Supplementary Information

Fluent Molecular Mixing of Tau Isoforms in Alzheimer's Disease Neurofibrillary Tangles

Aurelio J. Dregni ¹^{\$}, Pu Duan¹^{\$}, Hong Xu², Lakshmi Changolkar², Nadia El Mammeri¹, Virginia M.-Y. Lee², and Mei Hong¹*

¹ Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139

² Department of Pathology and Laboratory Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA

This PDF file includes: Supplementary Tables 1 - 5 Supplementary Figures 1 to 7

Case no.	Disease Duration (yr)	Gender	Neuropathological diagnosis
1	11	F	Alzheimer's disease
2	6	F	Alzheimer's disease
3	7	М	Alzheimer's disease
4	9	F	Alzheimer's disease
5	11	F	Alzheimer's disease
6	9	М	Alzheimer's disease
7	8	М	Alzheimer's disease
8	16	F	Alzheimer's disease
9	3	М	Alzheimer's disease
10	8	F	Alzheimer's disease

Supplementary Table 1. Cases of Alzheimer's disease brains used in this solid-state NMR study.

Supplementary Table 2. Characterization of supernatant fraction from human brain extraction ("AD Seeds").

	Conc. of Tau by ELISA	Total protein Conc. by BCA	Purity (tau / total protein)	Conc. of $A\beta_{42}$ by ELISA	Conc. of $A\beta_{42}$ by ELISA	Conc. of α-synuclein by ELISA
Pooled AD-tau	0.55 μg/μl	5.28 μg/μl	10%	14.61 ng/µl	59.16 ng/µl	0.46 ng/µl

Supplementary Table 3. Morphologies of AD-seeded tau and heparin-fibrilized tau. At least 5 different particles from two or more different TEM images were sampled using ImageJ, and a total of at least 10 readings were averaged to give each of the statistics below.

Samplas	Twisted fibrils			Straight fibrils
Samples	Crossover length	Narrow width	Wide width	Width
[AD]4R ^N 3R ^C	$86.9\pm10.6~\text{nm}$	$9.9 \pm 1.6 \text{ nm}$	$25.1 \pm 1.8 \text{ nm}$	15.2 ± 0.9 nm
[AD]4R ^{NC}	$99.3\pm9.4~\text{nm}$	$10.7\pm1.6~\text{nm}$	$24.3 \pm 1.7 \text{ nm}$	$15.9 \pm 1.3 \text{ nm}$
[AD]3R ^{NC}	$100.7 \pm 16.5 \text{ nm}$	$10.6\pm1.0~\text{nm}$	$24.7 \pm 2.7 \text{ nm}$	$16.3 \pm 1.0 \text{ nm}$
[AD]3R ^N 4R ^C	$93.8\pm18.0~\text{nm}$	$10.0 \pm 1.1 \text{ nm}$	$25.5\pm1.9~\text{nm}$	$16.0 \pm 1.0 \text{ nm}$
Heparin-0N4R	16.1 ± 1.6 nm, long	g straight filaments		
Heparin-0N3R	22.9 ± 0.6 nm, straight ribbons			
Hep-0N3R/0N4R mix	13.8 ± 1.3 nm, long	g straight filaments		

Supplementary Table 4. Concentrations of tau added to fibril growth mixtures and validation by the 1D NMR spectral quantification.

