
Methods S1: Model implementation, related to STAR Methods 

MODEL IMPLEMENTATION 

Models of single neurons and the network were developed using the parallel NEURON 7.4 

simulator (Carnevale and Hines, 2006), and simulations were run with a fixed time step of 25 

µs. 

Mathematical equations for voltage-dependent ionic currents: The dynamics for each 

compartment (soma or dendrite) followed the Hodgkin-Huxley formulation as previously 

described (Kim et al., 2013) in eqn. 1, 
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where 𝑉𝑠/𝑉𝑑 are the somatic/dendritic membrane potential (mV), 𝐼𝑐𝑢𝑟,𝑠𝑖𝑛𝑡  and 𝐼𝑐𝑢𝑟,𝑠𝑠𝑦𝑛  are the 

intrinsic and synaptic currents in the soma, 𝐼𝑖𝑛𝑗 is the electrode current applied to the soma, 

𝐶𝑚 is the membrane capacitance, 𝑔𝐿 is the conductance of the leak channel, and 𝑔𝑐 is the 

coupling conductance between the soma and dendrite (similar term added for other dendrites 

connected to the soma). The intrinsic current 𝐼𝑐𝑢𝑟,𝑠𝑖𝑛𝑡 , was modeled as	𝐼$&',")*+ = 𝑔$&'𝑚:ℎ;(𝑉" −

𝐸$&'), where 𝑔𝑐𝑢𝑟 is its maximal conductance, m its activation variable (with exponent p), h 

its inactivation variable (with exponent q), and 𝐸𝑐𝑢𝑟 its reersal potential (a similar equation is 

used for the synaptic current 𝐼𝑐𝑢𝑟,𝑠𝑠𝑦𝑛  but without m and h). The kinetic equation for each of the 

gating variables x (m or h) takes the form but without m and h). The kinetic equation for each 

of the gating variables x (m or h) takes the form 
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where 𝑥J is the steady state gating voltage- and/or Ca2+- dependent gating variable and 𝜏<	is 

the voltage- and/or Ca2+- dependent time constant. The equation for the dendrite follows the 

same format with ‘s’ and ‘d’ switching positions in eqn. 1.  

Principal neuron (PN) models: PN had five compartments: soma (diameter 24.75 µm, length 

25 µm), an apical dendrite (a-dend; diameter 3µm; length 270 µm), another dendrite (p-dend; 

diameter 5 µm; length 555µm) to match passive properties, an axon initial segment (AIS; 

diameter 0.5 µm; length 50 µm), and an axon (diameter 0.5 µm; length 100 µm). Values of 

specific membrane resistance, membrane capacity and cytoplasmic (axial) resistivity were, 



respectively, Rm = 40 ± 5 kΩ-cm2, Cm = 1.5 µF/cm2, and Ra = 150 Ω-cm. Leakage reversal 

potential (EL) was set to -75 ± 4 mV. The resulting Vrest was -66 ± 4 mV, input resistance 

(RIN) was 140 ± 20 MΩ, and time constant (τm) was ~30 ms, all of which were within the 

ranges reported in previous physiological studies (Washburn and Moises, 1992). Soma and 

dendrite compartments had the following currents: leak (IL), voltage-gated persistent 

muscarinic (IM), high-voltage activated Ca2+ (ICa), spike-generating sodium (INa), potassium 

delayed rectifier (IDR), A-type potassium (IA) (Li et al., 2009; Power et al., 2011) and 

hyperpolarization-activated nonspecific cation (Ih) current. In addition, the soma had a slow 

apamin-insensitive, voltage-independent afterhyperpolarization current (IsAHP) (Alturki et al., 

2016; Power et al., 2011).  The axonal compartments had the following currents: leak (IL), 

high-threshold sodium (INa1.2), low-threshold sodium (INa1.6), and potassium delayed rectifier 

(IDR) (Hu et al., 2009). See Tables S1 and S2 for equations of current kinetics and maximal 

densities. Based on firing patterns observed in slices, PNs in the model had Type-A 

(adapting) and Type C (continuous) generated by adjusting magnitude of Ca2+-dependent K+ 

current, either 50 or 0.2 mS/cm2, respectively (Kim et al., 2013). PN models contained 

properties for low- and high- threshold oscillation to mimic physiological parameters as 

closely as possible (Feng et al., 2016; Kim et al., 2013; Li et al., 2009; Pape et al., 1998).  

