Supplemental Materials
Additional methodology details

We consider the following observation model for infections and confirmed cases. Each indi-
vidual n € {1,..., N} who eventually becomes infected is confirmed to be infected on day
C, € {1,...,T}, and we assume that there were no infections prior to the initial time, de-
noted 1. The time of a confirmed case is stochastically delayed from the true date of infection
I, e{1,...,T},

D,, ~ Categorical(6) (4)

where D,, is a random number of days sampled from a discrete distribution with probability
vector 6 = (0, ...,0p). We assume that 6 is available as external knowledge from an auxiliary
data source and consider it fixed throughout. For example, COVID-19 line lists track the number
of days between symptom development and reported case in individual cases can be used to form
an estimate of the distribution 6 [1, [2]. While the methods considered condition on a specific 6,
uncertainty in 6 can be explored by a sensitivity analysis or averaging over a distribution of 6
estimates.

Daily incidence is a summary of all cases from a given day. We write confirmed case incidence
onday t as Y = (Y1,...,Yr), where V; = Zg 1(C,, = t) and 1(C,, = t) takes the value one
when (), is equal to ¢ and zero otherwise. Similarly, the unobserved infection incidence curve
is defined as X = (Xi,...,X7r), where X; = Zf:’ 1(I, = t). The infection incidence curve is
the target of our estimator. We depict an example of a delay distribution § and the resulting
infection incidence and observed incidence pair in eFigure

Observed case likelihood

The likelihood corresponding to the observed time series, y is a function of the convolution of
the infection incidence X = X;,..., X7 and the delay distribution 6. To see this, we view each
marginal Y; as the sum of N Poisson processes. Consider the infection date I,, for individual n.
We can view the value C,, as the realization of a Poisson process with intensity function 6 offset
to start at the value of I,,, conditioned on a single realization.

Take all X, individuals infected on day s. Due to the additivity of Poisson processes, the number
of cases reported on day ¢ that originated on day s will follow a Poisson distribution, which we
denote

Y (s,t) ~ Pois(X; - 0;—s), (6)

where we define 8, = 0 for s < 0 and s > P. The total number of reported cases on day t is a
sum of Y'(s, ) over its first argument up to day ¢, which is again Poisson

Y, ~ Y Y(s,t) ~ Pois (Z X, -9t5> , (7)

where the mean is the familiar convolution operator. Conditioning on the total number infected,
N, the vector Y = (Y7,...,Yr) is jointly multinomial

Yi,..., Yy ~ Mult(p; N) (8)

p=(sz-el_s,...,zxs-%_s). (9)
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The expected number of reported cases, E[Y] = (E[Y1],..., E[Yr]) is related to the underlying
infection time series X = (X1,..., Xr) by the convolution

E[Y] =X 0. (10)

This is equivalent to a linear mapping of X, E[Y] = PyX for the matrix Py constructed to
correspond to the discrete convolution with vector 6

0o
01 b

Py Oy o . . (11)

Or ... 62 601 69
All unidentified entries of Py are 0. Intuitively, recovering X from Y involves the inverse of this
mapping. However, a popular reconstruction approach — which we term the “re-convolution” es-

timator — does not correspond to the inverse of this mapping, but actually to another application
of the same convolution.

“Re-convolution” incidence reconstruction

An intuitive approach to infection incidence reconstruction is to stochastically “undo” the results
of the delay random variable, D,. One type of estimator for this is to simply sample a new
D,, ~ Cat(f) from the delay distribution and subtract this new value from the observed case
date

D, ~ Cat( (12)

0),
I,=c¢,—D,, (13)
Xy=> U(I, =t). (14)

A related approach is to “undo” the convolution of # with I by running the convolution backward
over the observed case counts, resulting in the estimator

Xs = Z}/t ' ot—sa (15)
t

X=(Xy,...,Xp)=Y %0, (16)

where * indicates reversing the direction of the convolution operator. Intuitively, this operation
distributes observed cases backward in time according to the delay distribution. This has become
a popular approach to cope with delayed observations [3| [4] [5] [6] [7].

