Supplementary Information

Jack P. K. Bravo, Cristian Aparicio-Maldonado, Franklin L. Nobrega, Stan J. J. Brouns, and David W. Taylor

Supplementary Table 1 I Cryo-EM data collection, refinement, and validation statistics.

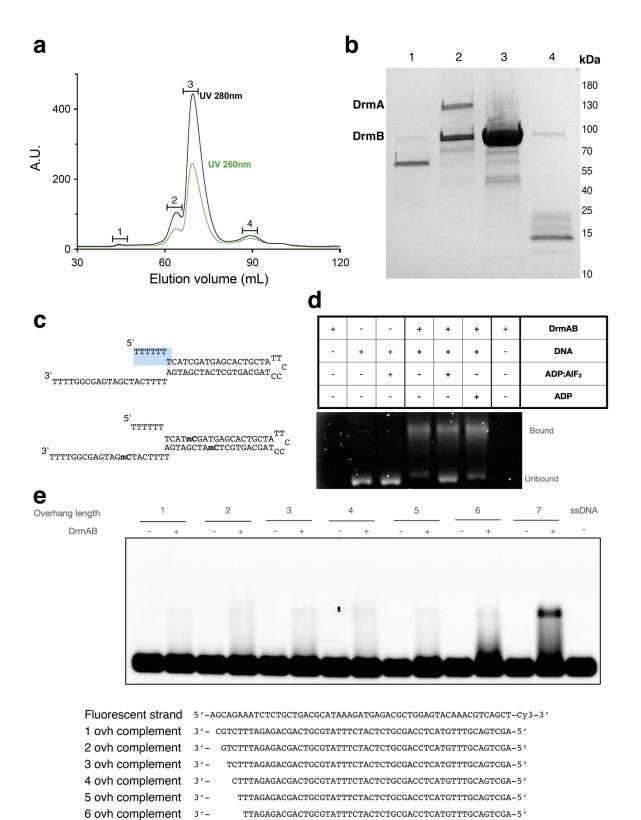
	DrmAB-ADP (PDB 7S9V, EMD-24938)	DrmAB-ADP- DNA (PDB 7S9W, EMD-24939)	DrmAB
Data collection and processing			
Magnification		45,000	
Voltage (kV)		300 kV	
Electron exposure (e–/Ų)		80	
Defocus range (μm)		-1.5 to -2.5	
Pixel size (Å)		1.1	
Symmetry imposed		C1	
Initial particle images (no.)	•	9,932	1,540,419
Final particle images (no.)	120,119	121,764	148,062
Map resolution (Å) at 0.143 FSC threshold	3.31	3.41	3.84
Map resolution range (Å)	3.1 to 4.3	3.3 to 4.5	3.6-6.8
Refinement			
Initial model used (PDB code)	NA		
Model resolution (Å)	3.6	3.8	
FSC threshold	C).5	
Map sharpening <i>B</i> factor (Ų)	-136.8	-151.1	
Model composition			
Non-hydrogen atoms	27680	28125	
Protein residues	1808	1751	
Nucleotides	0	7	
Ligands	1	1	
Mean <i>B</i> factors (Ų)			
Protein	62.08	106.66	
Nucleotides	N/A	116.37	
R.m.s. deviations			
Bond lengths (Å)	0.002	0.002	
Bond angles (°)	0.617	0.631	
Validation			
MolProbity score	1.52	1.53	
Clashscore	3.27	3.34	
Poor rotamers (%)	0	0	
Ramachandran plot			
Favored (%)	93.93	93.90	
Allowed (%)	6.01	6.1	
Disallowed (%)	0.6	0	

Supplementary Table 2 I DNA oligos used for *in vitro* assays in this study.

Oligo name	Sequence (5'-3')
DNA stem loop	TTTTTTCATCGATGAGCACTGCTATTCCCTAGCAGTGCTCATC
	GATGATTTCATCGATGAGCGGTTTT
Methylated DNA	TTTTTTCAT mC GATGAGCACTGCTATTCCCTAGCAGTGCTCAT
stem loop*	mCGATGATTTTCATmCGATGAGCGGTTTT
Fluorescent DNA	Cy5-ATTTTGACAGCCCACATGGCTTGATGAGTGGCGCACTCGC
	CAGCCTGAGCATGGCGAAAACTCCTCCAGTCTGCT
Unlabeled	AGCAGACTGGAGGAGTTTTCGCCATGCTCAGGCTGGCGAGTG
complement DNA	CGCCACTCATCAAGCCATGTGGGCTGTCAAAAT
5' block	GCCATGTGGGCTGTCAAAAT
3' block	AGCAGACTGGAGGAGTTTTC

mC corresponds to 5-methyl-Cytosine.