Samples	Tau monomers for fibrillization	Composition of AD seeded samples from 1D NMR spectral quantification
$[AD]4R^{N}3R^{C}$	18 μM ² H, ¹³ C-0N3R + 18 μM ² H, ¹⁵ N-0N4R	#1: 40.0% 3R, $60.0 \pm 3.0\%$ 4R,
		#2: 37.4% 3R, $62.6 \pm 3.0\%$ 4R
$[AD]4R^{NC}$	36 μM ² H, ¹³ C, ¹⁵ N-0N4R	100% 4R
[AD]3R ^{NC}	36 μM ² H, ¹³ C, ¹⁵ N-0N3R	100% 3R
[AD]3R ^N 4R ^C	18 μM ² H, ¹³ C-0N4R + 18 μM ² H, ¹⁵ N-0N3R	#1: $39.2 \pm 3.0\%$ 3R, 60.8% 4R
		#2: 37.9 ± 3.0% 3R, 62.1% 4R
100:0 4R	$10 \ \mu M^{2}H$, $^{13}C-0N4R + 0 \ \mu M^{2}H$, $^{15}N-0N4R$	
70:30 4R	$7 \mu M^{2}H$, ¹³ C-0N4R + $3 \mu M^{2}H$, ¹⁵ N-0N4R	
60:40 4R	$6 \mu M^{2}H$, ¹³ C-0N4R + $4 \mu M^{2}H$, ¹⁵ N-0N4R	
50:50 4R	$5 \mu M^{2}H$, ¹³ C-0N4R + $5 \mu M^{2}H$, ¹⁵ N-0N4R	
40:60 4R	$4 \mu M^{2}H$, ¹³ C-0N4R + $6 \mu M^{2}H$, ¹⁵ N-0N4R	
30:70 4R	$3 \mu M^{2}H$, ¹³ C-0N4R + $7 \mu M^{2}H$, ¹⁵ N-0N4R	

Supplementary Table 5. NMR experimental parameters in this study. All experiments were conducted using a Bruker 1.3 mm HCN probe on a Bruker Avance III HD 600 MHz spectrometer or Avance II 800 MHz spectrometer. The rf field strength for ¹H, ¹³C and ¹⁵N channel pulses are 83.3 kHz, 62.5 kHz and 50 kHz, respectively.

