C 

(p.Cys1099Arg) 
compound hetero.  

 
c.3667-1G>A (p.?); 

c.3295T>C 
(p.Cys1099Arg) 

compound hetero.  

 
None  

 
None  

 
None  

 
N/A  

 

 

Table S1: Candidate variants in families A-D.



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure S1. Multiple sequence alignment for human HEATR3 and orthologs  
 
HEATR3 orthologs for H. sapiens (ENSP00000299192), P. troglodytes (ENSPTRP00000013827), F. 
cattus (ENSFCAP00000006688), M. musculus (ENSMUSP00000034079), G. gallus 
(ENSGALP00000066456), X. tropicalis (ENSXETP00000015435), D. rerio (ENSDARP00000052367), 
D. melanogaster (FBpp0081214) and S. cerevisiae (YDL063C) were used to perform multiple sequence 
alignment using Constraint-based Multiple Alignment Tool (COBALT). The position of the modified 
amino acid in each affected individual (P1-P6) is boxed in red and labeled. Note that only the modifed 
Gly584 in P1 and 2 (Gly584Glu) has a homologous residue in the yeast Syo1 sequence, Gly522. 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. Identification of LCSHs in consanguineous families 
 
A) Distribution of all LCSHs within all autosomes for individuals P1, P2, P3 and P5 are shown in the 
right side of each chromosomal ideogram. The colors associated with each individual are indicated. 
The brown box shows the single common LCSH region.  
B) The only common LCSH region in all individuals is shown in detail. Each horizontal lane represents 
WES data from the indicated individual and colors of horizontal variants represent the zygosity of the 
variant: blue for homozygous alternative allele, yellow for heterozygous, and grey for either 
homozygous reference allele or uncovered regions. The red variants are the pathogenic homozygous 
HEATR3 variants. Note that [GRCh37]chr16:25,263,278-53,191,470 is a common LCSH region made 
up of exceedingly homozygous variants (blue and grey) for all individuals. 
 
 
  



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3. The co-translational capturing of RPL5 is evolutionarily conserved and impaired by 
a HEATR3 variant 
 
Total extract of HeLa cells transfected with an HA-HEATR3, or an HA-HEATR3-p.(Cys446Tyr), or an 
empty plasmid (control), were used in ChIP assay. Ribosomes were stalled by brief cycloheximide 
treatment. The material coprecipitated following affinity purification with an anti-HA antibody was 
amplified by RT-qPCR with dedicated amplicons specific to the RPL5 mRNA or, as control for 
specificity, to the RPL10 mRNA. The data shown are a representative example of a triplicate. 
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Figure S4. Knockdown of HEATR3 in cell lines impairs pre-rRNA processing without stabilizing 
p53 
 
A) Western blots of U2OS and HCT116 cells transfected with three different siRNAs targeting HEATR3 
or a scrambled control siRNA (SCR) probed with antibodies against HEATR3, p53 and GAPDH.  
B) Steady-state accumulation of mature rRNAs as revealed by ethidium bromide staining. The 28S/18S 
rRNA ratio was computed from Bioanalyzer electropherograms. Note that the 32S pre-rRNA 
accumulation is so important upon HEATR3 depletion that it is already visible by ethidium staining (read 
arrow).  
C) Northern blots of RNAs from U2OS and HCT116 cells. Radiolabeled probes targeting ITS2 used to 
detect pre-rRNA precursors. Abnormal 32S accumulation is indicated by the red arrow.  
D) Quantification of pre-rRNA processing by RAMP analysis (see Figure 4 for details). Mean values ± 
s.e.m. from three independent experiments. 
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Figure S5. Erythroid cell culture assay initiated from peripheral blood-purified CD34+ cells  
 