 

Interneuron (IN) models: Since most INs sampled in experiments showed fast-spiking Int 

(FSI) characteristics they were modelled as FSI. The IN model contained five compartments; 

a soma (diameter 10 µm; length 20 µm) and four dendrites (diameter 3 µm; length 100 µm). 

Each compartment contained a fast Na+ (INa) and a delayed rectifier K+ (IDR) current. 

Network contains two types of INs: (a) Basket INs that target PN at the soma, and (b) 

Chandelier IN (Chn) that target PN at the AIS. Both models reproduced APs with short half-

width (<1 ms). Passive membrane properties of Basket INs and Chns were Rm = 10 ± 1 and 

15 ± 1 kΩ-cm2, Cm = 1.4 and 0.8 µF/cm2, Ra = 100 and 100 Ω-cm, respectively.   

 

Network size and cell type proportions: To model a 400 µm (1.4 x 1.4 x 0.4 mm) basal 

amygdala slice, we generated 20,572 neurons with cellular composition of 40% PNA 

(n=8,229), 40% PNC (n=8,229), 18% Basket INs (n=3,702), and 2% Chandelier INs (n=411).  

Mathematical equations for synaptic currents: All excitatory transmission was mediated by 

AMPA/NMDA receptors, and inhibitory transmission by GABAA receptors. The 

corresponding synaptic currents were modelled by dual exponential functions (Destexhe et 

al., 1994; Durstewitz et al., 2000) as shown in eqns. 3-5, 



 
𝐼KLMK = 𝑤 × 𝐺KLMK × (𝑉 − 𝐸KLMK) 
𝐺KLMK = 𝑔KLMK,!A< × 𝐹KLMK × 𝑟KLMK	

              𝑟KLMK¢ =	𝛼𝑇𝑚𝑎𝑥KLMK × 𝑂𝑁KLMK × (1 − 𝑟KLMK	) − 𝛽KLMK × 𝑟KLMK (3) 
 

𝐼NLOK = 𝑤 × 𝐺NLOK × (𝑉 − 𝐸NLOK) 
𝐺NLOK = 𝑔NLOK,!A< × 𝐹NLOK × 𝑠(𝑉) × 𝑟NLOK	

𝑟NLOK¢ =	𝛼𝑇𝑚𝑎𝑥NLOK × 𝑂𝑁NLOK × (1 − 𝑟NLOK	) − 𝛽NLOK × 𝑟NLOK (4) 
 

𝐼PKQKA = 𝑤 × 𝐺PKQKA × (𝑉 − 𝐸PKQKA) 
𝐺PKQKA = 𝑔PKQKA,!A< × 𝐹PKQKA × 𝑟PKQKA 

𝑟PKQKA¢ =	𝛼𝑇𝑚𝑎𝑥PKQKA × 𝑂𝑁PKQKA × (1 − 𝑟PKQKA	) − 𝛽PKQKA × 𝑟PKQKA (5) 
 

where V is the membrane potential (mV) of the compartment (dendrite or soma) where the 

synapse is located, I is the current injected into the compartment (nA), G is the synaptic 

conductance (µS), 𝑤 is the synaptic weight (unitless), and E is the reversal potential of the 

synapse (mV). gx,max is the maximal conductance (µS), F implements short-term plasticity as 

defined in the next section, and rx determines the synaptic current rise and decay time 

constants based on the terms αTmax and β (Destexhe et al., 1994).  The voltage-dependent 

variable s(V) which implements the Mg2+ block was defined as: s(V) = [1 + 0.33 exp(-0.06 

V)]-1 (Zador et al., 1990). The terms ONNMDA and ONAMPA are set to 1 if the corresponding 

receptor is open, else to 0. Synaptic parameter values are listed in Table S3 as mean ± SD. 