This reverse convolution corresponds to multiplication by the transpose of Py

X=PY, (17)
which effectively applies another convolution to the already convolved time series Y, further
smoothing the already smoothed observation. We term this estimator the “re-convolution” esti-
mator.

Given that E[Y] = PyX, a conceptually straightforward method for computing X is to simply
invert Py, noting that X = P, LE[Y]. Because we only have access to Y, and not E[Y], one
might derive a plug-in estimator, substituting the observation Y for E[Y]

X=P'v. (18)
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This estimator, however, is unstable in the presence of noise in the daily case counts Y, rendering
it impractical for applied analysis. Intuitively, this inverted convolution estimator is similar to
fitting a linear regression model where the number of observations is equal to the number of
covariates (i.e., n = p) — an ill-posed inverse problem [8]. We refer to this estimator as the
“unstable” deconvolution estimator.

Using the “re-convolution” estimator to impute the incidence curve results in an even smoother
imputed curve than the already smoothed reported case incidence curve. Intuitively that makes
sense — the “re-convolution” method convolves the already convolved reported case curve with
the delay distribution once more, again smoothing (but backward in time).

Using the direct inverse of Py is only practical when we have access to the true expected value
E[Y]. The “unstable” estimator directly applies P{l to the noisy observed time series, but
results in highly unstable estimates — we see the estimate vary between —102° and 10%° cases.
We note that the instability can be even worse in boundary regions, where incidence may be
determined by only a few days of observed cases. This instability motivates our development of
a practical deconvolution estimator.

Model-based deconvolution estimators

As stated in the Methods section, model-based estimators start with a likelihood model for
observed case data, conditioned on the underlying incidence curve. Concretely, model-based
methods define an objective

L(ﬁ;ylw"»YT):_lnPr(Yla"';YT|B)+ )\T(ﬁ) ) (]‘9)
——
neg. log likelihood regularization

where the form of the log-likelihood is specified by a set of model parameters, 3, a probabilistic
model, and the regularization penalty enforces smoothness in the latent incidence curve. Back
projection and back calculation methods have examined the use of Poisson and multinomial
likelihoods [9), [10].

For the Robust Incidence Deconvolution Estimator (RIDE), we use a Poisson likelihood and
enforce smoothness in the latent time series by parameterizing X with a spline model

X =exp(BTB(t)), fort=1,...,T, (20)

where 3 € R? and B(t) is the Q-dimensional spline basis value at time ¢. The conditional
distribution of Y; is Poisson, with the mean parameter defined by the convolution of X with the
delay distribution, Y; ~ Pois()\;) and A, = (PyX),.

We also note that the model-based method is closely related to a set of techniques known as
empirical Bayes. In fact, the empirical Bayesian method g-modeling was developed to de-noise
(or deconvolve) noisy observed data [11]. The basic idea behind g-modeling is to fit a flexible
prior distribution over the unobserved quantity using marginal maximum likelihood. The per-
subject unobserved values are the infection times I,, for n = 1,..., N, and the noisy observations
are confirmed case dates ¢,. The g-modeling approach parameterizes the prior (i.e., models the
g-function), and numerically optimizes this parameter by maximizing the marginal likelihood
(i.e., the f-function). Specifically we define a prior over I, parameterized by

gs(s) = Pr(l, = s) (21)

and fit 8 values by maximizing the marginal likelihood of the observed data under the noise
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model given by 6
B = argmasxy 3 In f(en) + Ar(B) (22)

= argmaxg Zln/gﬁ(s)p(cn | s)ds + Ar(5). (23)

Given this estimate, we can compute the de-noised incidence curve via Bayes rule. As a concrete
example, gg(s) can be parameterized by a set of basis functions

95(s) o< exp(BTB(s)) (24)
B(s) = (B1(s),...,Bp(s)) e.g., P-dimensional spline basis. (25)

Here, the distribution gg(s) is determined by a log-linear function of splines, and is normalized.
This empirical Bayes approach leads to a slightly different likelihood — a multinomial. While
performance can be similar, we found the Poisson likelihood model easier to fit.

Regularization

To form estimates, we must choose a set of hyperparameters, including the number of spline basis
functions (i.e., the degree of freedom (DoF) parameter, which controls how complex the sample
paths can be) and the regularization strength A.