Experiment	NMR Parameters	Experimental
		Time per
		sample
1D ¹³ C DP	$B_0 = 14.1$ T, ns = 2048 or 6144, τ _{rd} = 5 s, τ _{dw} = 10 μs, τ _{aeq} = 30.7 ms, ν _{H,DEC} = 130 kHz, ν _{MAS} = 20 kHz, T _{bearing} = 278 K, δ _{H2O} = 4.89 ppm, d1 = 5 s	3 hr or 9 hr
1D J-hnH	$ \begin{array}{l} B_0 = 14.1 \ T, \ ns = 256 \ or \ 512, \ \tau_{rd} = 1.5 \ s, \ \tau_{dw} = 15 \ \mu s, \ \tau_{acq} = 92.2 \ ms, \ \tau_{INEPT} = \\ 10 \ ms, \ \tau_{MISSISSIPPI} = 0.3 \ s, \ \nu_{H,DEC} = 130 \ kHz, \ \nu_{C,DEC} = 3.6 \ kHz, \ \nu_{N,DEC} = 3.6 \ kHz, \\ \nu_{MAS} = 20 \ kHz, \ T_{bearing} = 293 \ K, \ \delta_{H2O} = 4.77 \ ppm. \end{array} $	10 min or 20 min
1D dipolar hnH	$ \begin{array}{l} B_0 = 14.1 \ T, \ ns = 256 \ or \ 512, \ \tau_{rd} = 1.5 \ s, \ \tau_{dw} = 15 \ \mu s, \ \tau_{acq} = 23.0 \ ms, \ \tau_{HN} = 1250 \\ \mu s, \ \tau_{NH} = 400 \ \mu s, \ \tau_{MISSISSIPPI} = 0.3 \ s, \ \nu_{C,DEC} = 3.6 \ kHz, \ \nu_{N,DEC} = 3.6 \ kHz, \ \nu_{MAS} \\ = 20 \ kHz, \ T_{bearing} = 278 \ K, \ \delta_{H2O} = 4.89 \ ppm. \end{array} $	10 min or 20 min
¹ H-detected ¹⁵ N- ¹³ C REDOR	B ₀ = 14.1 T, ns = 256*6*2 to 256*8*2 for each REDOR time, τ_{rd} = 1.5 s, τ_{dw} = 15 μs, τ_{acq} = 23.0 ms, τ_{HN} = 1250 μs, τ_{NH} = 400 μs, $\tau_{MISSISSIPPI}$ = 0.3 s, τ_{REDOR} = 0.1 ms to 25 ms (28 REDOR time in total), $\nu_{H,DEC}$ = 130 kHz, $\nu_{C,DEC}$ = 3.6 kHz, $\nu_{N,DEC}$ = 3.6 kHz, ν_{MAS} = 20 kHz, ν_{C} = 62.5 kHz, $T_{bearing}$ = 278 K, δ_{H20} = 4.89 ppm.	2-3 days per sample
2D J-hNH	B ₀ = 14.1 T, ns = 64 to 160, τ_{rd} = 1.5 s, τ_{dw} = 15 μs, τ_{acq} = 92.2 ms, $t_{1,inc}$ = 274 μs, $t_{1,max}$ = 70.2 ms, τ_{INEPT} = 10 ms, $\tau_{MISSISSIPPI}$ = 0.3 s, $v_{H,DEC}$ = 130 kHz, $v_{C,DEC}$ = 3.6 kHz, $v_{N,DEC}$ = 3.6 kHz, v_{MAS} = 20 kHz, $T_{bearing}$ = 293 K, δ_{H20} = 4.77 ppm.	~2 days per sample
2D dipolar hNH	B ₀ = 18.8 T (Heparin-4R ^{NC} , [AD]4R ^{NC}) or 14.1 T (others), ns = 400 to 600, τ _{rd} = 1.5 s, τ _{dw} = 15 μs, τ _{acq} = 38.4 ms, t _{1,inc} = 225 μs (Heparin-4R ^{NC} , [AD]4R ^{NC}) or 300 μs (others), t _{1,max} = 30 ms, τ _{HN} = 1250 μs, τ _{NH} = 400 μs, τ _{MISSISSIPPI} = 0.3 s, ν _{H,DEC} = 10 kHz, ν _{C,DEC} = 10 kHz, ν _{N,DEC} = 10 kHz, ν _{MAS} = 55 kHz, T _{bearing} = 250 K, δ _{H2O} = 4.89 ppm.	2-3 days per sample
3D hCANH	$ \begin{array}{l} B_0 = 14.1 \ T, \ ns = 24, \ \tau_{rd} = 1.5 \ s, \ \tau_{dw} = 15 \ \mu s, \ \tau_{acq} = 38.4 \ ms, \ t_{1,inc} = 160 \ \mu s, \ t_{1,max} \\ = 4.8 \ ms, \ t_{2,inc} = 300 \ \mu s, \ t_{2,max} = 10.5 \ ms, \ \tau_{HC} = 2 \ ms, \ \tau_{CN} = 8 \ ms, \ \tau_{NH} = 400 \ \mu s, \\ \tau_{MISSISSIPPI} = 0.2 \ s, \ \nu_{H,DEC} = 10 \ kHz, \ \nu_{H,CN} = 0 \ kHz, \ \nu_{C,DEC} = 10 \ kHz, \ \nu_{N,DEC} = 10 \ kHz, \ \nu_{MAS} = 55 \ kHz, \ T_{bearing} = 247 \ K, \ \delta_{H2O} = 4.89 \ ppm. \end{array} $	2 days
3D hCA(co)NH	$ \begin{array}{l} B_0 = 14.1 \ T, ns = 40, \tau_{rd} = 1.5 \ s, \tau_{dw} = 15 \ \mu s, \tau_{acq} = 23.0 \ ms, t_{1,inc} = 160 \ \mu s, t_{1,max} \\ = 4.8 \ ms, t_{2,inc} = 300 \ \mu s, t_{2,max} = 10.5 \ ms, \tau_{HC} = 2 \ ms, \tau_{DREAM} = 8 \ ms, \tau_{CN} = 8 \\ ms, \tau_{NH} = 400 \ \mu s, \tau_{MISSISSIPPI} = 0.2 \ s, \nu_{H,DEC} = 10 \ kHz, \nu_{H,CN} = 0 \ kHz, \nu_{C,DEC} = \\ 10 \ kHz, \nu_{N,DEC} = 10 \ kHz, \nu_{MAS} = 55 \ kHz, T_{bearing} = 247 \ K, \delta_{H2O} = 4.89 \ ppm. \end{array} $	3.5 days

