# Supplementary file for "High-fidelity, accelerated whole-brain submillimeter in-vivo diffusion MRI using gSlider-Spherical Ridgelets (gSlider-SR)

Gabriel Ramos-Llordén <sup>\*1</sup>, Lipeng Ning<sup>1</sup>, Congyu Liao<sup>2</sup>, Rinat Mukhometzianov<sup>1,3</sup>, Oleg Michailovich<sup>3</sup>, Kawin Setsompop<sup>2</sup>, and Yogesh Rathi<sup>1</sup>

<sup>1</sup>Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

<sup>2</sup>Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

<sup>3</sup>Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada

#### Abstract

This supplementary files includes additional results that complement the content of the main paper. In particular, we include theoretical details of gSlider-SR in section 1, whereas additional results of the simulation and in-vivo experiments are presented in sections 2 and 3, respectively.

Gabriel Ramos-Llordén

Psychiatry Neuroimaging Laboratory,

Department of Psychiatry,

Brigham and Women's Hospital, Harvard Medical School,

02215 Boston, Massachusetts, USA,

Telephone: +1 617-525-6124,

Email: gramosllorden@bwh.harvard.edu

 $<sup>^{*}</sup>$ Corresponding author:

## **1** gSlider-SR: theoretical aspects

#### 1.1 Selection of the number of spherical ridgelets, M

The number of spherical ridgelets functions, M, is defined as  $M = \sum_{j=-1}^{J} (2^{j+1}m_0 + 1)^2$ , where J is the highest level of desired "resolution" and  $m_0$  the minimum spherical order that fulfills a given error constraint (see construction of Spherical Ridgelets function in (1) for more details). We followed the recommendations of (1) and chose three resolution levels (J = 1) and  $m_0 = 4$ , giving a total of M = 395 SR basis functions. The multi-resolution and multi-frequency basis so obtained can represent any dMRI signal in the brain with high accuracy.

# 1.2 Analytical gradient formula w.r.t. phase maps of the Lagrangian costfunction, Eq.8

The gradient of cost-function Eq. 8 (in the main paper) w.r.t.  $P_k$  (with  $L(P_k)$  being the short-hand notation for the cost-function) can be calculated as (2):

$$\nabla L(\boldsymbol{P}_{k}) = 2\operatorname{Re}\{ie^{-i\boldsymbol{P}_{k}} \odot (\boldsymbol{D}_{k}\boldsymbol{S}\boldsymbol{\Omega}_{k} \odot \boldsymbol{M}^{H}(\boldsymbol{Y}_{k} - \boldsymbol{M}(e^{i\boldsymbol{P}_{k}} \odot \boldsymbol{D}_{k}\boldsymbol{S}\boldsymbol{\Omega}_{k})) + \lambda_{phase}(e^{-i\boldsymbol{P}_{k}} \odot \boldsymbol{F}^{H}\boldsymbol{F}e^{i\boldsymbol{P}_{k}})\}$$
[S1]

where  $\operatorname{Re}\{\cdot\}$  indicates the real part operator.

#### 1.3 Convergence and computational complexity of gSlider-SR

It should be noted that the ADMM algorithm guarantees monotonic decrease of the cost-function of Eq. 6 even if the cost-function to be minimized is nonconvex (3). Though we only iterate once in Eq. 8, that step guarantees a monotonically decrease, which does not compromise the overall convergence of the ADMM algorithm to a local minimum (at least). In cases where there is lack of proof for convergence to a global minimum, a common approach is to provide a reasonably well-chosen initialization (4). We adopted that approach, initializing gSlider-SR with a a Tikhonov regularization-based solution, providing satisfactory results both in simulated and in-vivo data experiments.

**Computational complexity** gSlider-SR was implemented in Matlab with some specific parts developed in C++, e.g.., the FISTA algorithm of Eq.9. This  $l_1$  optimization problem is separable for every voxel, and was implemented to make use of multi-threading. For a super-resolution DWI

set with  $N = 256 \times 256 \times 190$  voxels and  $N_q = 64$  q-space points, and a mask considering brain-tissue only, the computation time was about  $T_{l_1} = 15$  min in a computer with CPU: Intel Xeon Silver 4210 Processor with 20 cores at 2.2 GHz and 525 GB of RAM. Estimating S in Eq. 8 is a LLS problem that can be implemented very efficiently, about  $T_S = 10$  min in Matlab code. The most computationally demanding part was the non-linear estimation of thick-slice phase information  $P_k$ in Eq. 8. It took around  $T_{P_k} = 60$  min with a Matlab implementation of the NLCG method with Polak-Ribiere step. Solving the non-linear problem with quasi-Newton method would have perhaps converged faster, however, the memory requirements to estimate the Hessian would have rendered the problem infeasible. Total time of the gSlider-SR algorithm is then the number of iterations multiplied by  $T_S + T_{P_k} + T_{l_1} = 85$  min. In the experiment section, we provide specific times for each experiment that is run with simulation and in-vivo data.