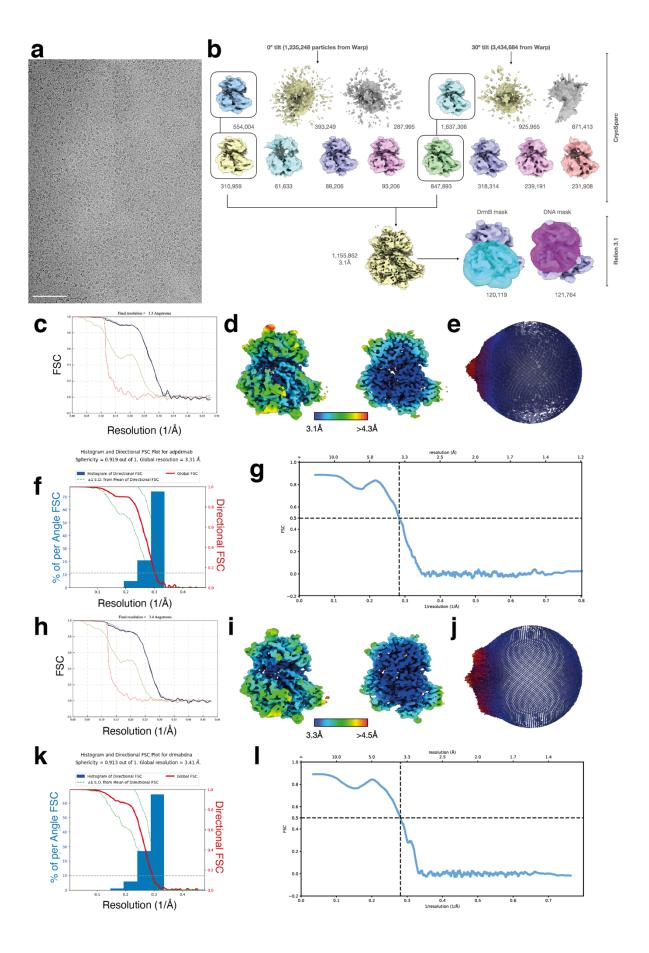
Supplementary Table 3 I DNA oligos used for cloning in this study.

