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Supplementary Text 1
1: The establishment of the physical model.

Fig. S1

The physical model of a set of charged finite-sized planes.

To begin with, the physical model of a set of charged finite-sized planes is established

(Fig. S1). We assume that there have n finite-sized planes and they have the same dimensions

a and b along the x and y directions. All planes are centered at (x, y)=(0, 0) and located at

positions z1, z2, …, zn with the surface charge densities σ1, σ2, …, σn. The electric potential (ϕ)

at an arbitrary point r=(x, y, z) is
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Where ε(r) is the permittivity constant of the material at position r.

The electric field (E) is
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When integrating over the x’ and y’ directions, where x=y=0, the electric field along the

z direction is
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2: The simulation of the electroreceptor

According to the physical model above and Fig. 2a, we assume that there is a space

coordinates system located on the center of organo-hydrogel electrode. The equivalent charge

planes of the ionic electrode, the elastomeric electret and external object are located at z1, z2,

and z3 positions with the same size, respectively. The electric potential of the electrode at the

position (0, 0, z1) is
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Where σ1, σ2 and σ3 are the surface charge density of external object, the elastomeric

electret and the ionic electrode, respectively; z represents the separation distance between the

electroreceptor and external object; ε1 is the permittivity of the elastomeric electret.

Under the open-circuit condition, σ3=0, therefore the open-circuit potential value of the

electrode could be simplified as:
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The numerical calculation results of this model will be commendably consistent with the

finite element simulation results of COMSOL. This has been adequately proven by our

previous works (41, 42). The analytic calculations of the equations above are extremely

complicated. Therefore, in this work, COMSOL simulation was selected to visually reveal

the variation tendency of the electrode potential when an object approaches the

electroreceptor.



Supplementary Text 2

The optimization of electroreceptor matrix for higher resolution

The resolution of the electroreceptor array here could be defined as the number of

electroreceptor pixels per unit area. Obviously, the higher density of the pixels leads to a

higher resolution and better profile recognition. However, there exists the edge effect for the

electrorecetpor. The electric field lines of the electroreceptor units interfere with each other

according to the superposition theorem, which hence affects the voltage output of every

single electroreceptor. We previously carried out work on array triboelectric nanogenerators

(TENG), and studied the edge effects of electrostatic filed theoretically (41). According to

this work, the edge effect is highly related to the geometry structure and distribution of each

unit (41).

Assuming the length of each square unit is represented by L, and the space between two

adjacent units is W. Then, the W/L ratio has a direct effect on the electroreceptor unit’s

output. The output voltage of the electroreceptor unit will be decreased as reducing W/L ratio.

Clearly, a small W/L implies a small distance between the units, such that the electric fields

originating from the edges of units interfere significantly with each other, thereby generating

distortion electric field distributions. This is easy to be understood that the edge effect will be

suppressed when the units are sparsely distributed. This trend has been demonstrated in our

last study as shown in the above figures. On the other hand, as W/L increases, the spacial

resolution will be reduced, as the too-sparsely distributed arrays will be unable to identify

complex geometric shapes. Therefore, there seems to be a trade-off between the dense unit

distribution and high voltage resolution. However, the spatial resolution can still be improved

by increasing the unit numbers and reducing the unit sizes, but cautions should be paid, that

the W/L ratio should be kept to be around a certain optimum value to not exacerbate the edge

distortion effect. According to the previous study, the optimized W/L ratio is around 0.7 (41).

To verify whether the resolution can be improved by geometry optimization and to

prove the proposed technology that is available for the “deep learning”, some necessary

experiments have been carried out by varying the geometry and layout of the electroreveptor

arrays:



Take the 3×3 array as an example. We firstly designed and fabricated two 3×3

electroreceptor arrays whose total working area is 5×5 cm2. Two kinds of W/L ratios were

adopted. The first one: W = 1 cm and L = 1 cm, W/L=1; the second one: W = 0.4 cm and L =

1.4 cm, W/L=2/7 (Fig. 4E). We used the same metal ball with the same radius, r= 5 cm, to

approach the two electroreceptor array at the same height of 1 cm, respectively. It can be

found that although the unit voltage of the array W/L=2/7 is larger than that of the one W/L=1,

the voltage distinction between each unit becomes smaller. This means the voltage resolution

is improved. By using the height distance-voltage relationship obtained in Fig. 2F, we

calculated and fitted the ball radius using the two arrays. The results showed that the larger

W/L=1 ratio leads to a more accurate fitted ball radius of 4.84 cm, much improved from the

8.24 cm when W/L is 2/7 (Fig. 4F).