Definitions of symbols: B_0 = magnetic field; ns = number of scans per free induction decay; τ_{rd} = recycle delay; $t_{1,max}$ = maximum t_1 evolution time; $t_{1,inc} = t_1$ increment; $t_{2,max}$ = maximum t_2 evolution time; $t_{2,inc} = t_2$ increment; τ_{dw} = dwell-time in the direct dimension; τ_{acq} = maximum acquisition time in the direct dimension; $v_{X,DEC}$ = X channel (¹H, ¹³C or ¹⁵N) rf field strength for decoupling during acquisition; $v_{H,CN} = {}^{1}H$ rf field strength for decoupling during ${}^{13}C{}^{-15}N$ SPECIFIC-CP; $T_{bearing}$ = thermocouple-reported bearing gas temperature; $\delta_{H2O} = {}^{1}H$ chemical shift of water; v_{MAS} = MAS frequency; $\tau_{HX} = {}^{1}H{}-X$ cross polarization contact time; $\tau_{CN} = {}^{13}C{}{}^{-15}N$ SPECIFIC-CP contact time; $\tau_{DREAM} = {}^{13}C{}^{-13}C$ DREAM contact time; $\tau_{NH} = {}^{15}N{}^{-1}H$ cross polarization contact time; $\tau_{MISSISSIPPI}$ = duration of MISSISSIPPI solvent suppression period, $\tau_{REDOR} = {}^{15}N{}^{-13}C$ REDOR mixing time; $v_C = {}^{13}C{}$ rf field strength for 180° pulses during REDOR.

Supplementary Fig. 1. Full Western Blot images from Fig. 2a. Tau species in (a) $[AD]4R^N3R^C$, (b) $[AD]4R^{NC}$, (c) $[AD]3R^{NC}$ and (d) $[AD]3R^N4R^C$ were revealed by the 17025 anti-total tau antibody and PHF1 anti-phospho-tau antibody.

Supplementary Fig. 2. TEM Images of tau filaments aligned for comparison. (a) The majority of fibrils in AD-seeded samples are twisted filaments that have uniform width and crossover distance, and that match the dimensions previously reported for AD paired-helical filaments (PHF)⁴⁵. (b) Heparin-fibrillized tau containing 4R tau only, 3R tau only, and both 4R and 3R tau. These fibrils are nearly exclusively straight and are distinct from AD seeded tau filaments. At least five different images from different regions of each grid were obtained for each sample.

Supplementary Fig. 3. Measured and simulated ¹⁵N-¹³C REDOR dephasing curves of mixed labeled 0N4R tau with varying ratios of ¹³C, ²H-labeled protein and ¹⁵N, ²H-labeled protein. (a) Measured REDOR dephasing of ¹³C and ¹⁵N mixed labeled 0N4R tau with varying mixing ratios, reproduced from Fig. 3e. Natural abundance ¹³C dephasing to ¹⁵N-labeled protein is present in these data. Error bars represent the propogated uncertainty from the spectral signal-to-noise ratios. (b) 13 C natural-abundance corrected REDOR data, obtained by dividing the measured S/S₀ values of each sample by the S/S_0 values of the 100% ¹⁵N-labeled tau. Error bars represent the propogated uncertainty from the spectral signal-to-noise ratios. (c) SpinEvolution simulation using up to 9 nearest ¹³C spins to the I308 amide ¹⁵N. The natural abundance ¹³C nuclei in the ¹⁵N-labeled monomer are ignored in these simulations. (d) Second moment analysis (SMA) of REDOR dephasing using the same ¹³C spins as in (b). (e) Second moment analysis of REDOR dephasing using the nearest 48 ¹³C spins within 8.8 Å of the ¹⁵N nucleus. The second moment simulations ignore ¹³C finite-pulse effects, ¹³C isotropic and anisotropic chemical shifts, and ¹³C-¹³C dipolar couplings. (f-h) overlay of the measured natural-abundance corrected REDOR data in (b) with the SpinEvolution simulation (c) and second moment analysis (d-e). (i) ¹³C spins within 5.8 Å (dashed lines) or 8.8 Å (purple sphere) of I308 amide ¹⁵N in the cryoEM structure of AD PHF tau (PDB: 5O3L)⁴. The two neighboring chains that sandwich the central chain with an I308¹⁵N label are ¹³C-labeled either in one or both chains.