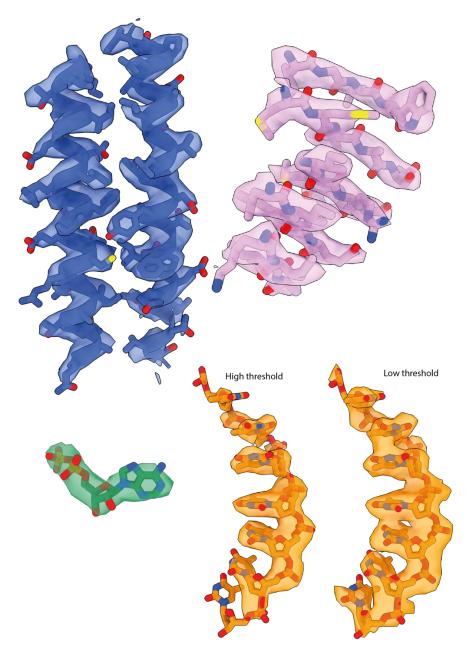

Oligo name	Sequence (5' - 3')	Used for: (in fw/rv couples)	fw/rv
BN1750	TACTTCCAATCCAATGCAATGATCAT CAATAACAAAACTCCAG	Clone <i>drmB</i> into plasmid 13SS using LIC cloning	
BN1751	TTATCCACTTCCAATGTTATTATAAA AACCCTTAAAAAAATGCAGC	Clone <i>drmB</i> into plasmid 13SS using LIC cloning	
BN1060	TATATATACATATGACTGATAACAACA AATCTAG	Clone <i>drmA</i> into plasmid pACYC-Duet using RE cloning-Ndel	
BN1061	ATATATATCTCGAGTCAATCCTCGTC TTTCGTTG	Clone <i>drmA</i> into plasmid pACYC-Duet using RE cloning-XhoI	
BN172	AGATCTGCCATATGTATATCTCCTTC	Amplify pACYC-Duet backbone for cloning of drmA insert	
BN2290	GATCGCTGACGTCGGTACCCTCGAG TC	Amplify pACYC-Duet backbone for cloning of drmA insert	fw
BN1064	TATATATACATATGATGGATGAACTC TTAGATGC	Clone <i>drmC</i> into plasmid pET-Duet using RE cloning-Ndel	fw
BN1065	ATATATATCTCGAGTTAAATCAGACT AATGATATTTGTG	Clone <i>drmC</i> into plasmid pET-Duet using RE cloning-Xhol	rv
BN172	AGATCTGCCATATGTATATCTCCTTC	Amplify pET-Duet backbone for cloning of drmC insert	
BN2290	GATCGCTGACGTCGGTACCCTCGAG TC	Amplify pET-Duet backbone for cloning of drmC insert	
BN3096	CATACCCTATCTCATTTGTTGAT	Create mutant DrmB-ΔDUF1998 in 13ss and in pCDF	fw
BN3095	TTATCATTACAGCATGGCATATCGGA TAC	Create mutant DrmB-ΔDUF1998 in 13ss and in pCDF	
BN3104	TTATCATTATCGCATTGACATAGGTA CAG	Create mutant drmA-ΔPA in pCDF	
BN3105	GAAGTTGAGTCTGGTGTAC	Create mutant <i>drmA</i> -ΔPA in pCDF	
BN3436	TTGGTGCCCAGTAGCCTC	Create mutant <i>drmA</i> -Δloop in pACYC and pCDF	
BN3437	TTCGGCTGCTTCACGTGG	Create mutant <i>drmA</i> -Δloop in pACYC and pCDF	
BN3377	CAACACGACTGGTAGCCTGAATATAC	Amplify DNA from pCDF-Duet with <i>drmA</i> - ΔPA and clone into pACYC-Duet	
BN3378	GGACACCAAATTTATCAAGGACGATC		
BN3375	GTATATTCAGGCTACCAGTCGTGTTG	Amplify DNA from synthetic block to clone in 13SS and pCDF-Duet for <i>drmA</i> mutants R1294A, V1296G, V1296W	
BN3376	GATCGTCCTTGATAAATTTGGTGTCC	Amplify DNA from synthetic block to clone in 13SS and pCDF-Duet for <i>drmA</i> mutants R1294A, V1296G, V1296W	rv
BN3377	CAACACGACTGGTAGCCTGAATATAC	Amplify vectors 13SS and pCDF-Duet DNA to insert amplified DNA of <i>drmA</i> mutants R1294A, V1296G, V1296W	
BN3378	GGACACCAAATTTATCAAGGACGATC	Amplify vectors 13SS and pCDF-Duet DNA to insert amplified DNA <i>drmA</i> mutants R1294A, V1296G, V1296W	fw

BN3379	GATGAACAGAACTTGAATGTGAGC	Amplify DNA from synthetic block to clone in 13SS and pCDF-Duet for <i>drmA</i> mutants R569D, Q572D, K610D, R658D, R649A, K803A, R810A	rv
BN3380	GATAATTAAATCAGGCGGTCGGATA G	Amplify DNA from synthetic block to clone in 13SS and pCDF-Duet for <i>drmA</i> mutants R569D, Q572D, K610D, R658D, R649A, K803A, R810A	fw
BN3381	GCTCACATTCAAGTTCTGTTCATC	Amplify vectors 13SS and pCDF-Duet DNA to insert amplified DNA <i>drmA</i> mutants R569D, Q572D, K610D, R658D, R649A, K803A, R810A	rv
BN3382	CTATCCGACCGCCTGATTTAATTATC	Amplify vectors 13SS and pCDF-Duet DNA to insert amplified DNA <i>drmA</i> mutants R569D, Q572D, K610D, R658D, R649A, K803A, R810A	fw

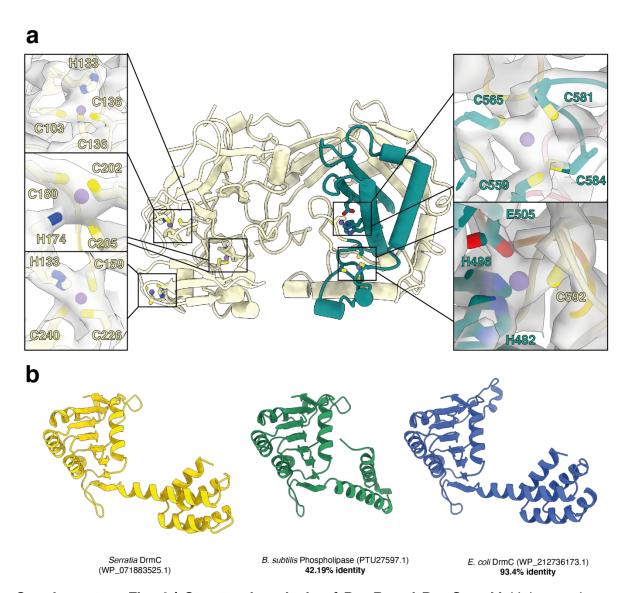
Supplementary Table 4 I Plasmids used in this study.