Then, we further developed a 5×5 electroreceptor array with more and finer pixels. The

W/L of which was set to W = 0.5 cm and L = 0.6 cm, W/L=5/6 (Fig. 4G). The fitted ball

diameter has even further improved accuracy of 5.03 cm (Fig. S19).

Therefore, these data showed clearly that, by optimizing theW/L ratio, higher resolution

can be achieved with finer and more electroreceptor units.

The ball radius was fitted by the measured data of the electroreceptor matrix through the

following method: the voltage of each electroreceptor was experimentally recorded, and the

distance of the ball surface right on top of each electroreceptor can be then calculated by

fitted curves in Fig. 2F, where the target distance-voltage relationship can be fitted with

experimental data. Due to the rotational symmetry of the ball shape, the 9 distance values of

3×3 electroreceptor units can be projected and averaged into 5 points on the projected circle.

Then the ball radius can be calculated and compared with real ball size, for evaluating the

measurement accuracy.



Fig. S2.

Thermal-charging process of the elastomeric electret. (a) The schematic diagram and the

parameter curve of the thermal charging process. (b) The photograph of the prepared

elastomeric electret film which exhibits excellent flexibility and transparency of the

elastomeric electret.



Fig. S3.

SEM characterization of the electret. SEM images of (a) SiO2 nanoparticles, (b)

cross-section of elastomeric electret and (c) organo-hydrogel, from which homogeneous

dispersion of the SiO2 NPs in PDMS matrix and the porous structure of organo-hydrogel

could be clearly observed.



Fig. S4.

Surface potentials of different composite electret after thermal charging process.



Fig. S5.

The elastic properties of the electret. The strain-stress curves of (a) elastomeric electret and

electroreceptor, (b) organo-hydrogel. (c) The strain cycles of electroreceptor. Experimental

results reveal that the electroreceptor shows great mechanical stretchability, which can

accommodate tensile strain exceeds 190% and shows no residual strains after strain cycle

tests.



Fig. S6.

Working principle of the electroreceptor. Situation when an object carried (a) positive

charges or (b) negative charges approaching.



Fig. S7.

The simulation results of COMSOL. (a) the relationship between the output voltage of

electroreceptor and σ1 (the surface charge density of object), (b) the relationship between the

output voltage of electroreceptor and σ2 (the surface charge density of elastomeric electret).

The simulation results reveals that the distance-sensitivity and voltage absolute value

increase dramatically with the charge density σ1 of the approaching surface, but are

insensitive to the charge density of the electret σ2. These results are consistent with the

experiment results in Fig. 2D-E. As for metal object, when increasing the surface charge

density of elastomeric electret, the surface charge density of metal will be gradually increased

due to the electrostatic induction. Therefore, the variation of the voltage output in Fig. 2F is

similar to Fig.2D.



Fig. S8.

The optimization of the charge density of the elastomeric electret. (a) The working

principle of the TENG. (b) The output variations of the TENGs when control the charging

temperature and the SiO2 fraction of the elastomeric electret, and change the charging electric

field intensity of the elastomeric electret. (c) The output variations of the TENGs when

control the charging temperature and the charging electric field intensity of the elastomeric

electret, and change the SiO2 fraction of the elastomeric electret. (d) The output variations of

the TENGs when control the SiO2 fraction and the charging electric field intensity of the

elastomeric electret, and change the charging temperature the elastomeric electret.

To optimize the charge density of elastomeric electret, a contact-separation model

triboelectric nanogenerator (TENG) was fabricated and the elastomeric electret was served as



the triboelectrification layer of the TENG. The output of the TENG was also measured by

Keithley 6517. According to the working principle of the TENG (Fig. S8(a)), the output of

the TENG will be comprehensively affected by the equivalent surface charge density due to

the electrostatic induction effect. Therefore, a higher output of the TENG represents a larger

charge density of the elastomeric electret. Therefore, a higher output of the TENG represents

a larger charge density of the elastomeric electret.

From Fig. S8(b), it could be found that when control the charging temperature and the

SiO2 fraction of the elastomeric electret, the output of the TENG was increased with the

growth of charging electric field intensity. However, when the electric field intensity was

increased to 7.5 kV/mm, the output was extremely decreased. It could be caused by the

breakdown of the elastomeric electret under a high electric field intensity. Therefore, the best

charging electric field intensity is 3.75 kV/mm.

Fig. S8(c) shows that as the SiO2 fraction increasing the output of the TENG was

increased. However, when the SiO2 fraction exceed 2 wt.%, the output was slightly decreased.

It could be caused by the aggregation of the SiO2 nano-particles. Therefore, the optimal SiO2

fraction should be 2 wt.%.