Additionally, to handle censoring, we treat data to the right of the observation window as missing,
and impute plausible sample paths, averaging over their uncertainty [12]. Because the smoothing
of the stochastic delay typically smooths observations and induces a temporal autocorrelation
among reported cases, we extrapolate the report curve with a simple random walk. We first
apply an Anscombe transform [13] (i.e., a variance stabilizing transform) and use the empirical
single-lag autocorrelation to simulate a set of random walk imputations. We use a first order
extrapolation procedure, which offers significant improvements over a zeroth order extrapolation
or zero imputation. Nevertheless, it can be sensitive to outliers and produce under-estimates
when there is under-ascertainment. More complicated now-cast methods like that of [14] can
correct for under-ascertainment when recording delay data are available.

We use a data-driven selection procedure:

e Select spline DoF:
— Set the default XA to be 1/, Y;

— Compute the B estimate for a grid of DoF
— Select the DoF parameter with the lowest AIC (or BIC)

e Select A\ by data splitting — repeat the following four times (by default) and average

— Split the data into (by default) 25% validation and 75% training by randomly thinning
each observed count
— Compute the § estimate for a grid of candidate A values (with selected DoF value)
— Select the largest (i.e., smoothest) A within (by default) 2% of the best observed held
out log likelihood
The rest of the procedure is as follows: for each imputed time-series, form a set of samples
e Compute the 3 estimate given the selected A and DoF parameters
e Sample 5 from a Laplace approximation formed at the B estimate

e Compute the sample path Xi.r for this § sample

This procedure yields a collection of X;.r samples, which we use to form the incidence estimate.
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Uncertainty estimation

We construct uncertainty intervals over the estimate of X; over a set of Laplace approximations,
one for each of the auto-regression (AR) replicates. For each AR replicate, we compute B by min-
imizing the negative log likelihood function defined in Equation [3] To approximate uncertainty
around the 8 parameters, we use a Laplace approximation, 8 ~ N (37 f]), where 3 = Hﬁfl is the

Hessian of the negative log likelihood evaluated at the estimate 3. Note that this Hessian includes
the regularization term, which can be interpreted as a prior over 5. For each AR replicate, we
generate L samples {B“)}ZL:1 from this normal approximation. For each sample ¢ we compute

the implied Xl(e% from the spline model, and store all samples over all AR replicates. Quantiles
of these combined samples are then used to compute credible intervals.

Finally, we find that this estimation procedure tends to find overly narrow coverage intervals,
likely due to overly smooth model assumptions. Therefore, when computing coverage intervals,
we inflate the percentiles by a square root factor, wagjusted = u + Vu and ladjusted = 1 — Vi
This creates an overdispersion effect, which is often seen in infection time series but is missing
from a Poisson model. Empirically, we find that this post-hoc adjustment works well. In fact,
the coverage frequencies of both the re-convolution and back projection estimators could benefit
from a similar adjustment.

eFigure [§| shows the average coverage over all experimental settings.

Additional synthetic data results

The synthetic models are specified as follows. All of the shapes are normalized to have density 1
and then re-scaled to have 5,000 infections distributed over 100 time steps. All delay distributions
are Gamma(10,1). For the well-specified model, each case on the incidence curve is randomly
propagated forward s days according to the delay distribution. For the noisy (non-well-specified)
case, every sixth and seventh day a uniform random number between 0.3 and 0.5 is drawn and
that proportion of cases are recorded two days later (e.g. cases from day six move to day eight).
This is done to approximate reporting delays for testing and death records.

Symmetric. Incidence has a Gaussian shape,
X, o exp {—0.0025 (t - 50)2} :

for t =0,...,100.

Symmetric Censored. Incidence is the same as Symmetric, except that the incidence curve
and reporting stops at t = 65.

Slow Decay. Incidence increases quickly then declines slowly,

exp {—0.05(8 — )%} 0<t<s,
Xy o { exp {—0.001(t —8)*}  t>8,

fort=0,...,88.

