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SUMMARY
Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and
the global economy. There is an urgent need to understand the mechanism of interspecies transmission,
particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological,
environmental, and population dynamics aremajor parameters to consider. Here, we describe the taxonomy,
geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then,
we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of
Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus
(SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, themolecular inter-
actions of viral surface proteinswith host cell receptors are examined, and a comparison of these interactions
in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike pro-
tein that facilitate cross-species transmission and risk factors associated with the emergence of novel vi-
ruses from bats.
INTRODUCTION: SYSTEMATICS, DISTRIBUTION, AND
ECOLOGY OF BATS AND THEIR VIRUSES

Bats (order Chiroptera) are a group of mammals with the sec-

ond largest number of species. Although bats are believed to

have emerged in the early Eocene period (�56 million years

ago), the scarcity and difficulty in identifying bat species from

fossil records makes the evolutionary history of this order

controversial (Simmons et al., 2008). Traditionally, based on

morphological data, this order was divided into two suborders,

Megachiroptera and Microchiroptera. According to the current

view, which also includes molecular evidence, Chiroptera is

divided into two suborders Yinpterochiroptera and Yangochir-

optera (Teeling et al., 2002, 2005). Yinpterochiroptera consists

of the family Pteropodidae and the superfamily Rhinolophoidea,

which includes six families. Yangochiroptera is composed of

Myzopodidae and three superfamilies: Vespertilionoidea, Nocti-
This is an open access article und
lionoidea, and Emballonuroidea, which are further divided into

13 families. A total of 1,453 bat species belonging to 21 families

have been recorded (retrieved on March 27, 2022, from https://

batnames.org/). With the exception of some remote islands,

bats populate every continent. However, their main habitat

are the tropics and the subtropics, including tropical rain for-

ests, grasslands, deserts, farmlands, and even cities. The wide-

spread distribution of bat habitats indicates that they are a

highly successful radiation in mammalian evolution. The Ves-

pertilionidae contains the greatest number of species

(n > 500). They are found in almost every geographical region

where bats exist (Gunnell et al., 2017). Molossidae and Embal-

lonuridae are present in all continents, except Antarctica and

the Arctic (Figure 1). However, some bats inhabit only certain

regions; e.g., some members of the Craseonycteridae are

found only in Asia (Thailand), whereas Myzopodidae, Mystacini-

dae, and Noctilionoidea are found only in Africa (Madagascar
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Figure 1. Global distribution of bats and their viruses

The bat families present in each continent are symbolized by the color of the bat pictogram.

The number of different bat families identified in each country is represented by the color range (from yellow to red) as indicated. The pie charts show the

percentage of bat-associated viruses from a certain family identified in the respective continents according to publicly available sequence data from a database

of bat-associated viruses (http://www.mgc.ac.cn/DBatVir/) as of July 16, 2020, and GenBank data from July 16, 2020 to August 25, 2020.
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and Egypt), Oceania, and the Americas respectively (Gunnell

et al., 2014; Russell et al., 2008).

Bats are herbivores, carnivores, or omnivores, with a variety of

unique ecological characteristics (Teeling et al., 2018). As herbi-

vores, they feed on fruits, flowers, leaves, nectar, and pollen. As

carnivores, bats hunt insects, fishes, small amphibians, reptiles,

and even small mammals. A large-bodied omnivorous bat (Noc-

tilionoidea: Mystacinidae) has an omnivorous diet (Hand et al.,

2018). A few species, e.g., vampire bats, feed on animal blood
2 Cell Reports 39, June 14, 2022
only, and some bats change their diet with the season

(Gonsalves et al., 2013; Harper et al., 2013; Mello et al., 2004;

Ripperger et al., 2015; Zepeda Mendoza et al., 2018). Bats

vary in size, from only a few centimeters to up to 1 m of body

length (Teeling et al., 2018). Most bats are nocturnal, being active

during the night and sleeping during the day. They hang upside

down by their feet in caves, attics, trees, or other refugees.

Because of their nocturnal activity, many species of bats use

echolocation—the emission of ultrasonic waves to produce

http://www.mgc.ac.cn/DBatVir/
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echoes—in flight (Springer et al., 2001). Of note, this ultrasound

generates aerosols, which may facilitate dispersion of viruses

(Calisher et al., 2006; Constantine et al., 1972). Bats play an

important role in maintaining the ecological balance by pest con-

trol, plant pollination, and seed dispersal (Baldwin et al., 2020;

Fadini et al., 2018; López-Hoffman et al., 2014).

With these diverse ecology, biology, and unique traits, bats are

perfectly equipped to be reservoirs for a large variety of viruses.

Currently, more than 12,000 bat-associated viral sequences

belonging to at least 30 (out of 168) viral families have been de-

tected (see database of bat-associated viruses, http://www.

mgc.ac.cn/DBatVir/) (Chen et al., 2014). Of note, viruses from

25 viral families were identified in bats in Asia and Africa. The

high number of viral families identified in these regions may be

the result of extensive epidemiological and virological investiga-

tions due to Ebola, severe acute respiratory syndrome (SARS),

and Nipah virus (NiV) outbreaks.

DNA viruses appear to be the minority of bat-associated

viruses. The most common of them are herpesviruses, circovi-

ruses, and parvoviruses (Ge et al., 2011; James et al., 2020;

Wu et al., 2016). Circoviruses are mainly found in Asia and Africa

in Rhinolophidae and Vespertilionidae bats. They exhibit a rela-

tively high mutation and recombination rate, resulting in high ge-

netic diversity (Ge et al., 2011; Zhu et al., 2018). Recently,

porcine circovirus type 3 has emerged in many pig herds around

the world, and this virus is suspected to be of bat origin (Li et al.,

2018). Interestingly, there is extensive diversity in bat polyomavi-

ruses. With large numbers and multiple species of bats in the

same roosting colonies in some habitats, the diversity of polyo-

maviruses is possibly due to intra- and interspecies transmission

(Tan et al., 2020).

By contrast, RNA viruses account for the largest proportion of

bat-associated viruses, and they cause more cross-species

transmission events and with higher pathogenicity (Cui et al.,

2019; Eaton et al., 2006). The most common RNA viruses found

in bats are coronaviruses (CoVs), rhabdoviruses, paramyxovi-

ruses, and astroviruses, followed by filoviruses, picobirnavi-

ruses, caliciviruses, reoviruses, and flaviviruses (Figure 1).

Furthermore, the distribution and composition of viruses vary

between different bat populations and habitats. Among all bat-

associated viral sequence data registered in the database

(DBatVir), rhabdoviruses are the most frequently found virus in

North and South America (81% and 77%, respectively), and in

Europe (37%). Paramyxoviruses are the most common found

bat-associated viruses in Oceania (47%), while CoVs account

for the largest proportion in Asia (55%) and Africa (45%), as

shown in Figure 1. However, these numbers are heavily influ-

enced by sampling bias, and there are very limited studies for

other viral types in those regions.

Around 80% of RNA viruses were identified in only three bat

families: Vespertilionidae, Rhinolophidae and Pteropodidae.

Most interesting is themembers of the genusRhinolophuswithin

the Rhinolophidae, as they are the natural hosts of SARS-like

CoVs (Ge et al., 2013; Lau et al., 2005; Li et al., 2005b; Rihtaric

et al., 2010). Rhinolophus bats are small, insect-eating animals

that are widely distributed in Southeast Asia, Africa, eastern

Oceania, and Western Europe. The source of Middle East respi-

ratory syndrome (MERS)-CoV are bats of the Vespertilionidae,
the most diverse and widely distributed of all bat families, and

Nycteridae (Cui et al., 2019; de Groot et al., 2013). Half of the

bat-associated Paramyxoviridae sequences, including henipavi-

ruses, were detected in pteropid bats (flying foxes). These are

fruit-eating bats, are found in all six continents, and they fly

long distances. Most filoviruses (90%), including Marburg and

Ebola virus, were identified in members of Pteropodidae. These

bats harbor also other zoonotic viruses, such as rotaviruses

(RVs), members of Reoviridae, the cause of diarrheal disease in

infants, other mammals, and birds. Bat rotavirus, which has a

wide geographic dispersal and rich genetic diversity, may be

the origin of several human and other animal RVs (Simsek

et al., 2021). Other bat families, such as the Myzopodidae,

have not been reported to carry viruses (as of August 25, 2020;

http://www.mgc.ac.cn/DBatVir/). Whether this is due to insuffi-

cient epidemiological investigations, or these bats not being

susceptible to viral infection, is unclear.

How bat-associated viruses evolve and spread is still largely

unexplored. Similar to humans, most bats are social animals,

and they have a relatively long lifespan (on average, 3.5 times

that of non-flying placental mammals of similar size; Wilkinson

and South, 2002). They live in colonies, some of them are

composed of up to 1 million individuals, and might be intermixed

with multiple bat species (Serra-Cobo and Lopez-Roig, 2017).

These colonies allow viruses to be maintained, as susceptible

hosts are abundant. Furthermore, viral infection is often asymp-

tomatic in bats, which might be due to their strong innate immu-

nity (Gorbunova et al., 2020; Jebb et al., 2020). Indeed, several

immunity-related genes were identified to be under positive se-

lection in bats, and may provide a mechanism for tolerance

against viral pathogens (Jebb et al., 2020; Wang et al., 2021).

Nevertheless, infected bats shed virus through blood, feces,

nasal secretions, and saliva (Edson et al., 2015). Between bats,

viruses are transmitted through the urine-oronasal mode, while

other mammals may be infected by food or fomites contami-

nated by the above-mentioned bodily fluids, likely from infected

bats roosting above or by feeding on the same foods (Arankalle

et al., 2011; Edson et al., 2015; Islam et al., 2016; Nyakarahuka

et al., 2019). The production of ultrasonic waves via the larynx

and their emission through the mouth or nose might also spread

viruses by aerosolizing the viruses (Calisher et al., 2006; Con-

stantine et al., 1972). Many bats are territorial; i.e., they return

day after day to the same refuge. However, the ever-increasing

human expansion reduces the habitats available for bats (Frick

et al., 2020). Livestock breeding and cultivation of arboreal land-

scapes near bat habitats not only affects the native wildlife and

plant species but also increases the risk of contact to domesti-

cated animals, or even to humans, thus increasing the risk of

zoonotic spillover (Brearley et al., 2013; Field et al., 2016). Natu-

ral disasters may have the same effect. For example, the

increasing incidence and severity of wildfires have decimated

many bat colonies and their habitats (Blakey et al., 2019).