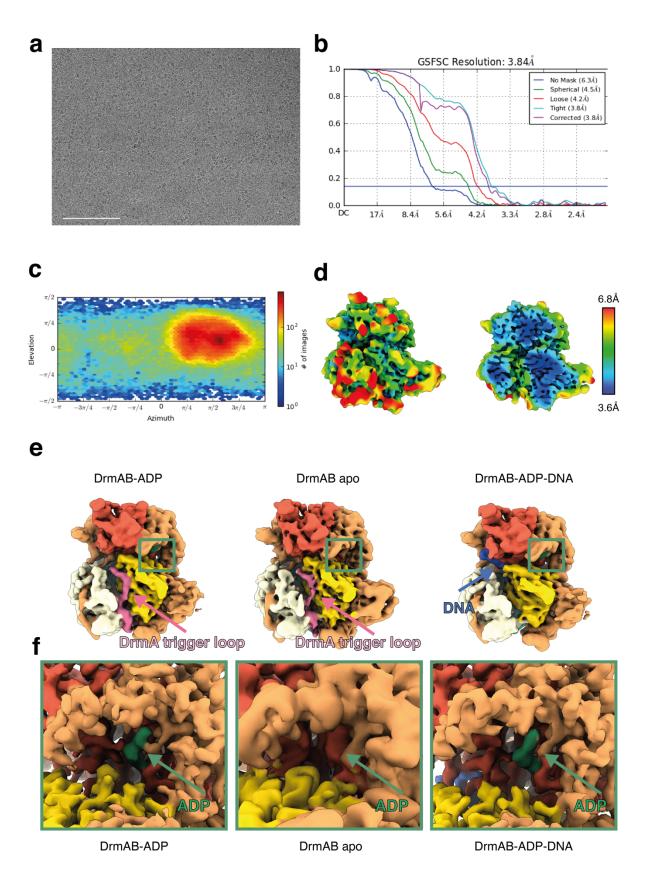
Plasmid	Description	Name in paper	Antibiotic resistance marker	Source
pTU515	13SS- <i>drmB</i> fused to His-tag		Spectinomycin	This paper
pTU518	13SS- <i>drmB</i> - ΔDUF1998 fused to His-tag		Spectinomycin	This paper
pTU516	pACYC-Duet-drmA		Chloramphenicol	This paper
pTU520	pACYC-Duet- drmA(ΔPA)		Chloramphenicol	This paper
pTU542	pACYC-Duet- drmA(Δloop)		Chloramphenicol	This paper
pTU522	pACYC-Duet- drmA(V1296G)		Chloramphenicol	This paper
pTU523	pACYC-Duet- drmA(V1296W)		Chloramphenicol	This paper
pTU524	pACYC-Duet- drmA(R569D)		Chloramphenicol	This paper
pTU525	pACYC-Duet- drmA(Q572D)		Chloramphenicol	This paper
pTU526	pACYC-Duet- drmA(K610D)		Chloramphenicol	This paper
pTU527	pACYC-Duet- drmA(R658D)		Chloramphenicol	This paper
pTU528	pACYC-Duet- drmA(R649A)		Chloramphenicol	This paper
pTU529	pACYC-Duet- drmA(K803A)		Chloramphenicol	This paper
pTU530	pACYC-Duet- drmA(R810A)		Chloramphenicol	This paper
pTU531	pACYC-Duet- drmA(R1294A)		Chloramphenicol	This paper
pTU517	pET-Duet-drmC		Ampicillin	Reference (28)
pTU495	pCDF-Duet-drmABC		Streptomycin	Reference (28)
pTU519	pCDF-Duet-drmABC with drmB-ΔDUF1998		Streptomycin	This paper
pTU521	pCDF-Duet-drmABC with <i>drmA</i> (ΔPA)		Streptomycin	This paper
pTU543	pCDF-Duet-drmABC with <i>drmA</i> (Δloop)		Streptomycin	This paper
pTU532	pCDF-Duet-drmABC with drmA(V1296G)		Streptomycin	This paper
pTU533	pCDF-Duet-drmABC with drmA(V1296W)		Streptomycin	This paper
pTU534	pCDF-Duet-drmABC with drmA(R569D)		Streptomycin	This paper