Pathological. Incidence increases quickly then stops entirely,

exp {t/4} 0<t<29,
Xi o { 0 t> 29,

fort=0,...,79.
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Double Peak. Incidence has two symmetric peaks in succession,

1 1 1
X; o 0.55 exp {—W(t — 30)2} +0.35exp {—2 2 (t— 60)2} +0.1exp {—2*102(1& - 70)2}

fort =0,...,100.

Matern and Matern2. To obtain a time series with more direction changes, we randomly
generate two curves from a Gaussian process model with a Matérn covariance function. The
Matérn covariance has three parameters, v controls the smoothness (i.e., when v — oo samples
become infinitely differentiable), o controls the marginal variance of sample paths, and ¢ controls
the lengthscale (i.e., larger ¢ implies more correlation between nearby points). Setting v = 3/2,
the Matérn covariance function between observations at times s and ¢ such that d = |s — ¢| can

be written
k(d) = o (1 + ‘;) exp (—j) . (26)

The latent infection time series can be sampled from a multivariate normal distribution
In Xy.7 ~ N(0,K) (27)

where the Gram matrix K is defined such that K, = k(| X, — X;|). We generate two curves
from different random seeds, which we term matern and matern2 in the experiments.

Results

All synthetic curves and associated observations are depicted in eFigure

eFigure |1I] shows RMSE results for each of the six curves, broken down by overall RMSE and
RMSE on the most recent 20 days. eFigure |2 further presents average RMSE by curve type,
noise setting, and observation window.

eFigures show fits for each model under well-specified and mis-specified regimes, with the
full time series and the truncated time series.

eFigures [8a] and |8b| plot coverage rates for the 95% interval for each of the estimators overall and
for the most recent 20 days, respectively.

Comparison of Robust Inference Deconvolution Estimator
hyperparameter choices

RIDE fits a deconvolution model using a cubic spline basis and second order regularization.
Many different regularization methods and basis function types have been proposed in previous
literature; see Table [I]in the main text.

First, we compare RIDE basis choice: cubic splines vs. step functions on a daily scale. Fits are
shown in the left panel of eFigure [0] for Staten Island and Arizona. We note that the fits are
similar, although the step function basis fit requires one to two more orders of magnitude more
computing time than a cubic spline basis fit due to the larger number of parameters to be fitted.
Next, we compare the order of the regularization penalty: 0, 1, or 2. Fits are shown in eFigure
[O First and second order penalties produce similar fits, although first order fits usually have
more derivative sign changes than second order fits. Zeroth order penalties are generally under-
regularized for daily COVID-19 reporting data. The presence vs. absence of extrapolation is
shown in eFigure[9] The presence of regularization prevents right tail overfitting in Arizona.
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Other tunable hyperparameters, such as the regularization penalty and the degrees of freedom
in the spline basis, are chosen through a hyperparameter sweep and evaluation on a validation
set. The most regularizing parameter values that produce fits within 2% of the best likelihood
value are selected in the “validation” method. This is the default selection method for A, the
regularization penalty. Default selection method for the cubic spline degrees of freedom is the
Akaike Information Criterion (AIC), which is a less computationally intensive asymptotic ap-
proximation of held out likelihood. Comparison of hyperparameter selection methods are also
shown in eFigure [9]

Comparison of back projection hyperparameter choices

We used the back projection of [10] for comparison as it is readily available for community usage.
It was fit by the backprojNP method in the surveillance package version 1.18.0 in R version
4.0.0 with parameters iter.max=rep(250,2) and B=-1. We used case data from states/regions
not used in the comparison to choose tunable parameters, k, which controls neighborhood size in
the EM smoothing step, and epsilon, which controls stopping criteria. We varied k across values
k=0,2,4,8,16,32,64, 128, and epsilon across values eps = 0.1,0.001, 0.00001.

Fits are shown for Brooklyn and Manhattan case data in eFigure Error between reported
daily cases and fitted incidence convolved with the delay distribution is shown in eTable

We note that fitting error is minimized when k£ = 0 in all cases, although this leads to unstable
incidence fits. To balance the trade off between fitting error and fit stability, we chose k = 16.
As the choice of epsilon is relatively minimal for all values except k& = 0, we kept the default of
0.005.