With their global distribution, unique biological characteristics,

and strong immune system, bats emerge as important viral res-

ervoirs (Gorbunova et al., 2020; Jebb et al., 2020; Wang et al.,

2021). Among the wide range of viruses that bats carry, we focus

the discussion here on viruses that have been of significant pub-

lic health importance: CoVs, henipaviruses, filoviruses, and RVs.
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We review current knowledge on their evolution, epidemiology,

and possible mechanisms of cross-species transmission. Using

molecular data, we also examine the first step of interspecies

transmission of virus from bats to intermediate hosts and to hu-

man; that is, the binding of viral surface protein to host cellular

receptors. Importantly, we also discussed RVs, because zoono-

ses of bat RVsmight occur more frequently than currently recog-

nized, and likely will be of public health significance.

EMERGENCE ANDCROSS-SPECIES TRANSMISSION OF
PATHOGENIC VIRUSES FROM BATS

Bat-associated viruses cause no or little disease in their primary

animal reservoir. This is probably the result of the strong immune

system of bats and long-term co-evolution (Gorbunova et al.,

2020). However, successful transmission to humans often re-

quires an intermediate or amplifying host. Ideal intermediate

hosts are species that interact with the reservoir hosts, the

bats, and with humans. Animals in close contact with humans,

such as domestic animals, like pigs, horses, and dromedary

camels, are important for zoonotic transmissions. Even wild an-

imals, Himalayan palm civets, and raccoon dogs, which are

raised as an exotic food sources by humans in Vietnam,

Cambodia, Myanmar, other Southeast Asian countries, and in

southern China, have been shown to serve as intermediate hosts

for SARS-CoV (Guan et al., 2003). However, there is also evi-

dence that bat-associated viruses might be able to jump directly

to humans without prior adaptation to other hosts (Menachery

et al., 2015; Wang et al., 2018b; Zheng et al., 2020).

One can assume that spillover events occur quite often, but

they are recognized only if a virus acquires the ability for sus-

tained transmission in its new host. We now describe the mem-

bers of three virus families (CoVs, henipaviruses, and filoviruses)

that have successfully crossed the species barrier causing sub-

stantial outbreaks and associated with significant pathogenicity

in humans. We summarize current knowledge about the bat

reservoir of these viruses, the putative intermediate hosts, and

the effects of cross-species transmission.

CoVs
CoVs account for the largest proportion of known bat-associ-

ated viruses. They are enveloped, spherical viruses containing

a positive stranded RNA genome of 26–32 kb (Brian and Baric,

2005). CoVs include several pathogens of clinical, veterinary,

and agricultural importance. These viruses cause gastrointes-

tinal or respiratory infections with a wide range of clinical mani-

festations (He et al., 2020; Weiss and Leibowitz, 2011). However,

not all CoVs are pathogenic, and some CoVs cause only mild

symptoms, such as four human ‘‘common cold’’ CoVs: HCoV-

NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1. Orthocoro-

navirinae, a subfamily in Coronaviridae, are divided into four

genera, Alphacoronavirus (alpha-CoV) and Betacoronavirus

(beta-CoV), which mainly infect mammals, and Deltacoronavirus

and Gammacoronavirus, which usually infect birds. There are 26

and 14 species in alpha-CoV and beta-CoV, respectively, 17 of

which were found in bats (https://talk.ictvonline.org/taxonomy/

). The alpha-CoVs have been identified in more than 130 bat spe-

cies from the generaMiniopterus,Myotis, Rhinolophus, andHip-
4 Cell Reports 39, June 14, 2022
posideros, whereas beta-CoVs are found in approximately 100

bat species, the largest proportion in the genus Rhinolophus

(http://www.mgc.ac.cn/DBatVir/). Importantly, these CoVs

have a tendency to transmit among bat species: Alpha-CoVs

are found more frequently and across more distantly related

host taxa than beta-CoVs (Latinne et al., 2020). Phylogenetic

analysis shows that bat CoVs display a high genetic diversity,

whichmay play an important role in the evolution and emergence

of these two genera (Figure 2). The subgenus Sarbecovirus of

beta-CoVs, such as SARS-CoV and SARS-CoV-2, had spread

to humans, most likely via intermediate hosts (Guan et al.,

2003; Zhang and Holmes, 2020). The genomes of several human

alpha-CoVs, including two of the common cold CoVs, namely

HCoV-NL63 and HCoV-229E, and two porcine alpha-CoVs

(described below) are closely related to CoVs identified in bats,

suggesting that their common ancestors existed in bats (Corman

et al., 2015; Tao et al., 2017) (Figure 2).

The genomes of CoVs are highly variable. They often acquire

deletions up to about 400 nucleotides, which do not compromise

virus replication but might affect pathogenicity (Su et al., 2020).

They also exhibit a high mutation rate (antigenic drift), which,

however, is lower than many other RNA viruses, possibly due

to the proof-reading activity of the viral polymerase complex

(Posthuma et al., 2017). In addition, inter- and intra-typic recom-

bination occurs frequently (Su et al., 2016). These genetic varia-

tions generate new virus populations with abundant genetic var-

iations, similar to a viral gene pool. When these changes occur in

or around the spike protein (S), they may critically affect the tis-

sue or host tropism, hence a mechanism for interspecies trans-

mission (Letko et al., 2020).

Evidence from veterinary medicine that CoVs can

change tissue tropism

There is long-standing evidence from veterinary medicine that

CoVs are highly flexible since they can change tissue tropism.

One example is the transmissible gastroenteritis CoV (TGEV) of

pigs. This virus was first isolated in 1946, and it infects mainly

epithelial cells of the small intestine (Ristic et al., 1965). A related

CoV (porcine respiratory CoV [PRCoV]) emerged in 1984, which

replicates in the respiratory tract but causes only minor clinical

signs. The major difference between the two porcine CoVs is

the deletion of a sialic acid binding site in the S protein of PRCoV

(Schwegmann-Wessels and Herrler, 2006). The sialic acid bind-

ing activity may allow TGEV to overcome themucus barrier in the

gut, hence enabling the virus to access the intestinal epithelium.

Since the epitopes for neutralizing antibodies are still present in S

of PRCoV, infections with this virus act like a natural vaccine

against TGEV, resulting in a drastic reduction of TGE outbreaks

in Europe (Laude et al., 1993). However, this unusual change in

the tropism was not noticed by many virologists, since CoVs,

prior to the SARS epidemics, were not considered significant hu-

man pathogens.

At least three pathogenic CoVs for humans have originated

from bat-associated viruses. We summarize the essential fea-

tures of the three viruses below, and they are also listed in

Table 1.

SARS-CoV. CoVs came first into the spotlight in 2002–2003

during the SARS epidemics. The virus first appeared in Guang-

dong Province in southern China, in November of 2002, followed

https://talk.ictvonline.org/taxonomy/
http://www.mgc.ac.cn/DBatVir/
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by spreading to Hong Kong in February, 2003 (Stadler et al.,

2003). Epidemiological evidence indicated that early human

cases were among restaurant workers involved in handling

wild and exotic animals. The virus was introduced to Hong

Kong by a physician who had treated patients with ‘‘atypical

pneumonia.’’ From Hong Kong, by international air travel, the

virus spread to 26 countries worldwide. A total of 8,096

confirmed cases with 774 deaths were recorded, which results

in a case fatality rate of 9.6% (https://www.who.int/csr/sars/

country/table2004_04_21/en/). Based on positive PCR tests

and serological evidence, it was found that SARS-CoV was

probably transmitted to humans via an intermediate host, either

by Himalayan palm civets or raccoon dogs (Guan et al., 2003).

However, these animals were not the natural host for this virus.

These animals were mainly infected in the wet markets where

they were sold, or during trade-related activities. Interestingly,

this virus was not detected in the farms where they were raised

or found in their natural habitats (Kan et al., 2005; Tu et al.,

2004). A search for the origin of SARS-CoV led to the detection

of CoVs in bats. Based on serological and molecular evidence,

four species of horseshoe bats (genus Rhinolophus) were sus-

pected as the natural reservoir for this virus. However, it took

10 more years before a bat-associated virus with a high

sequence identity (95%) to SARS-CoV was isolated (Ge et al.,

2013; Guan et al., 2003). This virus, designated as bat SL-CoV-
WIV1, binds to angiotensin-converting enzyme 2 (ACE2) recep-

tors from humans, civets, and Chinese horseshoe bats, the latter

being its natural host. These findings are the strongest evidence

that members of Rhinolophus like Rhinolophus sinicus are natu-

ral reservoirs for SARS-related CoV (Ge et al., 2013; He et al.,

2014; Hu et al., 2017; Lau et al., 2005, 2010, 2015; Rihtaric

et al., 2010; Yang et al., 2013). There are several genera of

bats that are hosts of Sarbecovirus, not just Rhinolophus but

other family members, including Hipposideros amiger, Hipposi-

deros larvatus, Asseliscus stoliczkanus, and also others (less

common) such as Chaerephon plicatus, Miniopterus schreiber-

sii, and Nyctalus leisleri. (Drexler et al., 2010; Hu et al., 2017;

Lin et al., 2017; Wacharapluesadee et al., 2015; Yang et al.,

2013). Subsequent research has shown that bats in several

caves, located in the southern Chinese province of Yunnan, har-

bor a large variety of SARS-related viruses. Some of these CoVs

were shown also to bind to the human ACE2 receptor. Further-

more, limited serological data indicated that these CoVs occa-

sionally infect humans, but without causing an epidemic (Hu

et al., 2017), possibly lacking human-to-human transmissibility.

MERS-CoV. MERS-CoV, a beta-CoV, was first isolated in

2012 from human patients with acute pneumonia in Saudi Ara-

bia (Zaki et al., 2012). There was strong evidence that these hu-

man cases were infected by close contact to dromedary

camels, since both viral genomes and antibodies against
Cell Reports 39, June 14, 2022 5
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MERS-CoV were detected in the camels associated with the

human cases (Hemida et al., 2014; Reusken et al., 2013).

