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Fig. S1: Experimental design and hypothesis based on previous literature 

-

 
Experimental scheme showing bilateral stereotaxic injection of LPS (left hemisphere) / saline 

(right hemisphere) and the composition of the six groups: 6 animals were scanned 8 hours post-

injection, 11 animals were scanned 24 hours post-injection, 8 animals were treated with 

PLX5622 for 7 days before the injection and then scanned 24 hours post-injection, and 5 

animals were scanned 15 days or more post-injection. The last two rows show stereotaxic 

injection of ibotenic acid / lysolecithin (left hemisphere) or saline (right hemisphere) in a group 

of animals. Some (n=6) of the animals injected with ibotenic acid were previously treated with 

minocycline. 

 

  



Fig. S2: Multi-compartment model 

 

 

a, Multi-compartment tissue model comprising one compartment of water undergoing 

restricted diffusion in cylindric geometry (representing water trapped into cell ramifications) 

with a main orientation and a Watson dispersion term, two spherically restricted compartments, 

one extracellular space matrix, aligned with the main cylinder orientation and modelled as a 

tensor, and one compartment of water undergoing free diffusion. b, The compartments defined 

in a are combined to visually represent the different cell types constituting the parenchyma in 

our model: microglia, astrocytes, neurons, extracellular space. 

 

  



Fig. S3 : Histology of myelin basic protein and neurofilament 

 

 
 

a, Myelin basic protein quantification results, plotted as mean and standard deviation, 

accompanied by representative microphotographs of the histological labelling at the different 

time points. b, same for Neurofilament.  Scale bar=100 μm. 

 

  



Fig. S4: conventional MRI parameters in LPS-injected hemisphere versus control 

 

 
 

Normalized change (Pinjected-Pcontrol)/Pcontrol between MRI-derived mean diffusivity, T1/T2, T2* 

and extracellular diffusivity from the multi-compartment model, calculated in the injected vs 

control hemisphere for the astrocyte compartment (shown in the insert). Asterisks represent 

significant paired difference between injected and control. Error bars represent standard 

deviation. 

 

 

  



Fig. S5: Histology main methods and morphometric features obtained 

 

 

a, Representative microphotographs of the histological labelling at the different time points. 

Green= Iba1 (microglia), red= GFAP (astrocytes), Blue= DAPI (Cell nuclei). Scale bar= 100 

μm  b, zoom in of a microglia and astrocyte and their 3D reconstruction for morphometric 

analysis. c, microglia cell size extraction by cross-sectional area determination. d, Microglia’s 

fiber density extraction, showing two representative cases of high and low densities. f, 

Astrocyte’s convex hull extraction. e, Microglia’s polar plots for fiber orientation analysis, 

showing two representative cases of low Watson dispersion parameter k (indicating high fiber 

dispersion along the main orientation) and high k (indicating low fiber dispersion).  

 

  



Fig. S6: Microglia density at the different timepoints after LPS injections  

 

Normalized change (Pinjected-Pcontrol)/Pcontrol in microglial density at the different time points, 

calculated in the LPS-injected vs control hemisphere for the whole hippocampus. Error bars 

represent standard deviation. 

 

Fig. S7: Microglia depletion in PLX5622-treated versus control animals 

 

a, Representative microphotographs of a control rat and PLX5622-treated rat, respectively. 

Green= Iba1 (microglia), red= GFAP (astrocytes), Blue= DAPI (Cell nuclei). Scale bar= 100 

μm b, Nodes number and complexity quantifications of microglia in both cases, plotted as 

mean and standard deviation. Asterisks represent significant t-test difference between injected 

and control.  

 



Fig. S8: Whole GM average maps of stick fraction in rats 

 

 

 

Stick fraction according to the multi-compartment model normalized to the rat brain template 

defined in (49), masked for grey matter tissue, and averaged across subjects.  

 

 

 

Fig. S9: GFAP staining in rats injected with ibotenic acid 

 

 
 

Normalized change (Pinjected-Pcontrol)/Pcontrol in GFAP convex hull size and density, calculated in 

the ibotenic-injected vs control hemisphere for the whole hippocampus. Error bars represent 

standard deviation. 

 

 

  



Fig. S10: Dispersion parameter k in condition of microglia activation, neuronal loss and 

demyelination 

 
MRI synthetic signal was generated for a geometry composed by microglia, astrocytes and 

neurons. Microglia and dendrites were characterized by size and processes/dendrite dispersions 

as measured in (62) (microglia) and (63)(neurons), as schematized in panel a. A myelin 

compartment was also included, with a g-ratio of 0.7. MRI synthetic signal was generated in a 

similar substrate, but with a 50% reduction of microglia ramification, and a 10% increase in 

cell body size as schematized in panel b. A third substrate, instead, simulated a 50% reduction 

of dendrites, as illustrated in panel c. Finally, a fourth substrate was generated with no myelin 

and increased extra-axonal diffusivity. 2*10^3 noisy repetitions (Rician noise) were generated, 

and the resulting signal was fitted using the MCM to extract the dispersion parameter k. 

Normalized difference in k ((kx-ka)/ka, were x=b,c,d) are reported in panel e. Asterisks 

represent significant differences in the 1-sample t-test (*=P<0.05, **=P<0.01). 
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