We also note that the choice of tunable parameters for this method involves much more manual
selection than RIDE and seems to produce parameter values that are less robust to out of sample
data.

Data

All case and death data for regions other than New York City is obtained from the New
York Times database |[https://github.com/nytimes/covid-19-data]. Hospitalization data
are gathered from other sources in all regions.

Arizona. Hospitalization data are from the Arizona Department of Health |[https://www.
azdhs.gov/preparedness/epidemiology-disease-control/infectious-disease-epidemiology/
covid-19/dashboards/index.php|.

Ohio. Hospitalization data are from the Ohio Department of Health [https://coronavirus.
ohio.gov/static/COVIDSummaryData.csv].

Texas. Areas are defined as follows: Greater Houston area is defined as Austin, Brazoria,
Fort Bend, Galveston, Harris, Montgomery, and Waller counties; the Dallas/Fort Worth areas
is Collin, Dallas, Denton, Ellis, Hood, Hunt, Johnson, Kaufman, Parker, Rockwall, Somervell,
Tarrant, and Wise counties; the Austin area is Travis, Hays, Williamson, Bastrop, and Caldwell
counties.

New York. All New York City data, including cases, deaths, and hospitalizations, is ob-
tained from the New York City Department of Health [https://raw.githubusercontent.com/
nychealth/coronavirus-data/master/boro/boroughs-case-hosp-death.csv]. State level case
and death data are from the New York Times.
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k epsilon MSE

Brooklyn Manhattan Virginia Ohio

0 1E-5 9,844.4 3,306.9 46,255.7 676,201.1
1E-3 9,844.4 3,306.9 46,255.7 676,201.1

1E-1 12,143.5 3,849.0 66,102.4 725,340.4

2 1E-5 11,369.7 3,652.5 54,849.9 703,651.2
1E-3 11,393.5 3,668.1 55,106.3 704,021.3

1E-1 12,173.2 3,853.8 66,275.0 725,872.0

4 1E-5 11,574.9 3,705.3 57,682.1 710,369.2
1E-3 11,589.1 3,710.0 57,954.9 710,542.5

1E-1 12,200.6 3,858.0 66,442.2 726,471.6

8 1E-5 11,748.8 3,759.0 60,872.7 716,864.2
1E-3 11,756.1 3,762.6 61,043.8 716,957.5

1E-1 12,250.6 3,865.0 66,762.9 727,658.9

16 1E-5 11,893.6 3,807.4 63,895.8 722,635.4
1E-3 11,897.6 3,809.2 63,962.5 722,713.1

1E-1 12,339.1 3,876.5 67,341.5 729,777.1

32 1E-5 12,080.0 3,851.8 66,446.6 727,986.6
1E-3 12,082.7 3,852.4 66,465.7 728,130.0

1E-1 12,496.3 3,894.6 68,283.8 733,089.2

64 1E-5 12,440.5 3,900.4 68,675.4 733,853.3
1E-3 12,443.4 3,900.6 68,685.1 733,954.1

1E-1 12,790.1 3,924.3 69,633.8 737,897.4

128 1E-5 13,128.1 3,964.0 71,020.3 742,402.1
1E-3 13,130.1 3,964.0 71,018.8 742,431.6

1E-1 13,359.4 3,977.0 71,515.9 745,671.6

eTable 1: Mean squared error between reported data and incidence curve convolved with delay
distribution by back projection parameter value.

Virginia. Hospitalization data are from the Virginia Department of Health [https://www.vdh.
virginia.gov/coronavirus/|. Regions are state health regions as defined by that department.

Delay distributions.

We model delay distributions as a sum of delay times. First, we fit a distribution from infection
to onset of symptoms. Next, we fit three separate distributions for: onset of symptoms to
test report date; onset of symptoms to hospitalization date; and hospitalization date to death.
The final delay distribution is found by composing the infection to symptom onset distribution
and the appropriate symptom onset to recorded event distribution. We model all distributions
with gamma distributions to capture observed unimodality and long right tails with only two
parameters.