Dromedary camels harbor several viral lineages, including one

that is almost identical to viruses isolated from clinical samples

(Haagmans et al., 2014; Sabir et al., 2016). Mounting evidence

has indicated that MERS-CoV originated from Pipistrellus and

Neoromicia bats belonging to the family Vespertilionidae and

Nycteris bats belonging to the family Nycteridae (Annan et al.,

2013; Corman et al., 2014; Cui et al., 2019; Ithete et al.,

2013). A phylogenetic analysis of 65 MERS-CoV sequences re-

vealed that they formed five clades (Cotten et al., 2014). How-

ever, only a few bat-related viruses recognize the human di-

peptidylpeptidase 4 (DPP4) receptor, which is required for

virus entry, and thus the bat-associated virus that contributed

to MERS-CoV awaits its discovery (Cui et al., 2013; Lu et al.,

2015). Phylodynamic analysis of viruses closely related to

MERS-CoV revealed that substitutions of genetic elements

had taken place either in bat or in camels before they were

transmitted from camels to human. The introduction into camel

population from bats might had occurred in sub-Saharan Africa

(Corman et al., 2014). Furthermore, the MERS-CoV found in

Arabian Peninsula camels seems to be imported from countries

in the Greater Horn of Africa, as the majority of camels were im-

ported from these regions (Corman et al., 2014; Muller et al.,

2014). Camels serve as source of milk and meat, and are

also used for transportation and for sport. Humans are infected

with MERS-CoV by close contact with infected camels’ nasal

secretions (Azhar et al., 2014). Multiple transmissions to hu-

mans have been described, mostly in the Arabian Peninsula,

but occasionally the virus has spread to other regions through

international travel; e.g., a large outbreak occurred in South Ko-

rea in 2015.

MERS-CoV infections in humans often results in severe pneu-

monia, with a case fatality rate of 35% (see update on cases and

fatality rates on the World Health Organization [WHO] website:

https://www.who.int/health-topics/middle-east-respiratory-

syndrome-coronavirus-mers#tab=tab_1). By contrast, virus

infections in camels results in mild upper respiratory tract infec-

tions (Adney et al., 2014). This might be explained by the inverted

localization of the host receptor, DPP4, which the virus binds to

penetrate host cells (Raj et al., 2013). This receptor is found at the

nasal epithelium of camels. In contrast, DPP4 is mainly found in

the epithelium of the lower respiratory tract in humans (Widagdo

et al., 2019). The restriction of virus replication to the lung in hu-

man explains why transmission between humans is rare. None-

theless, the frequency of sporadic outbreaks indicates that

MERS remains a significant threat.

SARS-CoV-2. At the end of 2019, cases of unexplained pneu-

monia were reported from Wuhan, China. Thanks to the experi-

ence with SARS, the etiological agent was quickly identified as a

novel beta-CoV, named SARS-CoV-2 by International Commit-

tee on Taxonomy of Viruses. Although most early-reported

CoV disease 2019 (COVID-19) patients had contact history

with wildlife animals at a wet seafood market (Sun et al., 2020),

no virus was detected in the animals there. Therefore, there is

debate over whether the seafood market is actually linked to

zoonosis or simply a site for amplification. It is worth noting

that there is some evidence that traces of SARS-CoV-2

https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1
https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1
https://www.who.int/health-topics/severe-acute-respiratory-syndrome#tab=tab_2
https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003
https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
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appeared earlier in other regions, which makes the origin of this

virus a mystery (Amendola et al., 2021; Basavaraju et al., 2021;

Deslandes et al., 2020; Fongaro et al., 2021).

When comparing the full genome sequence of the human in-

dex virus, it exhibits 96.2% nucleotide identity to RaTG13, a

bat CoV sampled previously from Rhinolophus affinis in the

Yunnan Province (Zhou et al., 2020b). In addition, similar viruses

were identified in Malaysian pangolins that were confiscated

from illegal wildlife traders by Chinese customs (Lam et al.,

2020; Xiao et al., 2020). However, pangolins are unlikely to be

the intermediate host since the nucleotide identity with SARS-

CoV-2 is only 85%–92%. Nonetheless, SARS-CoV-2 and

pangolin viruses exhibit 97.4% amino acid identity in the viral

spike protein, with just one amino acid difference in the recep-

tor-binding motif (Xiao et al., 2020). By contrast, RatTG13

exhibits five substitutions (Zhou et al., 2020b). Another virus

identified in bats, named RmYN02, has a nucleotide sequence

identity of 93.3% to SARS-CoV-2. However, in some genomic

regions, it is higher (96%) than in RaTG13 (Zhou et al., 2020a).

The discovery of this virus may explain a unique feature of

SARS-CoV-2: the insertion of four amino acids (PRRA) between

the S1 and S2 subunit of the spike protein. This insertion creates

a polybasic cleavage site, which can be recognized by the ubiq-

uitous host protease furin. RmYN02 also contains an insertion of

three amino acids (PAA) in this region. However, this insertion

does not create a furin-cleavage site. Insertion of nucleotides

in this genomic region of bat-associated viruses indicates the

plasticity of the viral genome, and, in particular, at this recep-

tor-binding viral protein (Zhou et al., 2020a). All of these viruses

mentioned above, including SARS-CoV, form a distinctive Sar-

becovirus clade in the phylogenetic tree for CoVs. In addition,

sarbecoviruses undergo frequent recombination, and the substi-

tutions of genetic material might explain the higher nucleotide

homology between the S of the pangolin virus and SARS-CoV-

2. However, there is no evidence yet to show that SARS-CoV-

2 itself is a recent recombinant virus. Divergence dates between

SARS-CoV-2 and other bat sarbecoviruses were estimated to be

between 1948 and 1982, indicating that this lineage for SARS-

CoV-2 had been circulating in bats for several decades (Boni

et al., 2020). However, these estimates were calculated based

on the genomic regions without recombination, and recombina-

tion events may have accelerated viral evolution to distort the

divergence dating.

CoVs recently transmitted from bats to pigs. Bat-borne beta-

CoVs are a significant public health threat to humans. Alpha-CoVs

may also be a cause for concern, compared with just focusing on

beta-CoVs. Furthermore, when the transmission affects livestock,

it poses significant economic impact. Porcine epidemic diarrhea

virus (PEDV) is an important example. This virus had been

described in Europe in the 1970s. It reemerged in 2010–2011,

affecting pig farms worldwide with substantial morbidity andmor-

tality (He et al., 2022a). The receptor for PEDV is still under debate,

but PEDVhad been shown to infect cells frompigs, humans,mon-

keys, and bats, indicating its broad host range (Liu et al., 2015).

PEDV is genetically more closely related to the bat-associated vi-

rus BtCoV/512/2005 than to TGEV, suggesting that PEDV may

have originated by direct interspecies transmission from bats

(Huang et al., 2013).
In 2017, China witnessed the emergence of a new virus in pig

farms in the Guangdong Province, the birthplace of the SARS

epidemic. This outbreaks of this novel virus resulted in death of

24,693 piglets (Pan et al., 2017; Zhou et al., 2018). The etiological

agent was identified as a novel HKU2 (identified in Rhinolophus

sinicus)-related bat alpha-CoV, named swine acute diarrhea

syndrome (SADS) CoV (Lau et al., 2007; Zhou et al., 2018). The

viral sequence is 98.48% identical to SADS-related CoV from

Rhinolophus bats, a strong evidence that this new virus origi-

nated from bats (Zhou et al., 2018). Although the receptor of

SADS-CoV has not been identified, SADS-CoV has a broad spe-

cies tropism in vitro, including various rodent and human cell

lines, indicating that alpha-CoVs might also be able to jump

into humans (Edwards et al., 2020; Yang et al., 2019b). The

outbreak was eventually controlled. However, this virus reap-

peared in February 2019, again in pig farms in southern China

(Zhou et al., 2019). The frequent introduction of bat-associated

viruses into pigs, plus the propensity of CoVs to undergo intra-

and intertypic recombination, raises the concern that pigs may

act as mixing vessels to generate new human pathogens

(Wang et al., 2018a), a scenario similar to influenza virus.

Filoviruses: Ebola and Marburg virus
Filoviruses are enveloped, filamentous viruses with a negative-

sense RNA genome (Kuhn et al., 2019). Two of their members,

Marburg virus (MARV) andEbola virus (EBOV), cause hemorrhagic

fever with a very high case fatality rate from 25% to 90% (https://

www.who.int/news-room/fact-sheets/detail/ebola-virus-disease).

Filoviruses were first discovered in 1967 during a viral outbreak in

the German town of Marburg, where laboratory workers were in-

fected by monkeys that were imported from Africa by a pharma-

ceutical company. In 1976, the first Ebola outbreak occurred in

proximate areas of Zaire (now the Democratic Republic of the

Congo) and Sudan (Commission, 1978). Since then, 39 outbreaks

of Ebola occurred across the entire equatorial belt of Africa, espe-

cially along riparian systems, most often in Central Africa (Baseler

et al., 2017; Feldmann et al., 2020).

Based on viral RNA sequences similarity to EBOV, and

coupling to serological studies, it has been shown that fruit

bats, including Hypsignathus monstrosus, Epomops franqueti,

Myonycteris torquata, and Rousettus aegyptiacus, are likely res-

ervoirs of these viruses. However, a Zaire Ebola-like virus has

never been isolated from bats, but similar Ebola-like viruses

have been identified by nucleic acid identification (Leroy et al.,

2005; Munster et al., 2018; Towner et al., 2009). By contrast,

MARV was isolated from R. aegyptiacus (Towner et al., 2009),

and RNA corresponding to another filovirus was detected in

Rousettus bats in China (Yang et al., 2019a). The latter is phylo-

genetically distinct, and has low amino acid sequence identity

(22%–39%) of the glycoprotein (GP) with other filoviruses, but

the receptor-binding domain of the GP is relatively conserved,

and hence presumably can use receptors from many species

for viral infection (Yang et al., 2019a). Bats are generally asymp-

tomatic carriers of filoviruses, but these viruses can occasionally

spread to primates (gorilla, chimpanzee) and other wildlife ani-

mals such as duikers and antelope (Feldmann et al., 2020). The

hunting of ‘‘bushmeat’’ as a free protein source, or direct contact

with fruit bats, have been proposed as risk factors for
Cell Reports 39, June 14, 2022 7
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transmission to humans (Baudel et al., 2019; Mekibib and Arien,

2016). Secondary spread occurs by direct contact with infected

patients’ blood and saliva, which triggers occasional outbreaks

that might develop into epidemics (Subissi et al., 2018). Howev-

er, wild animals usually represent dead-end hosts due to its

severe pathology (Feldmann et al., 2020), and hence cannot

sustain viral transmission.