For all connections, synaptic weight w was distributed log-normally with a cut off of three 

times the mean to prevent non-physiological values.  

Short-term presynaptic plasticity: The term Int represents both Chns and Basket INs. All 

model AMPA and GABA synapses also exhibited short term pre-synaptic plasticity (Kim et 

al., 2013).  Short-term depression was modelled at Int->PN and PN->Int connections based 

on experimental findings in this study and previous reports (Woodruff and Sah, 2007).  Short 

term plasticity was implemented as follows  (Hummos et al., 2014): For facilitation, the 

factor F was calculated using the equation: 𝜏_𝐹 ∗ 𝑑𝐹/𝑑𝑡 = 1 − 𝐹  and was constrained to be 

≥ 1.After each stimulus, F was multiplied by a constant, f (≥ 1) representing the amount of 

facilitation per pre-synaptic action potential and updated as F→F*f. Between stimuli, F 

recovered exponentially back toward 1. A similar scheme was used to calculate the factor D 

for depression: τ_D*dD/dt=1-D and D constrained to be ≤ 1.After each stimulus, D was 

multiplied by a constant d (≤ 1) representing the amount of depression per pre-synaptic action 

potential and updated as D→D*d. Between stimuli, D recovered exponentially back toward 

1.We modelled depression using two factors d1 and d2 with d1 being fast and d2 being slow 

subtypes, and d=d_1*d_2 and was constrained to be ≥ 1. After each stimulus, F was 



multiplied by a constant, f (≥ 1) representing the amount of facilitation per pre-synaptic 

action potential and updated as F→F*. Parameters for modelling short-term plasticity are 

listed in Table S4. Our model did not have long-term synaptic plasticity.  

 

Intrinsic connections: Except for Int->Int connectivity that had both chemical and electrical 

components, all other connections were via chemical synapses; hereafter, unless qualified by 

‘electrical’, the connections are assumed to be via chemical synapses. PN->PN connections 

were not detected in our data set and so were not included. For all the other connection types, 

we used published data (Woodruff and Sah, 2007), limiting connectivity from/to INs to 

within ~300 µm. Using such data, probabilities in the model for unidirectional Int->PN and 

PN->Int synaptic connections, and for Int->Int electrical connections were, respectively, 

34%, 12%, and 8%. Also, reciprocal connections between PNs and INs was set to 16%. 

These connectivity numbers in our model resulted in an overall synaptic Basket->Basket and 

Basket->Chn connectivity of 26% of which 20% was unidirectional and 3% bi-directional. 

Chns contacted only PNs so there were no Chn->Chn or Chn->Basket IN connections. These 

probabilities resulted in the intrinsic connectivity shown in Table S4. Axonal conduction 

delay was distance-dependent using a conduction velocity of 500 μm/ms.    

 

Calculation of LFP: We first recorded transmembrane ionic currents from each compartment 

of the model cells using the extracellular mechanism in NEURON (Carnevale and Hines, 

2006; Parasuram et al., 2016).  The extracellular potential arising from each neuronal 

compartment was then calculated using the line source approximation method, which 

provides a better approximation than using point sources  (Gold et al., 2006; Schomburg et 

al., 2012). The extracellular potential of a line compartment was estimated as  
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where, I denotes the transmembrane current from just that compartment, ∆s the length of the 

line compartment, r the radial distance from the line, h the longitudinal distance from the end 

of the line, and  𝑙 = ∆𝑠 + ℎ   the distance from the start of the line (Parasuram et al., 2016). 

We chose conductivity 𝜎 of the extracellular medium as 0.3 S/m (Einevoll et al., 2013; Goto 

et al., 2010). The individual extracellular potentials were summed linearly  (Linden et al., 



2014) at 0.5 ms resolution, to obtain ∅#\M" (eqn.7) as the LFP for an N-neuron network with 

n-compartment-cells. 
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where Ni denotes ith compartment of Nth neuron in the network.  