Uncertainty in delay distributions comes from a number of areas. First, many of these data sets
are relatively small; the hospital admittance to death distribution is based on 202 records [5].
Second, most published data only captures cases from early to mid-2020. It is conceivable that
time until death may have changed based on treatment advances. We did examine changes in
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State Region Start Date End Date Cases Hospitalizations Deaths

NY State 2020-03-03  2020-12-18 832,032 — 36,945
Brooklyn 2020-03-03  2020-12-18 99,786 18,462 5,980
Bronx 2020-03-03  2020-12-18 71,227 14,014 4177
Manhattan 2020-03-03  2020-12-18 48,386 9,164 2,635
Queens 2020-03-03  2020-12-18 101,370 19,821 6,245
Staten Island 2020-03-03  2020-12-18 27,299 3,309 1,042
NYC 2020-03-03  2020-12-18 348,068 64,770 20,079
AZ State 2020-01-26  2020-11-30 327,048 27,581 6,640
OH State 2020-03-09  2020-12-05 467,433 27,954 6,947
TX State 2020-02-12 2020-12-21 1,610,141 — 26,165
Houston 2020-03-04  2020-12-21 317,327 — 4,313
Dallas/Fort Worth ~ 2020-03-09  2020-12-21 434,283 — 4,560
Austin 2020-03-13  2020-12-21 81,703 — 917
VA State 2020-03-17  2020-12-22 314,481 17,083 4,705
Central 2020-03-17  2020-12-22 51,261 2,848 923
Eastern 2020-03-17  2020-12-22 60,668 3,503 846
Northern 2020-03-17  2020-12-22 95,367 5,916 1,367
Northwest 2020-03-17 2020-12-22 47,431 2,180 577
Southwest 2020-03-17  2020-12-22 59,754 2,636 992

eTable 2: Summary of data date ranges and summary statistics by region and state.

time from symptoms until a recorded test using line data from the Florida Department of Health
from April 2020 through July 14, 2020 [15]; all monthly variations from the mean were on the
order of about one day. See eFigure for a comparison of incidence fits using subsets of line
data where testing delay distribution contributions are fit by month.

Infection to symptom onset. We estimate time from infection to symptom onset by matching
quantiles of a gamma distribution to the data from [16]; this had a shape = 3.57 and a rate = 0.7.
The mean incubation period was 5.1 days and 97.5% had shown symptoms by 11.5 days.

Symptom onset to recorded test. Symptom onset to positive test report by fitting a gamma
distribution to non-zero delay times from Florida for all cases through July 14, 2020 [15]. Data
was cleaned by removing all zero records, which was 50.5% of the data, and capping all recording
delays at 40 days from symptom onset. This led to a mean of 6.65 days between symptom onset
and recorded test date, which was fit with a gamma distribution with parameters shape = 1.3101
and rate = 0.1969.

Symptom onset to hospitalization. The hospitalization delay distribution is the symptom
delay distribution plus a delay distribution between symptoms and hospitalization, which [5]
modeled as a gamma distribution with shape = 5.078 and rate = 1.307. This uses data from [17,
18).

Hospitalization to death. We fit a gamma distribution to the time from hospital admission
until death for the distributions presented in [5] using quantile matching. This had a mean of
14.5 days, a median of 12.7 days, and a 25%-75% centile range of 7.3 to 19.9 days; giving shape
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= 2.14 and rate = 0.15. We note that this data only represents deaths that occurred after hospital
admission. We do not believe this to be a limiting factor for data quality as high proportions of
COVID-19 diagnosed deaths occurred within the hospital system; 95.5% of COVID-19 diagnosed
deaths occurred in hospital in the Mass General Brigham health system between February 18
and May 18, 2020 [19].

Estimating infections at state and local scales

COVID-19 data — cases, deaths, and hospitalizations — are often reported at the state or na-
tional level, which obscures local variation in prevalence and response to policy interventions.
We compare inferred infections from cases in the five New York City boroughs with New York
state; the Austin, Dallas/Fort Worth, and Houston metros with the state of Texas; and Virginia
health regions (Central, Eastern, Northern, Northwest, and Southwest) to statewide across Vir-
ginia. Inferred infections are shown in eFigure For each region and state, we also include the
following policy decisions: school closures, gathering bans for 10 people or more, stay-at-home
orders, reopening of low risk non-essential businesses, and reopening of bars or restaurants with
indoor seating. Since these restrictions were added and lifted early in the pandemic, we estimated
incidence through June 30, 2020.