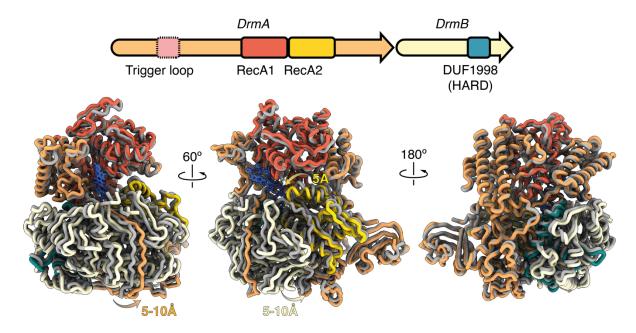

pTU535	pCDF-Duet-drmABC with drmA(Q572D)	Streptomycin	This paper
pTU536	pCDF-Duet-drmABC with <i>drmA</i> (K610D)	Streptomycin	This paper
pTU537	pCDF-Duet-drmABC with <i>drmA(</i> R658D)	Streptomycin	This paper
pTU538	pCDF-Duet-drmABC with <i>drmA</i> (R649A)	Streptomycin	This paper
pTU539	pCDF-Duet-drmABC with <i>drmA</i> (K803A)	Streptomycin	This paper
pTU540	pCDF-Duet-drmABC with <i>drmA</i> (R810A)	Streptomycin	This paper
pTU541	pCDF-Duet-drmABC with <i>drmA</i> (R1294A)	Streptomycin	This paper


 ${\tt TAGAGACGACTGCGTATTTCTACTCTGCGACCTCATGTTTGCAGTCGA-5'}$

7 ovh complement 3'-

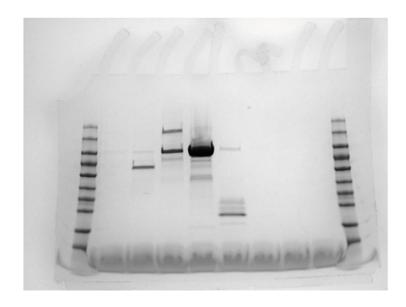

Supplementary Fig. 1 I DNA binding by DrmAB. a, Size-exclusion chromatogram of DrmAB complex. DrmB was tagged and used to pull down co-expressed DrmAB complex. Fractions 1 -4 are analyzed in panel B. b. SDS PAGE analysis of DrmAB complex purified by size-exclusion chromatography. DrmAB assembles with a 1:1 DrmA:DrmB stoichiometry (fraction 2). Fraction 2 was used for subsequent structural and biochemical analysis. Representative of three independent experiments. Uncropped gel image is provided in Supplementary Source Data 1. c, Top: Secondary structure diagram of DNA stem-loop used for structural analyses (Supplementary Table 2). 5' region visible in cryo-EM reconstruction is denoted by orange box. Bottom: methylated DNA substrate used in ATPase assay d, Native gel shift assay used to determine sample preparation conditions for cryo-EM. 4 μ M DNA hairpin (**Supplementary Table** 2) was heat annealed and incubated with 10 μ M DrmAB in the absence or presence of 1 mM ADP or ADP:AIF3. Bound and free DNA were separated using EMSA. Representative of three independent experiments. Uncropped gel image is provided in Supplementary Source Data 2. e, EMSA of binding Cy5-labelled DNA with increasing overhang length by annealing complementary DNA of decreasing lengths. Binding is first observed when a length of 7-nt is present. Substrates used in successive overhang binding assay are shown below. Representative of three independent experiments. Uncropped gel image is provided in **Supplementary Source** Data 3.


Supplementary Fig. 2 I Cryo-EM data processing of DrmAB-ADP-DNA dataset. a, Representative cryo-electron micrograph of DrmAB:ADP:DNA. Scale bar — 100 nm. Representative of ~9,000 raw micrographs. b, Data processing workflow detailing how tilted and untilted particle stacks were combined to a consensus reconstruction. While further classification of said reconstruction yielded a 2.8Å-resolution map, the quality of density corresponding to both ssDNA and DrmB N-terminal half were poor. To ameliorate this, focused 3D classification using either a DrmB mask or a DNA mask was used. c, Gold-standard Fourier shell correlation (FSC) curve for DrmAB:ADP. d, EM density map of DrmAB:ADP color-coded according to local resolution. e, Angular distribution plot calculated in Relion of DrmAB:ADP. h, Gold-standard Fourier shell correlation (FSC) curve for DrmAB:ADP:DNA. I: EM density map of DrmAB:ADP:DNA color-coded according to local resolution. j, Angular distribution plot calculated in Relion of DrmAB:ADP:DNA calculated by 3DFSC (Zi Tan et al., 2017). I, Map-to-model FSC for DrmAB:ADP:DNA.