 

Conduction delays: Conduction delays between cells were calculated and assigned in a 

distance-dependent manner: 

𝐷 = c(<'D<")"Z(,'D,")"Z(d'Dd")"

K(
	 (8) 

 

Where (𝑥b, 𝑦b, 𝑧b) and (𝑥e, 𝑦e, 𝑧e) are the coordinates of the pre and postsynaptic cells, 

respectively. 𝐴> 	is the axonal conduction velocity (0.5 m/s). 

 

Analytical model to predict SW profile: Using a log-normal distributions of connection 

probabilities and synaptic strengths, analytical equations were developed to predict the 

numbers of PNs, Chns, and Baskets that fire during each cycle of the ripple, as designated as 

PN(n), Chn(n) and BC(n), respectively. These numbers then provide an estimate of the SW 

profile.   

𝑃𝑁(𝑛) = 𝐶ℎ𝑛(𝑛 − 1) ∗ 𝐸@Y*→MN − 𝐵𝐶(2𝑛 − 1) ∗ 𝐼M>→MN ∗ 𝛼(𝑛)  (9) 

𝐸@Y*→MN = 2.9, 𝐼M>→MN = 1.35, 𝛼(𝑛) = [1,1,1,1,1.2,1.6,1.8,2.0] 

 

𝐶ℎ𝑛(𝑛) = 𝑃𝑁(𝑛 − 1) ∗ 𝐸MN→@Y* − 𝐵𝐶(𝑛 − 1) ∗ 𝐼M>→@Y* ∗ 𝛽(𝑛)	(10) 

𝐸MN→@Y* = 1.3, 𝐼M>→@Y* = 0.42, 𝛽(𝑛) = [1,1,1,1,1.1,1.9,1.9,2.0] 

 

𝐵𝐶(𝑛) = 𝑃𝑁(𝑛 − 1) ∗ 𝐸MN→M> − 𝐵𝐶(𝑛 − 1) ∗ 𝐼M>→M> ∗ 𝛾(𝑛) (11) 

𝐸MN→M> = 1.1, 𝐼M>→M> = 0.69, 𝛾(𝑛) = [1,1,1,1,1.1,1.1,1.2,1.2] 

𝑃𝑁A(0) = 0; 	𝐶ℎ𝑛(0) = 1; 		𝐵𝐶(0) = 0, 

 

where 𝑃𝑁(𝑛), 𝐶ℎ𝑛(𝑛), and 𝐵𝐶(𝑛) represent the number of PNs, Chns, and Basket cells 

activated at the nth interval; 𝐸g→h is the number of Y neurons activated by each X neuron; 



𝐼g→h is the number of Y neurons inhibited by each X neuron; 𝛼(𝑛), 𝛽(𝑛), 𝛾(𝑛) are functions 

that represent summation of inhibition over time.  

The parameters E_x->y were computed by multiplying the percent of synaptic weights that 

were above threshold (minimum weight that would fire a postsynaptic cell) by the total 

number of excitatory connections made from cell type x to cell type y. I_x->y was found in 

the same way, by setting a threshold for strong inhibition and multiplying the percent of 

synaptic weights above that threshold by the total number of inhibitory connections made 

from cell type x to cell type y. The functions alpha, beta, and gamma were assumed to start at 

1 and increase over time, representing temporal summation for inhibition. The specific values 

were chosen to be between 1 and 2 and had to be tuned. 

  



Table 1. Gating parameters of ion channels.  
 

 
 
1:  (Migliore et al., 1999), 2 : (Magee et al., 1998), 3 : (Kim et al., 2013), 4 –:(Traub et al., 2003), 5 –
:(Hu et al., 2009).  
  