Henipaviruses: Hendra and NiV
Henipaviruses are a distinct genus of the Paramyxoviridae. They

are enveloped viruses containing a negative, single-stranded

RNA genome (Murray et al., 1995). Hendra virus (HeV) was first

identified in 1994 from a horse breeding farm in Australia, where

it caused fatal encephalitis in several horses and humans,

including a veterinarian tending the sick horses. Similar out-

breaks have been reported thereafter (Murray et al., 1995). The

natural hosts of HeV are pteropid bats (flying foxes), which are

widely distributed in Australia as well as in tropical regions in

Asia and Africa. Urine, blood, feces, nasal discharge, and saliva

of flying foxes served as sources of oro-nasal infection of horses

(Eaton et al., 2006). Transmission of HeV between horses occurs

infrequently, and humans are infected by direct contact with

horses (Khusro et al., 2020; Williamson et al., 1998). However,

direct transmission from bats to humans has never been

observed.

NiV, a closely related paramyxovirus, was first identified in

1998 in Malaysia in pig farm workers that had developed severe

encephalitis (Chua et al., 1999, 2000; Goh et al., 2000). Serolog-

ical data plus the isolation of NiV from threePteropus bat species

provided evidence that these bats are the natural virus hosts

(Chua et al., 2002; Epstein et al., 2020; Reynes et al., 2005;

Sendow et al., 2006; Yob et al., 2001). Outbreaks of NiV disease

occur almost every year in Bangladesh, and sporadically in other

regions of South Asia, besides Malaysia, in Singapore and India

(Hsu et al., 2004; Yadav et al., 2019). However, NiV has a more

widespread distribution, essentially in the regions where ptero-

pid bats exist, including China and Southeast Asia (Breed

et al., 2010, 2013; Enchéry and Horvat, 2017; Hasebe et al.,

2012; Iehlé et al., 2007; Li et al., 2008; Reynes et al., 2005;

Sendow et al., 2010; Wacharapluesadee et al., 2005). The pre-

dominant mode of human infection is by direct contact with in-

fected pigs, where it causes a respiratory syndrome. However,

recent outbreaks of NiV in Bangladesh and India were caused

by direct transmission from bats to humans (i.e., by drinking

contaminated palm sap), and limited human-to-human transmis-

sion has been reported (de Wit et al., 2014; Kulkarni et al., 2013;

Luby et al., 2006; Weatherman et al., 2018). Phylogenetic and

genetic analysis showed that NiV can be divided into two line-

ages: the Malaysia lineage and the Bangladesh lineage (Li

et al., 2020). The initial outbreak of Malaysia lineage resulted in

a mortality rate of approximate 40%, with very low incidence

of human-to-human transmission. However, the mortality rate

in outbreaks in Bangladesh lineages was as high as 70%, and

person-to-person transmission has been observed (Chua

et al., 2000; Gurley et al., 2007; Lo and Rota, 2008).

In summary, zoonoticviruseshavebeen identified in variousbat

species living in the subtropical and tropical regions of the world.

Modes of transmission to humans, either directly or via intermedi-
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ate hosts, include direct contact with infected animals, through

contaminated food, or through respiratory droplets or aerosol.

However, most of the above-described viruses have not estab-

lished themselves permanently in human populations. Initial out-

breaks were controlled by public health measures, and because

viruses did not transmit easily between humans. An exception is

SARS-CoV-2, the cause of COVID-19 pandemic, which was

already easily transmissible between humans soon after the initial

outbreak. We will discuss this unique property below.
RECEPTORRECOGNITIONASAN IMPORTANT LIMITING
STEP FOR CROSS-SPECIES TRANSMISSION

An essential precondition for virus infection is binding to a spe-

cific receptor on the cell surface. Understanding the molecular

characteristics of this interaction is helpful to infer the possible

host range of a bat-associated virus and to understand the

mechanism of interspecies transmission. We examine and

describe the essential features of the spike proteins (in the

broader sense of long surface projections) of CoVs, henipavi-

ruses, and filoviruses, plus their respective cellular receptors

using available data on their 3D structures. We compare virus

binding sites in the receptors from different species, and

describe possible adaptive mutations in the spike protein that

facilitate cross-species transmission.
Essential features of the spike protein of CoVs
TheSprotein is cleavedbyhost proteases into the receptor-bind-

ing S1 subunit, and S2, which mediates membrane fusion. Pro-

teolytic cleavage of S usually occurs at two sites (S1/S2 and

S20), and it is required toprime theprotein to execute its fusion ac-

tivity. Cleavage can be performed by members of the host serine

transmembrane protease family (mainly TMPRSS2), or an endo-

somal cathepsin. S proteins having a polybasic cleavage site are

processed by the ubiquitous host enzyme furin. The presence of

these enzymes also determines the cell tropism of CoVs. The S1

subunit is divided into the N-terminal domain, which is usually

responsible for binding carbohydrate residues, and a C-terminal

domain, which binds to receptor. The receptor-binding domain

(RBD) contains two subdomains: a conserved core structure

and a variable receptor-binding motif (RBM). The RBM deter-

mines the receptor-binding specificity: ACE2 in the case of

SARS-CoV, and DPP4 for MERS-CoV. The diversity of receptor

binding is an outstanding feature of CoVs, and it might have

been instrumental to increase their host range during evolution

(Li, 2016; Millet and Whittaker, 2015).
SARS-CoV interaction with the ACE2 receptor
The RBD of S contains two subdomains, a core and an extended

loop, which presents a concave surface (parts of its main chain

are shown as green cartoon in the lower part of Figure 3A) that

binds to an N-terminal helix of ACE2 (shown as blue cartoon in

the upper part of Figure 3A). The RBM contains 16 amino acids

(their side chains are highlighted as sticks, either magenta or

red) that have direct contact with 20 amino acids in ACE2 (side

chains are shown as light blue or orange sticks) (Lan et al.,

2020; Li et al., 2005a).
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Figure 3. Interaction of SARS-CoV, SARS-CoV-2, MERS-CoV, EBOV, and NiV with their receptors

(A) Interaction surface between ACE2 and S of SARS-CoV: ACE2 is colored blue, S in green. The contacting amino acids are shown as cyan (ACE2) or magenta

(S) sticks. The seven amino acids substituted in civet ACE2 are labeled in orange. In ACE2 of mice, M82 is substituted to N, thereby creating an N-glycosylation

site. The two amino acid substitutions during adaptation of SARS-CoV from civets to humans (N479) and from humans to humans (T487) are shown in red. Glu329

in S and Arg426 in ACE2 form a salt bridge at the periphery of the interaction surface. This figure was generated with PyMol 2.1.1. using the pdb file 2AJF. The

contacting amino acids shown here are from Lan et al. (2020), which differ in four peripheral residues from the first publication Li et al. (2005a).

(B) Interaction surface between ACE2 and S of SARS-CoV-2: ACE2 is colored blue, S in green. The contacting amino acids are shown as cyan (ACE2) or magenta

(S) sticks. The seven amino acids substituted in pangolin ACE2 are labeled in orange. Lys417 in S and Glu30 in ACE2 form a salt bridge in the middle of the

interaction surface. Lys417 (labeled red) is substituted by a Thr in variant P1 and by an Asn in variant B 1.351. Highlighted as a red stick is also N501, which is

substituted by Tyr in variants B1.1.1, B1.351. and P1. The figure was generated with PyMol 2.1.1. using the pdb file 6M0J.

(C) Interaction surface between human DPP4 and S of MERS-CoV: DPP4 is colored blue, S in green. The contacting amino acids are shown as cyan (DPP4) or

magenta (S) sticks. The four amino acids substituted in camel DPP4 are labeled in orange. Residue 334 is not directly contacting the spike but is an

N-glycosylation site in mice DPP4, which needs to be removed to make mice susceptible to MERS-CoV infection. The two amino acid substitutions (S465F,

D510H) during adaptation of S to a suboptimal bat-associated virus receptor and during MERS outbreak in South Korea (I529T, D510G) are shown in red.

The figure was generated with PyMol 2.1.1. using the pdb file 4KRO.

(D) Interaction surface between human NPC1 and GP of EBOV. NPC1 is colored blue, GP in green. The contacting amino acids are shown as cyan (NPC1) or

magenta (GP) sticks. The three amino acids substituted in pig NPC1 are labeled in orange. Amino acid substitutions restoring EBOV binding to refractory re-

ceptors (V141A) and during the large Ebola epidemic (A82V) are labeled red. The figure was generated with PyMol 2.1.1. using the pdb file 5F1B.

(E) Interaction surface between human ephrin-b2 and G of Nipah virus. Ephrin-B2 is colored blue, G in green. Most of the contacting amino acids are shown as

sticks. Three hydrophobic amino acids (F120, L124, W125) in the loop of ephrin-B2 essential for binding are colored in gray. The two salt bridges (K106 with E501,

K116 with E533) are indicated. The only amino acid substitution between G of Nipah and Hendra virus is shown in red. Receptor amino acids near the binding site

variable between species (K106, Q130, K133) are labeled in orange. The figure was generated with PyMol 2.1.1. using the pdb file 2VSM.
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Although SARS-CoV can infect civets, the interaction surface

of its ACE2 receptor contains seven amino acid substitutions

(shown as orange sticks, the position is indicated) relative to

human ACE2 demonstrating the plasticity of the spike protein

in receptor usage (Table S1). ACE2 of rodents, which cannot

(rat) or can only inefficiently (mice) be infected by SARS-CoV,

contains nine and seven substitutions, respectively. The substi-

tution that prevents infection is an N-glycosylation site at posi-

tion 82 in rat ACE2 (Lu et al., 2015). SARS-CoV experimentally

adapted to replicate in mice had a Tyr to His substitution at po-
sition 436 (Roberts et al., 2007). The N-terminal helix of ACE2 is

also an attachment site for bat-associated CoVs, but it exhibits

amino acid variation among different bat species. Even bats

from the species R. sinicus, sampled from three Chinese prov-

inces, exhibit up to eight amino acid variations in the S protein

contact region. Their overall amino acid identity, however, is

very high (99%) (Ge et al., 2013; Hou et al., 2010). The ACE2 var-

iants support SARS-CoV infection and infection with bat SARS-

like viruses, but with different binding affinities to different S pro-

teins. Molecular evolution analysis indicated that the key
Cell Reports 39, June 14, 2022 9
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residues at the binding site are under positive selection, suggest-

ing that the S protein of bat-associated viruses and ACE2 may

have co-evolved over a long time and adapted to selection pres-

sure from each other (Guo et al., 2020).