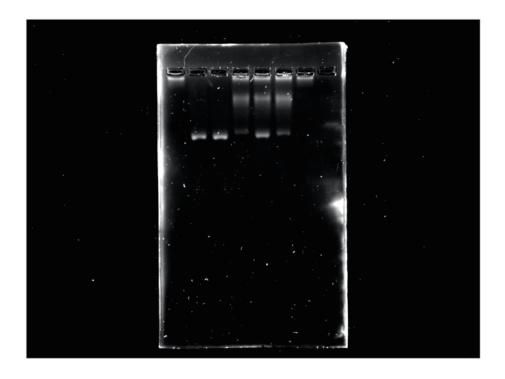

Supplementary Fig. 3 I Representative regions of DrmAB:ADP:DNA map with corresponding models. Blue: α -helices, pink: β -sheet, green: ADP, orange: DNA. DNA is shown at two different thresholds to illustrate that bases within the center of the molecule are well-resolved, but peripheral bases are less well-resolved, but can still be modelled with confidence.

Supplementary Fig. 4 I Structural analysis of DrmB and DrmC. a, Multiple putative metal coordination sites within DrmB, with representative cryo-EM densities. **b,** Structural models of DrmC from *Serratia* (yellow), a *B. subtilis* PLD-nuclease protein homologue of DrmC (green) and an *E. coli* PLD-nuclease protein homologue of DrmC (blue). The DISARM operon in this study originated in *Serratia*, and *in vivo* assays were performed in *E. coli. B. subtilis* was the model organism used for *in vivo* assays in a previous DISARM study⁷. Structural models were generated using AlphaFold2.

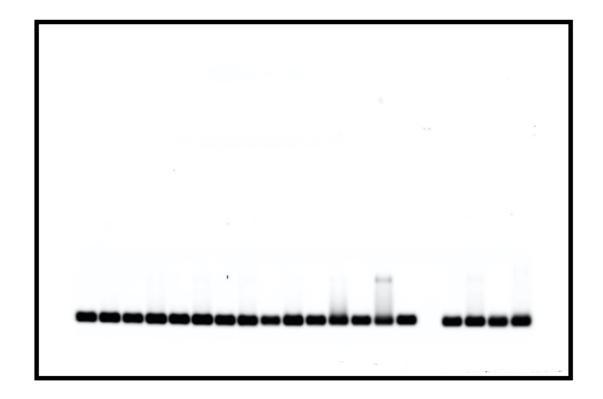
Supplementary Fig. 5 I Structural features of DrmAB complex and TL. a, Representative cryo-electron micrograph of DrmAB. Scale bar – 100 nm. Representative of ~1,700 raw micrographs. b, Gold-standard FSC curves for DrmAB. c, Angular distribution plot for DrmAB calculated in cryoSPARC. d, EM density map of DrmAB color-coded according to local resolution. e, Presence of TL EM density features within DrmAB:ADP, DrmAB, and DrmAB:ADP:DNA maps. TL is pink, and DNA is blue. Green box corresponds to ATP binding site. f, ATP-binding site within DrmA RecA domains. DrmAB apo complex contains no nucleotide density, but still contains TL density.



DrmAB:ADP vs DrmAB:ADP:DNA


Supplementary Fig. 6 I Conformational changes upon DNA binding. Top, Domain architecture schematic of DrmA and DrmB. **Bottom**, DrmAB:ADP:DNA colored as in the above schematic, and the DrmAB:ADP complex colored in grey, showing conformational changes. DrmA trigger loop is absent in colored DrmAB:ADP:DNA model since it likely becomes disordered or flexible upon DNA binding.

Supplementary Source Data


Supplementary Source Data 1. Uncropped gel image for Supplementary Fig. 1b.

Supplementary Source Data 2. Uncropped gel image for Supplementary Fig. 1d.

Supplementary Source Data 3. Uncropped gel image for Supplementary Fig. 1e.