Supplementary Fig. 4. AD seeded mixed isoform tau filaments have highly reproducible structure and dynamics. (a-f) Comparisons of the fingerprint spectra and REDOR data of two independent samples of AD-seeded ¹⁵N-labeled 3R tau mixed with ¹³C-labeled 4R tau (1:1). (g-l) Comparisons of fingerprint spectra and REDOR data of two independent AD seeded ¹⁵N-labeled 4R tau mixed with ¹³C-labeled 3R tau (1:1). Each sample was seeded separately using separately

purified tau monomers. (**a-c**) 1D CP-hnH, J-hnH, and ¹³C DP MAS spectra of duplicates #1 and #2 of $[AD]3R^{N}4R^{C}$ tau. (**d-e**) 2D CP-hNH and J-hNH spectra of the same duplicates. (**f**) ¹H-detected ¹⁵N-¹³C REDOR dephasing of the duplicates. Similar comparisons between the duplicates of $[AD]4R^{N}3R^{C}$ are shown in (**g-l**).

Supplementary Fig. 5. 1D ¹H-detected J-hnH spectra, ¹H-detected CP-hnH spectra, and ¹³C DP-MAS spectra of AD-tau seeded tau filaments for quantification of 4R and 3R tau incorporation levels into the filaments. (a) $[AD]4R^{NC}$ sample. (b) $[AD]3R^{NC}$ sample. (c) Duplicates #1 and #2 of $[AD]4R^{N}3R^{C}$ sample, which contains a 1:1 mixture of ¹⁵N, ²H-labeled 0N4R tau and ¹³C, ²H-labeled 0N3R tau. (d) Duplicates #1 and #2 of $[AD]4R^{N}3R^{C}$ sample, which contains a 1:1 mixture of ¹⁵N, ²H-labeled 0N4R tau and ¹³C, ²H-labeled 0N3R tau and ¹³C, ²H-labeled 0N4R tau.

Supplementary Fig. 6. Simulated fibril mixing schemes for varying mole fractions of 4R tau (χ_4) and mixing quotients Q. Individual 100-monomer fibrils made of 3R (blue) or 4R (orange) monomers are shown; each monomer is a vertical line. (**a**) Simulated mixing as a function of Q for $\chi_4 = 0.5$. (**b**) Simulated mixing as a function of Q for $\chi_4 = 0.6$. (**c**) Simulated mixing as a function of Q for $\chi_4 = 0.7$. (**d**) Simulated mixing as a function of χ_4 for Q = 1.

Supplementary Fig. 7. Assignment of residues ²⁹¹CGS²⁹³ and ³²²CGS²⁹⁴ in heparin-fibrilized 4R^{NC} tau based on 3D hCANH and hCA(co)NH spectra. (**a**) 2D NC projection from the 3D hCANH spectrum of the heparin-fibrillized CDN-labeled 4R tau (black), overlaid with the previously reported 2D NCA spectrum of heparin-fibrillized CN-labeled 4R tau (orange) ²¹. Residues ²⁹¹CGS²⁹³ and ³²²CGS²⁹⁴ in both spectra are marked in cyan. The small chemical shift differences between the two samples can be attributed to deuterium isotope effects and slight difference in experimental temperatures. (**b**) CAH strips extracted at the ¹⁵N chemical shifts of residues ²⁹¹CGS²⁹³ and ³²²CG²⁹³ from 3D the hCANH (blue) and hCA(co)NH (red) spectra of the CDN-labeled 4R tau sample. Residues ²⁹¹CGS²⁹³ and ³²²CG²⁹³ and ³²²CGS²⁹³ and ³²²CGS²⁹³ and ³²²CG²⁹³ from 3D the hCANH (blue) and hCA(co)NH (red) spectra of the cDN-labeled 4R tau sample. Residues ²⁹¹CGS²⁹³ and ³²²CG³²³ have the strongest peak intensities in these 3D ¹H-detected spectra, consistent with the observation of CN-labeled 4R tau sample in previously reported ¹³C-detected 3D spectra ²¹.