The relationship between the charging temperature and the output of the TENG is

illustrated in Fig. S8(d). It could be seen that the output of the TENG was increasing when

the charging temperature increased, but when the temperature exceed 100℃, the output was

slightly decreased. A higher charging temperature would aggravate the thermal motion of the

molecules. Under this condition, the negative charges will have more difficulties to be

captured by SiO2 nano-particles. Hence, the optimal charging temperature should be 100℃



Fig. S9.

Side-view photographs of electroreceptor during the stretch process.



Fig. S10.

The durability of the ionic electrode. The variation of (a) weight and (b) ionic conductivity

of the organo-hydrogel electrode in 10 days under room temperature.



Fig. S11.

The output of the electroreceptor under light or darkness conditions



Fig. S12.

The output of the electroreceptor under -20~ 50℃.



Fig. S13.

The photograph of the electroreceptor integrated robot arm.



Fig. S14.

The structure of the distance perception system.

The signals generated by human approaching are detected by the electroreceptor and then

transmitted to a virtual instrument which is constructed by a specially written software

program (LabVIEW) and consisted of a Data Acquisition (DAQ) module, a filter, a dynamic

data converter and logical operation module. The virtual instrument analyzes signals acquired

and then delivers appropriate commands to the robot arm.



Fig. S15.

An example as the human-machine interface. The voltage signal that accumulated by

electrometer when the human approaching the electroreceptor and trigger the robot arm.



Fig. S16.

The selection of the threshold voltage. (a) The output of the electroreceptor when materials

with different surface charge density approaching. (b) the virtual robot with threshold 2 (0.4

V) was triggered by approaching paper. (c) the virtual robot with threshold 1 (2 V) failed to

be triggered by approaching paper. (d) the virtual robot with threshold 1 (2 V) was triggered

by approaching PTFE.

As shown in Fig. S14, the voltage output of the electroreceptor was rise to 9.1 V and 0.43 V

respectively when PTFE and paper approach. If the threshold voltage was set to 2 V, the

virtual robot could be triggered by PTFE, but couldn’t be triggered by paper (Fig. S14 (c-d)).

However, if we set the threshold voltage to 0.4 V, the virtual robot could be triggered by both

PTFE and paper (Fig. S14 (b)).



Fig. S17.

The photograph of the touchless keyboard.



Fig. S18.

The schematic diagram of the multichannel data acquisition system.

Signals of up, down, left, and right regions on the touchless pad are collected by a

multichannel data acquisition system illustrated in Fig. S13. The multichannel data

acquisition system contains four channels (corresponding to up, down, left, and right regions),

each channel has an electroreceptor and an electrometer to perceive the approaching of the

finger. Then, collected signals will be passed to a virtual instrument based on LabVIEW to

control the movement of Super Mario.



Fig. S19.

Signals from “up”, “down”, “right” and “left” channels.



Fig. S20.

The output of the 3×3 electroreceptor matrix with the W/L=1.



Fig. S21.

The fitted ball radius using the 5×5 electroreceptor matrix with W/L=5/6.



Fig. S22.

The training dataset of the “Ball”, “Cone”, “Ellipsoid” and “Face” category.



Fig. S23.

The test dataset. The test dataset of (a) “ball”, (b) “cone”, (c) “ellipsoid”, (d) “face”

category.



Fig. S24.

Units of the CNN network.



Fig. S25.

Test result when the image of “ball” was input into the trained skin vision system.



Fig. S26.

Test result when the image of “cone” was input into the trained skin vision system.



Fig. S27.

Test result when the image of “ellipsoid” was input into the trained skin vision system.



Fig. S28.

Test result when the image of “face” was input into the trained skin vision system.



Fig. S29.

The experimental voltage output of 5×5 electroreceptor array when detecting PTFE ball

targets with different surface charge density.

Although the output of each electroreceptor array is different, the characteristic profiles

(sphere) are still the comparable.



Fig. S30.

The training dataset of the “ball”, “cone”, “ellipsoid” and “face” category. Surface

potential of each samples was changed from 490 to 1600 V



Fig. S31.

The voltage output of a single electroreceptor when exposed in different humidity.



Fig. S32.

The experimental voltage output of 5×5 electroreceptor array when detecting ball

targets in 70% humidity environment.



Fig. S33.

The training dataset of the “ball”, “cone”, “ellipsoid” and “face” category under

different humidity. Here, four different surface charge densities are selected to mimic the

four humidity conditions (10%, 30%, 50% and 70%), as the humidity will affect the surface

charge densities.



Movie S1.

Simulation results. Part 1: the simulation of metal approaching the electroreceptor. Part 2:

the simulation of PTFE approaching the electroreceptor

Movie S2.

Electroreceptor for virtual distance alert robot.

Movie S3.

Interacting with a robot arm through the electroreceptor.

Movie S4.

Electroreceptor array for human-machine interface.
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