Despite this receptor usage being flexible, the S protein of the

ancestral lineages of SARS-CoV had also acquired mutations in

the RBM for cross-species transmission (Cui et al., 2019). The

mutation Lys479Asn in the RBM has played an important role

in the civet-to-human jump, whereas the mutation Ser487Thr

facilitated human-to-human transmission, and both are indi-

cated as red sticks in Figure 3A (Cui et al., 2019; Li, 2013). How-

ever, some bat-associated viruses recognize human ACE2,

although they exhibit several changes in the amino acids con-

tacting the receptor compared with SARS-CoV. This suggests

that they can infect humans directly without using an intermedi-

ate host (Ge et al., 2013; Menachery et al., 2015).

SARS-CoV-2 interaction with the ACE2 receptor
SARS-CoV-2 and SARS-CoV share the same receptor, and most

of the residues in ACE2 involved in binding to S are identical (Fig-

ure 3B). Somecontact points are unique, especially the location of

a salt bridge, which is located in a central position in the SARS-

CoV-2ACE2complex, suggesting thatCoVscanadaptbymultiple

pathways to bind human ACE2 (Lan et al., 2020; Shang et al.,

2020). From the approximately 60 mammalian ACE2 proteins

tested, only five did not support virus entry if transfected into cells,

namelyACE2 frommice, koala, and threeNewWorldmonkeys (Liu

et al., 2021). This broad host tropism, at least in cell culture, is not

due toconservationof the aminoacids inACE2contacting the viral

spike. Up to seven (out of 20) amino acids can be substituted in

ACE2 from civets and pangolin, which can still serve as virus re-

ceptor. ACE2 proteins that do not function as receptors contain

more substitutions: eight in mice, nine in koala, or ten in chicken

(Liu et al., 2021). An exception is ACE2 fromNewWorld monkeys,

which contain only four substitutions,but at residues that are rarely

substituted in other ACE2 proteins (Table S2). In accordance with

the plasticity in receptor binding of SARS-CoV-2, manymammals

can be infected, either by human COVID-19 patients (cats, tigers,

minks, dogs) and/or experimentally (rhesus and cynomolgus ma-

caques, African green monkeys, Syrian and dwarf hamsters, fer-

rets, tree shrews, raccoon dogs, and cattle), whereas chickens

and ducks are apparently resistant (Freuling et al., 2020; Munoz-

Fontela et al., 2020; Shi et al., 2020; Trimpert et al., 2020; Ulrich

et al., 2020; Zhao et al., 2020). Even the fruit bat R. aegyptiacus

is susceptible to intranasal inoculation, and it transmits the virus

to contact animals, despite R. aegyptiacus not being the original

reservoir species for SARS-CoV-2 (Schlottau et al., 2020). Pigs

areunique in this regard, since theyarenot susceptible to infection,

although their ACE2 can serve as SARS-CoV-2 receptor (Munoz-

Fontela et al., 2020; Shi et al., 2020; Zhai et al., 2020).

Interestingly, the S proteins of SARS-CoV-2 and human ACE2

are not a perfect match. Deep mutational scanning of human

ACE2 revealed 122 substitutions at 35 positions that enhance

binding to the viral spike, including substitutions of Thr27 and

a substitution of Lys31 by aromatic residues, and these substitu-

tions do not occur in mammalian ACE2 protein. All substitutions

that cause a deletion of the N-glycosylation site at position 90 are

favorable for RBM binding (Chan et al., 2020). However, the
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N-glycosylationmotif Asn90XSer/Thr is present in ACE2 proteins

of many susceptible species, including humans, but is absent in

the ACE2 proteins of the species that do not serve as SARS-

CoV-2 receptors (see Table S2).

A similar deep mutational scanning approach with the RBD of

theSARS-CoV-2Sprotein (3,800mutations; i.e., almost every res-

iduewas substitutedbyany of the other amino acids) revealed that

many substitutions are tolerated, and that some mutations even

enhance binding (Starr et al., 2020). However, initial isolates of

SARS-CoV-2 do not contain mutations in the RBM, suggesting

that SARS-CoV-2 already possessed adequate affinity for human

ACE2at thebeginningof thepandemic.Nevertheless,SARS-CoV-

2canadapt to anew receptor.Micebecamesusceptible toSARS-

CoV-2 after serial virus passage by an Asn501Tyr mutation, or by

mutations Gln498Tyr and Pro499Thr in the RBD of its S protein

(Dinnon et al., 2020; Gu et al., 2020).

However, it should be noted that amore efficient binding to the

receptor does not necessarily result in improved virus replica-

tion. After completing the replication cycle, virus particles must

be released from infected cells to initiate infection of new cells.

However, it is detrimental if the receptor-binding activity is too

strong, as it prevents release of viruses from infected cells. An

example is influenza virus, which possesses both a receptor-

binding viral protein (hemagglutinin [HA]) and a receptor-de-

stroying protein (neuraminidase [NA]). An optimal balance of

both activities is required for efficient virus replication (Wagner

et al., 2002). In fact, oseltamivir, an antiviral drug that blocks

the enzymatic activity of NA, inhibits virus release, and hence

reduces disease severity.

A mutation occurring in the S protein early during the pandemic

was Asp614Gly, which emerged in early March 2020. Viruses

harboring this mutation had rapidly become the dominant form

(Korber et al., 2020). The substituted residue is located in the S1

subunit at the interface between two monomers of the trimeric S

protein. The carboxyl group of Asp614 forms a hydrogen bond

with the OH group of Thr859 present in the other monomer, which

is no longer available if substitutedbya glycine residue (FigureS1).

Functional studies had shown that this mutation enhances virus

replication in cell culture and in the upper, but not in the lower, res-

piratory tract inanimalmodelsand inCOVID-19patients. Thispref-

erence for the upper respiratory epithelium probably results in

higher transmissibility. However, the mutation does not affect dis-

ease severity and does not compromise the neutralizing activity of

antibodieselicitedbyD614 spike-based vaccinesor convalescent

plasma (Houet al., 2020;Planteet al., 2020;Weissmanetal., 2021;

Yurkovetskiy et al., 2020).

In December 2020, new SARS-CoV-2 variants were indepen-

dently detected in the United Kingdom. These variants have

several mutations in the S protein and in other viral genes (Faria

et al., 2021; Tegally et al., 2021; Volz et al., 2021). Most inter-

esting are the threemutations in theRBD (red sticks in Figure 3B);

one of them, Asn501Tyr, is present in all three variants, arguing in

favor of convergent evolution. Variants B1.351 (now termed

Beta) and P.1 (now termed Gamma) contain two additional sub-

stitutions in the RBD, residue Lys417 is a Thr in P.1 and an Asn in

B1.351, and the negatively charged Glu484 is substituted by a

positively charged Lys in both variants. However, residue 484

is not directly involved in the binding to ACE2. Besides the
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mutations in the RBD, five to eight additional substitutions are

present in the S protein of these variants, such as short deletions

in the N-terminal domain (Figure S1) and substitution of

Pro681His in B.1.1.7 (now termed Alpha), which alters the

furin-cleavage site from PRRAR to HRRAR. Epidemiological,

immunological, and functional studies with these variants are

ongoing. B.1.1.7. might be more transmissible by its rapid in-

crease in frequency in every country where it was introduced

(Volz et al., 2021). B1.351 and P1 exhibit high apparent preva-

lence rate of 40%–50% in South Africa and in Brazil, respec-

tively, but these variants are much less abundant in other

countries (https://outbreak.info/situation-reports). Why this un-

usually large number of genetic changes, particularly in the S

protein, occur at the same time but apparently at different

locations remains a mystery. Rapid virus evolution within a

chronically infected individual, particularly immunocompro-

mised, might contribute to this phenomenon (Clark et al., 2021).

Recently, new SARS-CoV-2 variants have emerged and

became predominant, especially Delta (B.1.617.2) and subse-

quently Omicron (B.1.1.529). Their properties and substitutions

in the S proteins have been reviewed recently (Ghosh et al.,

2022; Jung et al., 2022; McLean et al., 2022). See also https://

outbreak.info/situation-reports for the always up-to-date tracking

of SARS-CoV-2 variant prevalence and https://jbloomlab.github.

io/SARS-CoV-2-RBD_DMS_variants/RBD-heatmaps/ for the

mutational effects in variant RBDs on ACE2-binding affinity.

MERS-CoV interaction with the DPP4 receptor
The RBD of MERS-CoV, similar to SARS-CoV and SARS-CoV-2,

is divided into a core domain with identical folding in all CoVs,

and an external subdomain containing the RBM. The latter is

markedly different, leading to recognition of the DPP4 receptor

instead of ACE2. The contact to DPP4 is mainly mediated by hy-

drophilic side chain interactions (Figure 3C) (Lu et al., 2013).

DPP4 from mammalian cell lines susceptible to MERS-CoV

infection, e.g., from camel and pig, contain four amino acid

substitutions relative to human DPP4, whereas DPP4 from

non-permissive cell lines (hamster and mice) contain five and

six substitutions, respectively (Table S3) (Lu et al., 2015).

Genomic substitutions of two amino acids in the mouse DPP4

receptor (Asn294Leu, Thr336Arg; numbering according to the

human DPP4, the substitution Thr336Arg removes the

N-glycosylation site at position 334 from mouse DPP4) makes

mice susceptible to MERS-CoV infection (Cockrell et al., 2014,

2016; Peck et al., 2015).

DPP4 receptors from bats differ substantially in the amino

acids that have direct contacting interaction with the S protein,

and evolutionary analysis shows a pattern of ‘‘long-term arms

race’’ between bats and MERS-related CoVs (Cui et al., 2013).

A detailed analysis of bat receptors from different species re-

vealed that four of them conferred better virus replication—

higher titer—relative to using human DPP4, suggesting that

MERS-CoV is not optimally adapted to human DPP4 (Letko

et al., 2018). DPP4 proteins from seven bat species are equally

or slightly less effective, and four barely support virus replication.

