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Appendix A. Proof of Proposition 1

From the construction of the α- and γ-steps, it is obvious that ϕ(α(t),β(t),γ(t)) ⩾ ϕ(α(t+1),β(t),γ(t))

and ϕ(α(t+1),β(t+1),γ(t)) ⩾ ϕ(α(t+1),β(t+1),γ(t+1)). To guarantee

ϕ(α(t+1),β(t),γ(t)) ⩾ ϕ(α(t+1),β(t+1),γ(t)),

we verify a more general statement. Lemma 1 indicates that if an objective function ψ(·)

consists of a smooth convex loss function l(·) plus a convex (and possibly non-differentiable)

penalty P (·), one can descend ψ by minimizing a surrogate function of ψ in which the loss

part l is replaced by the local quadratic approximation of l.

Lemma 1: Let l(t) be a twicely-differentiable convex function and P (t) be a convex

function that is not necessarily differentiable. Define ψ(t) := l(t) + P (t). Let t0 be a fixed

value in the domain of ψ. Define

l̃(t; t0) := l(t0) +∇tl(t
0)T (t− t0) +

1

2
(t− t0)T∇2

ttl(t
0)(t− t0), ψ̃(t; t0) := l̃(t; t0) + P (t),

and t∗ := argmint ψ̃(t; t
0). Consider

t1 := h∗t∗ + (1− h∗)t0, where h∗ := argmin
h∈[0,1]

ψ
(
ht∗ + (1− h)t0

)
.

If t0 is not a minimizer of ψ(t) (i.e., ψ(t0) < ψ(t∗)), then such h∗ exists and ψ(t1) < ψ(t0).

The proof is essentially the same as the proof of Proposition 1 in Lee et al. (2016). They

assumed P (t) = λ∥t∥1 for some λ, which can be easily extended to a general convex function

P (·).

Proof. Note that ψ(t) and ψ̃(t; t0) have the same penalty function, and∇tl(t) = ∇tl̃(t
0; t0).

In addition, ψ(t) and ψ̃(t; t0) have the same Karush-Kuhn-Tucker first-order optimality con-

ditions at t = t0. Then the assumption t0 ̸= argmint ψ(t) is equivalent to t0 ̸= argmint ψ̃(t; t
0).
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Consequently, ψ̃(t∗; t0) < ψ̃(t0; t0). Now let h ∈ (0, 1] and th = ht∗+(1−h)t0. The convexity

of ψ̃(·; t0) implies

ψ̃(th; t0) ⩽ hψ̃(t∗; t0) + (1− h)ψ̃(t0; t0),

which yields

ψ̃(th; t0)− ψ̃(t0; t0)
h

⩽ ψ̃(t∗; t0)− ψ̃(t0; t0) < 0.

Furthermore,

ψ(th)− ψ(t0)
h

=
ψ̃(th; t0)− ψ̃(t0; t0)

h
− l̃(th; t0)− l̃(t0; t0)

h
+
l(th)− l(t0)

h

⩽ ψ̃(t∗; t0)− ψ̃(t0; t0)− l̃(th; t0)− l̃(t0; t0)
h

+
l(th)− l(t0)

h
.

As h→ 0+, ψ̃(t∗; t0)− ψ̃(t0; t0)− {l̃(th; t0)− l̃(t0; t0)}/h converges to −∇tl̃(t
0; t0) +∇tl(t),

which vanish to zero by the construction of l̃. Therefore, we have

lim sup
h→0+

ψ(th)− ψ(t0)
h

⩽ ψ̃(t∗; t0)− ψ̃(t0; t0) < 0.

Therefore, there exists at least one h ∈ (0, 1] such that ψ(th) < ψ(t0). ψ(t1) < ψ(t0)

subsequently according to the construction of t1.

Appendix B. Modified objective function adjusted for weights

Denote the final weight as wij for (ij)-th subject. The modified objective function ϕ is defined

by

ϕw(α,β,γ) = −loglikw(α,β,γ) + Pλ1(β) +Qw
λ2
(γ), (A.1)
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where

loglikw(α,β,γ) =
1

w··

K∑
i=1

ni∑
j=1

wijI(Rij = 1) ·
[
log{1 + exp(ZT

ijα1 +XT
i α2

+βi + γi)} − Yij(ZT
ijα1 +XT

i α2 + βi + γi)

]
,

and

Qw
λ2
(γ) =

1

w··

K∑
i=1

wi·qλ2(γi),

with wi· =
∑

j wijI(Rij = 1) and w·· =
∑

i

∑
j wijI(Rij = 1). The case of complete data can

be understood as wij = 1 and Rij = 1 for all i and j. Algorithm S1 in Appendix C describes

the alternating minimization algorithm adjusted for the weight. The result of Proposition 1

remains the same as long as the dataset contains at least one obese and non-obese subject

observed for all locations. The modified BIC reflecting the weight is

BICw∗(λ1, λ2) = −2w·· · loglikw(α̂, β̂, γ̂) + DF · (logw·· + 1) ,

where loglikw(α̂, β̂, γ̂) is given in (A.1) and DF is given in (6) in Section 3.4.
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Appendix C. Optimization algorithm

Algorithm S1 describes the proposed alternating minimization algorithm solving (A.1).