Given the length of the time series fitted and the noise of the case data, slope changes in infec-
tions are accurate to within a few days due to estimator smoothing. Our estimates suggest an
association between indoor bar/restaurant openings and an increase in transmission in Texas and
the southwestern and eastern regions of Virginia. Additionally, we find that in New York City,
estimates suggest that the infections incidence decline postdated school closures, but was aligned
with statewide stay-at-home orders. Likewise, statewide — but not county level — stay-at-home
orders coincided with a local incidence decline in Houston in early April. Earlier stay-at-home
orders in Harris county were not aligned with the decline (eFigure .
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eFigure 1: Synthetic experiment error — comparison of RMSE by method, curve type, and noise
type (misspecified and well-specified delay models), comparing (a) overall average error, and (b)
average error on most recently observed 20 days. Methods with average error greater than 100
are not depicted.
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eFigure 2: Synthetic experiment error — comparison of RMSE by method, varying censor time
(Tinaz) and noise type (misspecified and well-specified delay models).
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eFigure 3: double: Top: correctly specified full (left) and censored (right). Bottom: misspec-
ified full (left) and censored (right). We observe that the spline model copes with misspecified
observations more robustly.
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eFigure 4: symmetric: Top: correctly specified full (left) and censored (right). Bottom: mis-
specified full (left) and censored (right). Again, we observe that the spline model copes with
misspecified observations more robustly.
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eFigure 5: stop: Top: correctly specified full (left) and censored (right). Bottom: misspecified
full (left) and censored (right). Again, we observe that the spline model copes with misspecified
observations more robustly.
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eFigure 6: matern: Top: correctly specified full (left) and censored (right). Bottom: misspecified
full (left) and censored (right). Again, we observe that the spline model copes with misspecified
observations more robustly.
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(b) Average coverage on recent observations (last 20 days).

eFigure 8: Average coverage at the 95% level (dashed red line) across all experimental settings,
replicated 50 times. Re-convolution and back projection (for the default ¥ = 2 and smoothed
k = 16) underestimate uncertainty marginally. Note that in more recent observations (i.e., in the
previous 20 days), re-convolution and back projection coverage becomes worse on average, while
the RIDE covearge remains relatively fixed (if not a little conservative).
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eFigure 9: Estimated infections incidence (solid black line), 90% credible regions (gray shaded)
when available, and observed values (red plus) by data type across regions (rows) and by param-
eter value (columns). (a) Basis comparison: cubic splines (default) vs. daily step functions. (b)
Regularization order comparison: 0, 1, and 2 (default). (c) Extrapolation comparison: extrapo-
lation (default) vs. no extrapolation. (d) Cubic spline degree of freedom (dof) selection method:
AIC (default) vs. validation. (e) Regularization parameter (\) selection method: validation
(default) vs. AIC.
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eFigure 10: Comparison of back projection fits across values of k (rows) and epsilon (columns),
for (a) Brooklyn, (b) Manhattan, (c) the state of Virginia, and (d) the state of Ohio.
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eFigure 11: Incidence fits from recorded cases across method using line data [15] subsets to
calculate time from symptoms to recorded test: March 1, 2020 through May 14, 2020; May 15,
2020 through June 14, 2020; and June 15, 2020 through July, 14. Although variation in testing
capacity and speed has changed throughout the pandemic, differences in fits are minimal. All
other parts of the delay distribution are generated from summary statistics rather than raw data.
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eFigure 12: Incidence (solid black line), 90% credible regions (gray shaded), and observed values
(red plus) fitted on case data for New York, Texas, and Virginia by sub-region. Policy dates are
included: school closures (red thick dash), gatherings ban for 10 or more people (red thin dash),
stay-at-home order (red solid line), reopening of low risk non-essential businesses (green thick
dash), and bars/restaurants with indoor seating (green solid line).
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