Current 
Type 

Gating 
Variable α β 𝒙) τx (ms) 

INa1 
p=3 

−0.4(𝑉 + 30)
exp[−(𝑉 + 30)/7.2] − 1	 

0.124(𝑉 + 30)
exp[(𝑉 + 30)/7.2] − 1	 

𝛼
𝛼 + 𝛽 

0.6156
𝛼 + 𝛽  

q=1 
−0.03(𝑉 + 45)

exp[−(𝑉 + 45)/1.5] − 1	 
0.01(𝑉 + 45)

exp[(𝑉 + 45)/1.5] − 1	 
1

exp[(𝑉 + 50)/4] + 1 
0.6156
𝛼 + 𝛽  

IKdr1 p=1 exp[−0.1144(V + 15)] exp[−0.0801(V + 15)] 
1

exp[(−𝑉 − 15)/11] + 1 50 ∗ 𝛽
1 + 𝛼  

IH2 q=1 exp[0.0832(V + 75)] exp[0.0333(𝑉 + 75)] 
1

exp[(𝑉 + 81)/8] + 1 
𝛽

0.0081(1 + 𝛼) 

IKM3 p=2 
 

0.016
exp[−(𝑉 + 52.7)/23]	 

0.016
exp[(𝑉 + 52.7)/18.8]	 

1
exp[(−𝑉 − 52.7)/10.3] + 1 

1
𝛼 + 𝛽 

ICa3 

p=2 ― ― 
1

exp[(−𝑉 − 30)/11] + 1 
2.5

exp 0−(𝑉 + 37.1)32.3 9 + exp 0(𝑉 + 37.1)32.3 9
 

q=1 ― ― 
1

exp[(𝑉 + 12.6)/18.9] + 1 420 

INap4 p=1 ―

 

―

 

1
exp[(−𝑉 − 48)/5] + 1 2.5 + 14 ∗ exp[−|𝑉 + 40|/10] 

IsAHP3 p=1 
0.0048

exp[−5 log!"([𝐶𝑎]#$) − 17.5]
 

0.012
exp[2 log!"([𝐶𝑎]#$) + 20]

 
𝛼

𝛼 + 𝛽 48 

INa1.25 

p=3 
−0.182(𝑉 + 30)

exp[−(𝑉 + 30)/7] − 1	 
0.124(𝑉 + 30)

exp[(𝑉 + 30)/7] − 1	 
𝛼

𝛼 + 𝛽 1
𝛼 + 𝛽 

q=1 
−0.024(𝑉 + 50)

exp[−(𝑉 + 50)/5] − 1	 
0.0091(𝑉 + 75)

exp[(𝑉 + 75)/5] − 1	 
1

exp[(𝑉 + 72)/6.2] + 1 
1

𝛼 + 𝛽 

INa1.65 
p=3 

−0.182(𝑉 + 43)
exp[−(𝑉 + 30)/6] − 1	 

0.124(𝑉 + 43)
exp[(𝑉 + 30)/6] − 1	 

𝛼
𝛼 + 𝛽 1

𝛼 + 𝛽 

q=1 
−0.024(𝑉 + 50)

exp[−(𝑉 + 50)/5] − 1	 
0.0091(𝑉 + 75)

exp[(𝑉 + 75)/5] − 1	 
1

exp[(𝑉 + 72)/6.2] + 1 
1

𝛼 + 𝛽 



Table 2. Parameters of single cell models.  
 

 Chandelier 
interneuron 

Basket 
interneuron 

Type A Principal neuron Type C Principal neuron 

 soma dendrites soma dendrites soma dendrites axon soma dendrites axon 

Cm 
(µF/cm2) 

0.8 0.8 1.4 1.4 1.5 1.5 0.4 1.5 1.5 0.4 

Ra (Ωcm) 100 100 100 100 150 150 150 150 150 150 
Conductance 
(mho/cm2) 
gNabar 
gKdrbar 
gLeak 
gNapbar 
gHdbar 
gCabar 
gMbar 
gsAHPbar 
gKapbar 

 
 
0.09

6 
0.00
45 

0.00
01 
-- 
-- 
-- 
-- 
-- 
-- 

 
 

0.024 
0.0011 
0.0001 

-- 
-- 
-- 
-- 
-- 
-- 

 
 