Almost every animal DPP4 protein contains substitutions at res-

idues 288 and 392 (which are also substituted in camel and in pig

DPP4). DPP4 proteins that do not conferMERS-CoV susceptibil-
ity contain one or more substitutions at various positions. The

least effective receptor was from Desmodus rotundi, which con-

tains two substitutions, Ile295Thr (which is also a substitution

in DPP4 form hamster and mice) and a unique substitution

Arg317Gln. Interestingly, MERS-CoV can be adapted to this

suboptimal DPP4 receptor by acquiring two mutations in the

RBD, Ser465Phe and Asp510His (Letko et al., 2018).

A MERS-like CoV isolated from Pipistrellus bats in Uganda

exhibits 86% amino acid identity to MERS-CoV across the full

genome but has only 46% identity in the S protein. This differ-

ence is probably due to a recombination and this inhibits attach-

ment to the DPP4 receptor (Anthony et al., 2017). Recombination

involving the S protein also occurred among co-circulating

MERS-CoV lineages in camels, and this might have led to the

MERS outbreak in South Korea in 2015 (Sabir et al., 2016). Dur-

ing that outbreak, most sequences obtained from patients in

South Korea contained mutations in the RBD, mostly

Ile529Thr, but also in Asp510Gly. Contrary to what was ex-

pected, the mutations decreased binding to the receptor and

reduced viral entry, suggesting that these substitutions were

driven by neutralizing antibodies (Kim et al., 2016).

EBOV and MARV interaction with the NPC1 receptor
The GPmediates all stages of virus entry, attachment, entry, and

fusion. It is synthesized as a precursor that is cleaved by furin-

like proteases into subunits GP1 and GP2. Priming occurs

through cathepsin-mediated cleavage upon uptake of the virus

into endosomes, which removes the largest part of GP1,

including a mucin-like domain that mediates the initial virus

attachment to the cell surface receptors (Davey et al., 2017).

Only the cleaved GP (termed GPcl) can bind to the Niemann-

Pick C1 (NPC1) receptor, which is a ubiquitous polytypic mem-

brane protein that regulates cholesterol trafficking (Davey

et al., 2017; Kirchdoerfer et al., 2017).

The second loop of NPC1, which is composed of seven a

helices and seven b strands, binds to a hydrophobic groove at

the head of GPcl of EBOV via two protruding loops containing

mainly aromatic residues (Figure 3D). Mutagenesis and affinity

measurements revealed that five residues (Tyr423, Pro424,

Phe503, Phe504, and Tyr506) contributed to most of the interac-

tions (Wang et al., 2016). However, the affinity of GPcI for its

receptor is exceptionally low (150 mM), about four orders of

magnitude lower than determined for other spike-receptor com-

plexes (Wang et al., 2016). All contacting residues are conserved

in NPC1 of primates, including variousmonkeys, in ferrets, and in

dogs. There are three substitutions in porcine NPC1 (Gln421His,

Ser425Ala, and D502Phe), but pigs are still susceptible to EBOV

infection (Table S4) (Weingartl et al., 2013).

There is a large diversity in the amino acids in NPC1 in contact

with the viral spike protein among bat species. R. aegyptiacus,

which is susceptible toEBOV infection, contains the samesubsti-

tutions (Ser425Ala) as the pig receptor. NPC1 from Pteropus da-

symallus serves as receptor for EBOV, although it contains three

amino acid substitutions (Ser425Thr, Gly426Glu, Phe504Tyr).

Cells from Eidolon helvum are non-permissive to EBOV infection

and they contain three different amino acid substitutions,

Ser425Ala, Val505Thr, and Asp502Phe, of which residue 502 is

critical (Ng et al., 2015). Since MARV infects cells derived from
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E. helvum, but not from P. dasymallus (which is opposite to the

infectivity of EBOV), it was suggested that the heterogeneity of

NPC1 affects filovirus tropism (Takadate et al., 2020). Indeed,

bioinformatics evidence had shown that residue 502 was a pos-

itive selected site in bats (Nget al., 2015). Likewise, inmanymam-

mals, virus-interacting residues inNPC1are under positive selec-

tion (Kondoh et al., 2018; Pontremoli et al., 2016). However,

deficiencies in virus binding are counteracted by mutations in

the viral GP. Binding to a receptor having a Phe at residue 502

can be restored by a mutation at Val141Ala (labeled red) in GP,

a substitution that occurs in certain filoviruses (Ng et al., 2015).

During the large Ebola epidemic in West Africa, a mutation in

GP (Ala82Val near the RBD, labeled red) arose early and domi-

nated the viral population. Three studies had reported a fitness

advantage of 82Val over 82Ala in cell culture (Diehl et al., 2016;

Dietzel et al., 2017; Urbanowicz et al., 2016), and that this

site was positively selected (Ladner et al., 2015). However, it is

difficult to distinguish between virus selections within or among

infected patients. In the first case, a faster-replicating virus

would out-compete the wild type and is therefore preferentially

transmitted. In the second case, mutant virus is more transmis-

sible and thus causes more secondary infections. In addition,

stochastic processes, for example, founder effects, might also

contribute to the enrichment of certain virus variants (Bedford

and Malik, 2016).

HeV and NiV interaction with ephrin receptors
Cell entry of henipaviruses involves the concerted action of its

two GPs, the receptor-binding G protein and the fusion protein

F. Upon receptor binding, G triggers F to induce a conforma-

tional change to catalyze membrane fusion, either by releasing

previously bound or by newly associating with the F protein

(Azarm and Lee, 2020). Another prerequisite for fusion is the

cleavage of F into two subunits by cathepsins, which occurs

after endocytosis of F from the plasma membrane in the virus-

producing cell (Diederich and Maisner, 2007).

The functional receptors of both viruses are ephrin-B2 and

ephrin-B3, members of a large family of membrane-bound tyro-

sine kinases (Pernet et al., 2012; Xu et al., 2012). Both proteins

insert a protruding loop into the central cavity of the head domain

of the viral G protein, which is folded into a b propeller with six

blades (Figure 3E). G protein from other paramyxoviruses ex-

hibits a similar folding of their head domain, despite them using

carbohydrates as receptor (Cox and Plemper, 2017). NiV-G and

HeV-G are extremely similar in structure and hence use almost

the same amino acid residues for attachment; only valine 507

is substituted to threonine in HeV-G (Bowden et al., 2008; Pernet

et al., 2012; Xu et al., 2012). The receptor interaction is of very

high affinity (1 nm) due to the large interface containing 24

hydrogen bonds, plus two salt bridges and several key hydro-

phobic interactions (Phe 120, Leu124, Trp125) in the protruding

loop. The amino acids in this loop from both ephrin-B2 and eph-

rin-B3 are identical in bats, humans, intermediate hosts, and in

other mammals and even in chicken. Therefore, many mamma-

lian receptors can mediate cell entry of both NiV and HeV with

similar efficiency, andmany small animals can be experimentally

infected (Bossart et al., 2008). An exception is mice, which are

resistant, although their receptor confers susceptibility in cell
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culture, indicating that virus replication is blocked at a later

step (Thibault et al., 2017). For ephrin-B2, mostly conservative

substitutions occur outside the protruding loop (106, 130, 133),

especially between some bat species (Table S5). Therefore,

since there is no variation between animals in the amino acids

that contact the viral spike proteins, strong adaptation to a

different receptor is not required for the host jump. However,

by analyzing all available NiV sequences (including clinical iso-

lates), we found seven adaptive sites in the G protein, three of

which are located close to the receptor-binding region, and

they may modulate the binding (Li et al., 2020).

In summary, bat-derived viruses face different conditions in

the host receptors to enter cells. The amino acids in ephrin-B2

and ephrin-B3 interacting with the G protein of henipaviruses

exhibit no sequence variation among humans, bats, and inter-

mediate hosts. Thus, bat-associated viruses can easily cross

the species barrier as far as receptor attachment is concerned.

By contrast, the receptors used by filoviruses and CoVs show

variability at the interacting surface among different species.

EBOV and MERS-CoV can tolerate up to three substitutions,

whereas the S protein of SARS-CoV and of SARS-CoV-2 is

evenmore flexible, as it can bind to receptors having up to seven

substitutions. The contacting amino acid residues in the recep-

tors used by filoviruses and CoVs show large variation among

(and even within) bat species, and there is evidence for an evolu-

tionary arms race between bats and their viruses (Guo et al.,

2020; Hu et al., 2017; Ng et al., 2015; Takadate et al., 2020).

POTENTIAL OF INTERSPECIES TRANSMISSIONS OF
BAT RVs TO MAMMALIAN HOSTS

RV infections are amajor cause of life-threatening gastroenteritis

in infants and children, and the young of many mammalian and

avian species worldwide (Crawford et al., 2017). RVs are non-en-

veloped double-stranded RNA viruses with a genome of 11 seg-

ments. According to the difference of VP6 amino acid sequence,

RVs are currently grouped into nine species (RVs A–D and RVs

F–J), among which RVA is the most common and pathogenic

(https://talk.ictvonline.org/taxonomy/). Based on nucleotide

sequence identities in VP7 and VP4 genes, RVA is further classi-

fied into G and P genotypes, respectively. The P[8], P[4], and P[6]

genotypes in the P[II] genogroup are responsible for over 90% of

human infections worldwide, and are considered to have origi-

nated from P [I] RVs with an animal host origin and evolved the

ability to infect humans (Xu et al., 2021). Currently, RVs have

been reported from a variety of bat species belonging to Rhino-

lophidae, Vespertilionidae, Hipposideridae, Pteropodidae, Em-

ballonuridae, and Rhinopomatidae (Esona et al., 2010; He

et al., 2013, 2017; Mishra et al., 2019; Waruhiu et al., 2017; Xia

et al., 2014).

Some RVA isolates may be interspecies transmission of bat

RVA strains. A child with acute gastrointestinal in Thailand was

infected with RVA of genotype G3P[10], bearing bat-like VP7

and VP4 proteins (Jampanil et al., 2021). Okitsu et al. (2018) re-

ported that infection with a reassortment belonging to G3P[13]

involving a bat RVA strain leads to severe gastrointestinal symp-

toms in a child. Recent studies have shown that human RVA

strain G20 also exists in bats, which suggests a potential bat

https://talk.ictvonline.org/taxonomy/
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reservoir (Esona et al., 2018; Solberg et al., 2009). In addition, the

rotaviruses of some livestock may also be related to bats. An

equine G3P[3] RVA strain has high nucleotide similarities with a

bat-derived rotavirus, indicating that it originated from bats (He

et al., 2017; Mino et al., 2013; Xia et al., 2014). Recently, some

purple SA11 (simian RVA)-like RVs were found in multiple bat in-

dividuals in Gabon, suggesting that bats are the prime suspect

for being the major hosts of these viruses (Simsek et al., 2021).