Algorithm S1 An alternating minimization algorithm for (A.1)
require: Arrays {Yij}, {Qij}, {Rij} and {wij}, i = 1, . . . , ni, j = 1, . . . , K, array {ρi1,i2},
scalar λ1 and scalar λ2, tolerance level ϵ = 10−6

initialize α(0), β(0), γ(0), ϕ(0) = ϕ(α(0),β(0),γ(0))
define wi· ←

∑
j wijI(Rij = 1) and w·· ←

∑
i

∑
j wijI(Rij = 1)

while |ϕ(t+1)−ϕ(t)|
max{1,|ϕ(t)|} > ϵ do

(1. Updating α)
1-1. µ(t)

ij ← β
(t)
i + γ

(t)
i for j = 1, . . . , ni, i = 1, . . . , K.

1-2. Run a logistic regression, without intercept, for N =
∑K

i=1 ni individuals with
response {Yij}, predictor {Qij}, offset {µ(t)

ij } and weight {wij}.
1-3. Assign the results from Steps 1-1/1-2 to α

(t+1)
i .

(2. Updating β)
2-1. θ(t)ij ← QT

ijα
(t+1) + γ

(t)
i for j = 1, . . . , ni, i = 1, . . . , K.

2-2. a(t)i ←
∑ni

j=1wij

[
exp

(
β
(t)
i +θ

(t)
ij

)
{
1+exp

(
β
(t)
i +θ

(t)
ij

)}2

]
for i = 1, . . . , K.

2-3. b(t)i ← β
(t)
i − 1

a
(t)
i

∑ni

j=1wij

[
exp

(
β
(t)
i +θ

(t)
ij

)
1+exp

(
β
(t)
i +θ

(t)
ij

) − Yij
]

for i = 1, . . . , K.

2-4. Solve

β̃ ← argmin
β∈RK

[
1

2w··

K∑
i=1

a
(t)
i

(
βi − b(t)i

)2

+ λ1
∑
i1<i2

ρi1,i2|βi1 − βi2 |

]
.

2-5. If ϕ(α(t+1), β̃,γ(t)) ⩽ ϕ(α(t+1),β(t),γ(t)), then β(t+1) ← β̃. Otherwise, β(t+1) ←
h̃β̃ + (1− h̃)β(t), where

h̃ = argmin
h∈[0,1]

ϕ
(
α(t+1), hβ̃ + (1− h)β(t),γ(t)

)
.

(3. Updating γ)
3-1. ν(t)ij ← QT

ijα
(t+1) + β

(t+1)
i for j = 1, . . . , ni, i = 1, . . . , K.

3-2. For i = 1, . . . , K :

γ
(t+1)
i ← argmin

γ

[
ni∑
j=1

wij

[
log

{
1 + exp

(
γ + ν

(t)
ij

)}
− Yij

(
γ + ν

(t)
ij

)]
+ wi·qλ2(γ)

]
.

4. ϕ(t+1) ← ϕ(α(t+1),β(t+1),γ(t+1))

end while
return (α(t+1),β(t+1),γ(t+1))
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Appendix D. Additional simulation results

In Section D.1, we display additional plots for the simulations considered in Section 4 in

the main body. In Section D.2, we report the performance of methods when the outcome Y

could be missing.

D.1. Additional plots for missing outcome

For a detailed comparison of the performances in outlier detection, we additionally inves-

tigated true positive rate (TPR or sensitivity) and true negative rate (TNR or specificity)

of the considered methods as in Figures S1 and S2. We recall that the TPR and TNR are

defined by

TPR =
TP

TP + FN
, TNR =

TN

TN+ FP
,

where TP, TN, FP and FN were defined in Section 4. The figures suggests that our methods

consistently outperforms other methods in TPR while the TNRs of all the methods are

comparable.
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[Figure 1 about here.]

[Figure 2 about here.]

D.2. Additional setting for missing outcome

We considered three missing mechanisms of the outcome Y : (M1). P(Rij = 1|Z1, Z2) was

set to 0.7; (M2). P(Rij = 1|Z1, Z2) = logit−1(2 + 2Z1 + 2Z2) ; or (M3). P(Rij = 1|Z1, Z2) =

logit−1(2+4Z1Z2). M1 stands for missing completely at random, while M2 and M3 represents

missing at random. We estimate the missing probability by the logistic regression with

predictor Z1 and Z2. As anticipated, there are more biases in the estimated coefficients in

the presence of missingness, but the proposed method outperformed the competitors overall.

Table S1, Figures S3, S4, S5 and S6 summarize the simulation results.

[Table 1 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]
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Appendix E. Additional plot for the real data analysis

Figure S7 displays a choropleth map of the area-level raw childhood obesity prevalence rates.