0.156 
0.010

3 
1.5e-4 

-- 
-- 
-- 
-- 
-- 
-- 

 
 
7.82e-3 
2.77e-3 
1.5e-4 

-- 
-- 
-- 
-- 
-- 
-- 

 
 
0.015 
0.002 
4.8e-5 
5.59e-

4 
1.5e-5 
5.5e-4 
2.2e-3 
0.05 
0.002 

 
 

0.015 
0.002 
4.8e-5 
5.59e-4 
1.5e-5 
5.5e-4 
2.2e-3 
0.05 
0.002 

 
 

** 
0.00

2 
0.00

1 
-- 
-- 
-- 
-- 
-- 
-- 

 
 
0.015 
0.002 
4.8e-5 
5.59e-

4 
1.5e-5 
5.5e-4 
2.2e-3 
0.0002 
0.002 

 
 

0.015 
0.002 
4.8e-5 
5.59e-4 
1.5e-5 
5.5e-4 
2.2e-3 
0.0002 
0.002 

 
 

** 
0.002 
0.001 

-- 
-- 
-- 
-- 
-- 
-- 

 
 
 
** Sodium channel densities were exponentially distributed along the axon as in Hu et al (Hu 
et al., 2009).   
  



Table 3.   Parameters of synapse models.  
 

Pre-Post 

AMPA/NMDA reversal 
potential (mV) and 

rise/decay time constant 
(ms) and conductance 

(uS) 

GABA reversal potential 
(mV) and rise/decay time 

constants (ms) and 
conductance (uS) 

Peak Synaptic 
Current (pA) 

Chn – PN -- 
-50 mV; Rise: 0.83 ms;  

Decay: 6.27 ms; 3.0e-3 uS 
(Veres et al., 2014) 

41 ± 35 
(Galarreta and 
Hestrin, 1997) 

Bask – PN -- 
-70 mV; Rise: 0.3 ms;  
Decay: 7.5 ms; 8e-3 uS 

(Galarreta and Hestrin, 1997) 

39 ± 9 
(Galarreta and 
Hestrin, 1997) 

PN - PN -- -- -- 

PN - Chn 

0 mV; Rise: 0.88 ms;  
Decay: 2.3 ms; 2.35e-3 

uS 
 

-- 144.4 ± 107.7 
 

Bask - Chn* -- -70 mV; Rise: 1.1 ms;  
Decay: 6.8 ms; 8e-3 uS 39 ± 9 

Chn – Chn -- 
Gap junction coupling 

coeff. 
0.2 (unitless) 

-- 

Bask – Bask -- 

-70 mV; Rise: 1.1 ms;  
Decay: 6.8 ms; 4e-3 uS 
Gap junction coupling 

coeff. 
0.2 (unitless)  

(Woodruff and Sah, 2007) 

39 ± 9 
(Woodruff et al., 

2006) 

Chn – Bask -- -- -- 

PN - Bask 
0 mV; Rise: 0.69 ms;  

Decay: 1.83 ms; 2.0e-3 
 

-- 139.9 ± 75.95 
 

 
 
* - Unknown. Assumed similar to Bask-Bask. 
  



Connection type 

Connectivity*  

Table S4. Connection probabilities.  
 
 

* All values from Woodruff et al (Woodruff and Sah, 2007). Here, Int refers to both Basket 
Ints and Chandelier Ints with the exception that there are no Chandelier – Basket or 

Chandelier – Chandelier synapses. 
 
 
 
 
 
 

 
Gap 
Junction 
between 
Ints  

Int to Int Unidirectional 
Int to PN Unidirectional 

PN to Int 
Reciprocal 
PN to Int 

Overall connectivity  8% 26% 34% 12% 16% 

Connectivity of 
Subtype -- 

Unidirectional Bi-directional  -- -- -- 

Between 
coupled 

Ints 

Between 
uncoupled  

Ints 

Between 
coupled  

Ints 

Between 
uncoupled  

Ints 
-- 

50% 19% 25% 3% -- 