In fact, the genome structure of rotavirus determines its charac-

teristics for easy reassortment between human, animal, and bat

viruses (Esona et al., 2010). Our previous studies revealed that

RV shows high prevalence and signatures of cross-species

transmission in some game animals, indicating that its host

range is much wider than we know (He et al., 2022b). The close

evolutionary links between human and animal RVs, especially

porcine RVs, suggest that they may have a common ancestor,

which allows interspecies transmission and establishment in hu-

man populations and animals, emphasizing the need for simulta-

neous monitoring of rotaviruses in animals.

Host factors or cellular receptors that mediate RVs’ successful

infection are also diverse. Some host cell surface molecules,

such as heat shock cognate protein 70 and integrins, have

been identified as potential RV receptors (Lopez and Arias,

2004). Previous studies have shown that some RVs recognize

sialic acid-containing glycoconjugates and are NA sensitive,

but themajority of humanandanimalRVsare sialidase insensitive

(Banda et al., 2009; Ciarlet et al., 2002). Li et al. (2021) reported

that the single amino acid mutation in the VP8* protein of bat P

[3] genotype rotavirus obtained the ability to hemagglutinate

the red blood cells, and this residue played an important role in

the ligand recognition and may contribute to the cross-species

transmission. However, other specific glycans, such as mucin

and histo-blood group antigens (HBGAs), can interact with

VP8* and affect RVs tropism in different hosts (Xu et al., 2021).

Thus, the role of species-specific glycans in the cross-species

transmission need to be further determined, which is of great sig-

nificance for determining host range and epidemiology, species

barrier mechanism, and cross-species transmission.

OUTLOOK

Given the large variety of viruses in bats and their propensity to

cross the species barrier, the question regarding which measures

shouldbe taken toprevent theemergenceofnovel virus tohumans

needs to be addressed with urgency, as it can become a major

public health crisis, as exemplified by the COVID-19 pandemic.

Sincebatsandotherwildlife animal species serveas foodsources,

banning their hunting, trading, andconsumption shouldbeconsid-

ered. Another measure is to close wet markets, where numerous

living wildlife and farm animals are clustered and traded. In addi-

tion, based on the concept of ‘‘One Health,’’ wildlife protection

and epidemiological research on bat-associated viruses should

be conducted. Having identified viruses in a rural region with the

potential to spill over, surveillanceof the local population, including

their livestock,would revealwhether these viruses have the poten-

tial to emerge as human pathogens, hence stopping an emerging

pandemicat the sourcebefore it spreads to larger citieswith larger

population. Furthermore, onlya small fractionof the 72,000viruses
estimated to occur in bats has been identified or studied. A clever,

but costly, strategy of how to identify a majority of them has been

outlined with the aim to predict viruses that represent a public

health threat (Anthony et al., 2013). However, based on the

inherent flexibility of the viral S protein, it is difficult to predict

whether a new CoV will bind to the human receptor. In addition,

the identified virus population represents only a transient snap-

shot, as viruses evolve rapidly bymutations andby recombination.

Furthermore, even if potentially harmful viruses have been identi-

fied, it is hard to predict when a virus outbreak will occur. There

are so many parameters to consider.

Another pandemic preparedness strategy is to develop drugs

against conserved viral targets. One candidate is the RNA-depen-

dent RNApolymerase, which shares structural similarity among all

RNA viruses. Indeed, remdesivir was originally developed against

EBOV. It had been shown to have positive effect for COVID-19

treatment (Beigel et al., 2020). Since there is little commercial

incentive to develop drugs against viruses that might never

emerge, public andprivatepartnership is required togeneratepro-

totype drugs. They can be tested for pharmacological properties

and for safety inanimalmodels, andperhaps in small groupsof hu-

mans.Onceanewvirushasemerged, thesedrugscouldbe rapidly

tested in phase III clinical trials, and, if required, the compoundcan

bemodified once the 3D-structureof its target—viral receptor pro-

tein—becomes available. Other potential targets are the cellular

enzymes essential for virus replication; i.e., protein kinases and

palmitoyl transferases (Gadalla andVeit, 2020; Lanetal., 2020; To-

tura and Bavari, 2019). If the same enzyme is used by several or

groups of viruses, such drugsmight even be effective against out-

breaks caused bymembers of different virus families. In summary,

a combination of the above suggested measures might be helpful

in preventing future virus outbreaks, or at least mitigate their effect

onhumanhealthwithpositive impact toglobaleconomy. Itwill bea

small investment in comparison.
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Figure S1. Amino acid substitutions in the spike protein. (A) Cryo-EM structure of the trimeric 

S highlighting the location of amino acid substitutions in SARS-CoV-2 variants. The N-terminal domain 

(NTD) of the S1 subunit is in magenta, the remaining part of S1 including the receptor binding domain 

(RBD) is in blue and the S2 subunit is in green. Residue Asp 614, which was substituted early in the 

pandemic by a Gly is shown as a red sphere. The substitutions in the variant B1.1.7 are shown as blue 

spheres, in the variant B 135 as cyan spheres and in the variant P1 as grey spheres. The RBD of the 

colored monomer is in the up conformation, the other two in the down conformation. The amino acids 

substituted in the RBD are shown in Fig 3b. The figure was created from Pdb file 6VSB. (B) Primary 

structure of S showing the location of positions 614 and 859. The S1 subunit is colored as in a. The S2 

subunit is in green except for the heptad repeat region 1 (HR1), which is in orange and the fusion peptide 

F, which is in blue. The proteolytic cleavage sites S1/2 and S2´ are indicated by red arrows. (C) 

Hydrogen bond between Asp614 and Thr859. Asp614 forms the apex of a loop that contains a used N-

glycosylation site, Asn 616. It is covalently connected to another loop by a disulphide-linkage between 

Cys 617 and Cys 649 and via interaction of the main chain atoms of Asp614 with Ala647. Both loops 

are at the interface between two monomers of the trimeric spike protein. The carboxyl group of Asp 614 

forms a hydrogen bond with the -OH group of Thr 859, which is part of a short β-strand in the S2 subunit 

between the fusion peptide and the heptad region. Protein domains are colored as in B. The figure was 

created from pdb file 6VSB. 



 
Species 24 27 28 31 34 37 38 41 42 45 79 82 83 84 90 91 92 322 323 324 325 329 330 353 354 355 357 Virus binding 

Human Q T F K H E D Y Q L L M Y P N L T N M T Q E N K G D R + 

Ferret L T F K Y E E Y Q L H T Y P D P I N M T E Q N K R D R + 

Raccoon  L T F K Y E E Y Q L L T Y P D S T N M T Q E N K G D R + 

Civet L T F T Y Q E Y Q V L T Y P D A K N M T Q E N K G D R + 

Mouse N T F N Q E D Y Q L T S F S T P I H M T Q A N H G D R +/- 

Rat K S F K Q E D Y Q L I N F S N A T Q M T P T N H G D R - 

Chinese horseshoe bat-YN E M F K T E D H Q L L N Y S N V T N M T E N N K G D R ? 

Chinese horseshoe bat-GX E I F K T E D H Q L L N Y P N V T N M T E N N K G D R ? 

Chinese horseshoe bat-HB R T F E S E N Y Q L L N Y P N V T N M T E N N K G D R ? 

Chicken E T F E V E D Y E L N R F S D A V N M T E T N K N D R - 

 
Table S1. Comparison of the ACE2 residues interfacing with SARS-CoV receptor-binding domain (RBD) of different species. Red numbers: 

contact to SARS-CoV-2 S and to SARS-CoV S. Blue numbers: contact to SARS-CoV S only. Amino acids differences to human ACE2 are indicated as red 

characters. Highlighted in grey: N-glycosylation sites. Accession numbers: human (Homo sapiens): BAB40370.1; Ferret (Mustela putorius furo): BAE53380.1; 

Raccoon (Nyctereutes procyonoides): ABW16956.1; Civet (Paguma larvata): AAX63775.1; Mouse (Mus musculus): ABN80106.1; Rat (Rattus norvegicus): 

AAW78017.1; Chinese horseshoe bat-YN (Rhinolophus sinicus-YN): AGZ48803.1; Chinese horseshoe bat-GX (Rhinolophus sinicus-GX): ADN93472.1; Chinese 

horseshoe bat-HB (Rhinolophus sinicus-HB): ADN93475.1; Chicken (Gallus gallus): XP_416822.2. -YN indicates an individual from Yunnan; -GX indicates an 

individual from Guangxi; -HB indicates an individual from Hubei. Amino acids differences to human ACE2 are indicated as red characters, some of the amino acids 

do not directly contact the S-protein, but are present in a region that encode a N-glycosylation site in ACE2 proteins from other animals. 
  