A) Flow cytometry at day 7 (D7) with erythroid cells from P2 [HEATR3 p.(Glu584Gly)] or from a healthy  
control in the erythroid cell culture assay using antibodies against IL3R, CD34, CD36, or stained with 
7-AAD.  
B) Histogram display of flow cytometry analysis of the same erythroid cell culture assay as in (A) at 
days 10 and 12 (D10, D12) with antibodies against alpha 4 integrin and Band 3.  
C) Quantification of the results shown in (B). 
D) Cell cycle analysis showing percentage of cells at day 7 (D7) in the G0/G1, S, or G2/M phases. 
E) Cell counts of purified CD34+ cells from the peripheral blood of P4 (yellow line), the mother of P4 
(blue line), the father of P4 (grey line) and a healthy control (orange line) subjected to the erythroid 
culture assay. Shown are cell counts on days 0, 5, and 7.  

FSC-A
7A

AD
-9116 58699 126514 194329 26214

-10
2

10
2

10
3

10
4

10
5

CD34

C
D

36

-10
1

10
2

10
3

10
4

10
5

-10
1

10
2

10
3

10
4

10
5

FSC-A

IL
3

-9116 58699 126514 194329 26214

-10
2

10
3

10
4

10
5

CD34

C
D

36

-10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

FSC-A

IL
3

-9633 58311 126255 194200 26214

-10
2

10
3

10
4

10
5

-

FSC-A

7A
AD

-9633 58311 126255 194200 26214
-10

2

10
2

10
3

10
4

10
5 96.90%

3.10%

96.88%

3.12%

0.00%

0.00%

0.00%

0.00%

IL3R neg
92.25%

IL3R neg
94.31%

alive cells
98.94%

alive cells
99.35%

Cell Cycle Phases at D7

G0/G1 S G2/M

%
 c

el
ls

0

20

40

60

80

100

Healthy control
D7 

P2 HEATR3 
p.(Glu584Gly)

D7

Healthy control 

P2 HEATR3 
p.(Glu584Gly)

�

0

132
197

0

132

0

132

-10
0

10
2

10
3

10
4

10
5

0

132

0

136

272

�

0

136

0

136

-10
2

0 10
2

10
3

10
4

10
5

0

136

#$%#&'

C
ou

nt

C
ou

nt

Alpha 4 integrin Band 3

Healthy control
D10 
P2 HEATR3 
p.(Glu584Gly)
D10
Healthy control
D12 

P2 HEATR3 
p.(Glu584Gly)
D12

Healthy control
D10 
P2 HEATR3 
p.(Glu584Gly)
D10
Healthy control
D12 

P2 HEATR3 
p.(Glu584Gly)
D12

Alpha 4 integrin Band 3

D10 D12D10 D12

Healthy control 
P2 HEATR3 
p.(Glu584Gly)

800

600

400
200

0

800

400

0

1200

A

B

C

D

C
ou

nt

C
ou

nt

Figure S5

2.0+E5
4.0+E5

0

6.0+E5
8.0+E5
1.0+E6
1.2+E6
1.4+E6
1.6+E6

Day: 0     5    7

Healthy control

Mother of P4
HEATR3 p.(Pro240Leu)

Father of P4
HEATR3 c.399+1G>T;p.?

P4 HEATR3
c.399+1G>T;p.?
HEATR3 p.(Pro240Leu)

E



  

 
 
 
 
 
 

 
 
 
 
 
Figure S6. Knockdown of HEAT3 in CD34+ cells impairs erythroid differentiation  
 
A) FACS plots of CD34+ cord blood cells transduced with lentiviruses expressing either a scrambled 
shRNA or three independent shRNAs targeting HEATR3 (HEATR3 sh1-3) and subjected to the 
erythroid cell culture assay. Cells collected at days 7 and 10 were stained with antibodies against CD34 
or CD36.  
B) Quantification of the results shown in (A). Three independent experiments were performed with each 
siRNA, but only two of them were taken into account with shRNA3 as too few cells were available for 
analysis in the third experiment. * p<0.05, ** p<0.01. 
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