[Figure 7 about here.]
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Figure S1. TPR, varying the number of outliers over 1000 replications.
n=50 per region n=100 per region

K
=

20 regions
K

=
40 regions

0 5 10 15 0 5 10 15

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Proportion of outliers (%)

Tr
ue

 p
os

iti
ve

 r
at

e 
(S

en
si

tiv
ity

)

Method Proposed GLMM GLMM−CAR Scan Statistic Oracle γ



Supplement: Simultaneous spatial smoothing and outlier detection 9

Figure S2. TNR, varying the number of outliers over 1000 replications.
n=50 per region n=100 per region
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Figure S3. MCC, varying Y -missing mechanisms over 1000 replications.
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Figure S4. TPR, varying Y -missing mechanisms over 1000 replications.
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Figure S5. TNR, varying Y -missing mechanisms over 1000 replications.
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Figure S6. RMSE of β̂, varying Y -missing mechanisms over 1000 replications.
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Figure S7. A choropleth map of the area-level raw childhood obesity prevalence rates.
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Table S1
Biases (± standard errors) and bootstrap coverage probabilities of α̂1 and α̂2, and RMSE of {p̂i}Ki=1, varying

Y -missing mechanisms over 1000 replications.

Y - n = 50 per region n = 100 per region
missing Method α̂1 α̂2 RMSE α̂1 α̂2 RMSE
model Bias CP Bias CP of {p̂i} Bias CP Bias CP of {p̂i}

K = 20 regions

Proposed -.007 ± .011 .943 -.005 ± .017 .958 .066 .002 ± .007 .960 -.017 ± .012 .960 .047
M1 GLMM -.009 ± .011 .933 -.039 ± .024 .617 .075 .001 ± .007 .958 -.025 ± .024 .458 .055

GLMM-CAR -.008 ± .011 .930 -.038 ± .024 .634 .075 .001 ± .007 .957 -.028 ± .024 .471 .055
Oracle α .001 ± .009 .931 .000 ± .009 .937 .019 .002 ± .006 .948 -.004 ± .006 .961 .013

Proposed -.006 ± .009 .937 -.011 ± .014 .941 .058 .003 ± .006 .957 -.022 ± .010 .922 .041
M2 GLMM -.007 ± .009 .941 -.037 ± .023 .534 .065 .002 ± .006 .960 -.027 ± .023 .415 .047

GLMM-CAR -.008 ± .009 .939 -.035 ± .024 .546 .065 .002 ± .006 .960 -.027 ± .024 .424 .047
Oracle α -.000 ± .007 .945 .003 ± .007 .950 .016 .004 ± .005 .955 -.005 ± .005 .938 .011

Proposed -.004 ± .009 .924 -.010 ± .014 .945 .058 .002 ± .006 .953 -.019 ± .011 .920 .042
M3 GLMM -.006 ± .009 .929 -.038 ± .023 .565 .066 .001 ± .006 .952 -.028 ± .023 .433 .048

GLMM-CAR -.007 ± .009 .926 -.036 ± .024 .563 .066 .001 ± .006 .953 -.029 ± .024 .419 .048
Oracle α .001 ± .008 .927 .002 ± .007 .954 .016 .003 ± .005 .953 -.004 ± .005 .952 .011

K = 40 regions

Proposed -.008 ± .007 .964 .006 ± .010 .983 .057 .003 ± .005 .945 .005 ± .007 .975 .041
M1 GLMM -.009 ± .007 .968 .013 ± .017 .622 .074 .002 ± .005 .945 .012 ± .017 .449 .055

GLMM-CAR -.008 ± .007 .971 .008 ± .017 .624 .074 .002 ± .005 .942 .009 ± .017 .453 .055
Oracle α -.005 ± .006 .948 .005 ± .006 .950 .014 .002 ± .004 .952 -.000 ± .004 .935 .010

Proposed -.005 ± .006 .954 .001 ± .008 .969 .047 -.001 ± .004 .950 .003 ± .006 .952 .035
M2 GLMM -.005 ± .006 .960 .010 ± .016 .523 .064 -.002 ± .004 .948 .012 ± .017 .402 .047

GLMM-CAR -.005 ± .006 .960 .007 ± .017 .529 .064 -.002 ± .004 .950 .010 ± .017 .409 .047
Oracle α -.002 ± .005 .943 .003 ± .005 .947 .012 -.001 ± .003 .953 .002 ± .003 .957 .008

Proposed -.005 ± .006 .950 .000 ± .009 .981 .048 .000 ± .004 .958 .003 ± .006 .960 .036
M3 GLMM -.006 ± .006 .952 .011 ± .016 .533 .066 -.001 ± .004 .956 .008 ± .017 .408 .048

GLMM-CAR -.006 ± .006 .956 .008 ± .017 .539 .066 -.001 ± .004 .960 .005 ± .017 .421 .048
Oracle α -.003 ± .005 .935 .003 ± .005 .941 .012 .000 ± .003 .958 .001 ± .004 .958 .008
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