 

Species 24 26 27 28 30 31 34 35 37 38 40 41 42 43 78 79 81 82 83 84 90 91 92 95 322 323 324 330 353 354 355 357 393 Virus 
binding 

Human Q K T F D K H E E D F Y Q S T L Q M Y P N L T L N M T N K G D R R + 
Dog L K T F E K Y E E E S Y Q S K L K T Y P D S T R N M T N K G D R R + 
Cat L K T F E K H E E E S Y Q S K L K T Y P N T T R N M T N K G D R R + 

Ferret L K T F E K Y E E E S Y Q S Q H K T Y R D P I R N M T N K R D R R + 
Pig L K T F E K L E E D A Y Q S R I K T Y P T L I R N M T N K G D R R + 

Hamster Q K T F D K Q E E D S Y Q S K L K N Y S N L T R Y M T N K G D R R + 
Raccoon dog L N T F E K Y E E E S Y Q S K L K T Y P D S T R N M T N K G D R R + 

Civet L K T F E T Y E Q E S Y Q S K L Q T Y P D A K R N M T N K G D R R + 
Chinese horseshoe 

bat-YN E K M F D K T K E D S H Q S K L K N Y S N V T L N M T N K G D R R + 

Chinese horseshoe 
bat-GX E K I F D K T K E D S H Q S K L K N Y P N V T L N M T N K G D R R + 

Chinese horseshoe 
bat-HB R K T F D E S E E N S Y Q S K L K N Y P N V T L N M T N K G D R R + 

Horseshoe bat R K I F D N R E E E S Y Q S K L K N Y P T V P L N M T N K G D R R + 
Egyptian fruit bat L K T F E K T E E D F Y Q S K L K T Y Q D P E L N M T K K G D R R + 

Pangolin E K T F E K S E E E S Y Q S K I K N Y Q N D T R K M T N K H D R R + 
Mouse N K T F N N Q E E D S Y Q S K T Q S F S T P I R H M T N H G D R R - 

Rat K E S F N K Q E E D S Y Q S K I Q N F S N A T R Q M T N H G D R R - 
Chicken E Q T F A E V R E D S Y E N R N S R F S D A V L N M T N K N D R R - 

Marmoset Q K T F D K H E E D F H E N K L Q T Y P N L T L N M T N K Q D R R - 
Koala R K E F E T K E E E S Y Q S N I R T F P D P Q L N M T N K G D R R - 

 

Table S2. Comparison of the ACE2 residues interfacing with SARS-CoV-2 receptor-binding domain (RBD) of different species. Red numbers: 

contact to the spike of both SARS-CoV S and SARS-CoV-2. Green numbers: contact to SARS-CoV-2 S only. Black numbers: variable amino acids close to 

contacting amino acids. Amino acids differences to human ACE2 are indicated as red characters. Highlighted in grey: N-glycosylation sites. Residues 90 and 322 

contain carbohydrates in human ACE2. ACE2 proteins from two other New World monkeys (Tufted capuchin, XM_032285963.1 and Squirrel monkey, 

XM_010336623.1), which also do not serve as SARS-CoV-2 receptor have identical residues compared to marmoset. Accession numbers: Human: BAB40370.1; 



Dog (Canis lupus familiaris): ACT66277.1; Cat (Felis catus): MT269671; Ferret (Mustela putorius furo): BAE53380.1; Pig (Sus scrofa): NP_001116542.1; Hamster 

(Mesocricetus auratus): XP_005074266.1; Raccoon dog (Nyctereutes procyonoides): ABW16956.1; Civet (Paguma larvata): AAX63775.1; Chinese horseshoe bat-

YN (Rhinolophus sinicus-YN): AGZ48803.1; Chinese horseshoe bat-GX (Rhinolophus sinicus-GX): ADN93472.1; Chinese horseshoe bat-HB (Rhinolophus sinicus-

HB): ADN93475.1; Horseshoe bat (Rhinolophus affinis): QMQ39222.1; Egyptian fruit bat (Rousettus aegyptiacus): XM_016118926.1; Pangolin (Manis javanica): 

XP_017505746.1; Mouse (Mus musculus): ABN80106.1; Rat (Rattus norvegicus): AAW78017.1; Chicken (Gallus gallus): XP_416822.2; Marmoset (Callithrix 

jacchus): XM_008988993.3; Koala (Phascolarctos cinereus): XM_021007494.1. -YN indicates an individual from Yunnan; -GX indicates an individual from Guangxi; 

-HB indicates an individual from Hubei. 
  



 
Species 229 267 269 286 288 289 291 294 295 298 317 322 334 335 336 341 344 346 392 Virus binding 

H. sapiens N K F Q T A A L I H R Y S G R V Q I K + 
C. dromedarius N K F Q V P A L I H R Y T G R V Q I R + 
S. scrofa N K F Q V P A L I H R Y T G R V Q I S + 
M. auratus  N K F Q T A E L T H R Y N L T L Q V K - 
M. musculus N K F Q P A A A R H R Y N L T S Q V K - 
R. ferrumequinum N K F Q V A A L I H R Y N D R V Q I E ++ 
R. aegyptiacus N K F Q V A A L I H R Y D G S V Q M E ++ 
H. armiger  N K F Q V A A L I H R Y N G R V Q I E ++ 
S. bilineata  N K F Q P A A L I H R Y S G R V Q I Q ++ 
A. jamaicensis N K F Q T A A L I H R Y S G R V Q I Q + 
P. vampyrus  N K F Q V A A L T H R Y N G S V Q M K + 
E. fuscus N K Y Q T A A L I H R Y - P R V Q I E + 
C. perspicillata  N K F Q T A A L T H R Y S G R V Q I Q -/+ 
P. abramus   D K Y Q T A A L I H R Y Y S T V Q I D -/+ 
M. davidii N K Y Q V A A L T H R Y T P K V Q I P -/+ 
P. alecto N K F Q V A A L T H R Y N G S V Q L K -/+ 
A. planirostris  N K F Q T A A L I H R Y S G R V Q I Q --/+ 
M. lucifugus N K Y Q I A A L I H R Y T P R V Q I E --/+ 
M. brandtii N K Y Q V A A L I H R Y T P I V Q I K --/+ 
E. buettikoferi  N K F Q I A A L I H R Y N G S V Q M E --/+ 
D. rotundus N K F Q T A A L T H Q Y S G R V Q I Q --/+ 
                     

 
Table S3. Comparison of the DPP4 residues interfacing with MERS-CoV RBD of different species.  Amino acids differences to human DPP4 are 

indicated as red characters. Highlighted in grey: N-glycosylation sites. Plus und minus indicates whether MERS binds to this receptor with higher (++), the same 

(+) less (-+) or much lower affinity compared to the human receptor. Note that only Myotis s., Pipistrellus s. and Eptesicus s. belong to the Vespertilionidae family. 
Accession numbers: H. sapiens (Homo sapiens): NM_001379604.1; C. dromedarius (Camelus dromedarius): XM_031451547.1; S. scrofa (Sus scrofa): 

NM_214257.1;M. auratus (Mesocricetus auratus): NM_001310571.1; M. musculus (Mus musculus): NM_010074.3; R. ferrumequinum (Rhinolophus 



ferrumequinum): MH299899.1; R. aegyptiacus (Rousettus aegyptiacus): MH299900.1; H.armiger (Hipposideros armiger): XM_019636841.1; S. bilineata 

(Saccopteryx bilineata): MH299901.1; A. jamaicensis (Artibeus jamaicensis): KF574262.1; P. vampyrus (Pteropus vampyrus): XM_023529782.1; E. fuscus 

(Eptesicus fuscus): XM_028141092.1; C. perspicillata (Carollia perspicillata): MH299896.1; P. abramus (Pipistrellus abramus): MH345672.1; M. davidii (Myotis 

davidii): NW_006293001.1;; P. alecto (Pteropus alecto): NW_006442484.1; A. planirostris (Artibeus planirostris): MH299895.1; M. lucifugus (Myotis lucifugus): 

XM_014445986.2; M. brandtii (Myotis brandtii): XM_005859372.2; E. buettikoferi (Epomops buettikoferi): MH299897.1; D. rotundus (Desmodus rotundus): 

XM_024579835.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Species 420 421 423 424 425 426 428 501 502 503 504 505 506 528 Virus binding 
Human Y Q Y P S G D D D F F V Y L + 
Chimpanzee Y Q Y P S G D D D F F V Y L + 
Gorilla Y Q Y P S G D D D F F V Y L + 
Dog Y Q Y P S G D D D F Y V Y L + 
Ferret Y Q Y P S G D D D F F V Y L + 
Pig Y H Y P A G D D F F F V Y L + 
Rousettus species Y Q Y P A G D D D F F V Y L + 
Pteropus species Y Q Y P T E D D D F Y V Y L + 
E. helvum Y Q Y P A G D D F F F T Y L - 
E. crypturus Y Q Y P A G D D D F F V Y L + 

 

Table S4. Comparison of the NPC1 residues interfacing with EBOV GP of different species. Blue numbers: most important amino acids. Amino 

acids differences to human NPC1 are indicated as red characters.  Accession numbers: human (Homo sapiens): XM_005258278.5; Chimpanzee (Pan troglodytes): 
GABC01005095.1; Gorilla (Gorilla gorilla gorilla): XM_019014085.1;  dog (Canis lupus familiaris): AF315034.1; Ferret (Mustela putorius furo): XM_004742838.2; 

Pig (Sus scrofa): AF169635.1;  Rousettus species: R. aegyptiacus  LC462995.;  R. leschenaultia : LC462996.1, which have identical amino acids; Pteropus species: 

P. vampyrus XM_023530841.1; P. dasymallus yayeyamae: LC462999.1; P. Alecto: XP_006920089.1, which have identical amino acids; E. helvum (Eidolon helvum): 

LC462993.1; E. crypturus (Epomophorus crypturus): LC462994.1. 

 

 

 

 

 

 

 
 



Species 106 117 118 119 120 121 122 123 124 125 126 127 128 129 130 133 Virus binding 
Human K F Q E F S P N L W G L E F Q K ++ 
Horse R F Q E F S P N L W G L E F Q R + 
Pig R F Q E F S P N L W G L E F Q R + 
Mouse R F Q E F S P N L W G L E F Q K - 
Pteropus species  R F Q E F S P N L W G L E F Q K + 
E. fuscus R F Q E F S P N L W G L E F K K + 
M. natelensis R F Q E F S P N L W G L E F E K + 

 

Table S5. Comparison of the ephrin-b2 residues of different species interfacing with Nipah virus G-protein. Amino acids differences to human 

ephrin-b2 are indicated as red characters.  Accession numbers: Human (Homo sapiens): NM-004093.4; Horse (Equus caballus): NC-009160.3; Pig (Sus scrofa): 

NC-010453.5; Mouse (Mus musculus): BC057009.1. Pteropus specie indicates the identical sequences of P. alecto: NM-001290170.1 and P. vampyrus: NW-

011888864.1. The following bat species also contain identical amino acids at the spike interface: Desmodus-rotundus: NW-020093757.1; Hipposideros-armiger: 

NW-017731751.1; Rhinolophus-ferrumequinum: NC-046287.1; Myotis-lucifugus: NW-005871081.1; Myotis-brandtii: NW-005371371.1; Myotis-davidii: NW-

006287546.1; Phyllostomus-discolor: XM-028526285.1. Only E. fuscus (Eptesicus-fuscus): NW-007370674.1; and M. natelensis (Miniopterus-natelensis): NW-

015504348.1 contains one amino acid substitution.  
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