## 2 Simulation experiment

#### 2.1 Mathematical details on the metrics used for validation

1. Quality of signal reconstruction. We used the following definition of NMSE

NMSE = 
$$\frac{||\hat{s}_n - s_n||_2^2}{||s_n||_2^2}$$
. [S2]

2. Accuracy and precision in Fractional Anisotropy estimation. To assess accuracy, we use the relative sample bias (or error), which is defined as

$$\frac{\overline{FA_e} - FA_{GT}}{FA_{GT}},$$
[S3]

where  $\overline{FA_e}$  is the sample mean (over MC = 20 realizations) of  $FA_e$ , and  $FA_{GT}$  stands for the ground-truth FA. Precision is assessed by calculating the standard deviation of the MC = 20 realizations,  $\operatorname{std}(FA_e)$ .

3. Angular error in main diffusion tensor eigenvector. The angular error (in degrees),  $\Delta_{\theta}$ , between the principal diffusion directions was computed (white matter region) as,

$$\Delta_{\theta} = \frac{180}{\pi} \arccos\left(\hat{\boldsymbol{u}} \cdot \boldsymbol{u}\right), \qquad [S4]$$

where  $\hat{u}$  is the main eigenvector of the tensor that is estimated from  $\hat{S}$  and u is that of the diffusion tensor estimated from S.

#### 4. High Angular Reconstruction Diffusion Imaging (HARDI) results.

The principal diffusion directions and the number of fiber crossings (fiber peaks) were calculated. For a chosen peak in the ground-truth ODF, the angular error (in degrees) between the direction of that peak,  $\boldsymbol{u}$ , and the corresponding direction from the reconstructed ODF  $\hat{\boldsymbol{u}}$ , was calculated as in Eq. S4. Next, a single average angular error per voxel  $\Delta_{\theta}$  was computed by averaging all errors from each of the ODF peaks in that voxel.

#### 2.2 DWI and diffusion-metrics maps for the four accelerated factors

Super-resolution DWI set and diffusion-metrics maps for acceleration factors: two, three, four and five are shown in Fig.1, Fig.2, Fig.3, and Fig.4, respectively.

## 3 In-vivo data experiment

#### 3.1 Accounting for eddy-current and subject motion

The rationale behind the integrated affine registration step into gSlider-SR is the following. Since the LLS problem for estimating  $\boldsymbol{S}$  in Eq. 8 is separable along diffusion directions, the reconstruction of each high-resolution diffusion image is then free from motion artifacts. Nevertheless, the estimated DWI set  $\boldsymbol{S}^{(t+1)}$  should be volume-wise registered before solving for Eq.9, as sphericalridgelets fitting requires the DWI data to be aligned. Coefficients  $\{\boldsymbol{c}_n^{(t+1)}\}_{n=1}^N$  are then estimated from a registered DWI dataset,  $\mathcal{R}\{\boldsymbol{S}^{(t+1)}\}$ , where registration is performed with the FSL tool FLIRT (5). Next, the synthetically generated image defined by  $\boldsymbol{Ac}_n^{(t+1)}, n = 1, ..., N$ , (third summand in Eq.8) is "unregistered" with the inverse transformation of  $\mathcal{R}$ , as the solution  $\boldsymbol{S}$  in Eq. 8 is assumed to be affected by inter-volume motion, and voxel-wise correspondence is required. After iterating through this process, head motion and eddy-current distortion can be corrected using  $\mathcal{R}\{\boldsymbol{S}^{(t_{\text{end}})}\}$ where  $t_{\text{end}}$  denotes the last iteration of the algorithm. The reference image for registration is the same b0 image that was used to account for eddy-current distortions and motion in the ground-truth dataset.

#### 3.2 Estimated phase thick-slices maps

Estimated thick-slices phase maps with gSlider-SR are presented in Fig.5

# References

- Michailovich O, Rathi Y, Dolui S. Spatially regularized compressed sensing for high angular resolution diffusion imaging. *IEEE transactions on medical imaging* 2011; **30**(5):1100-15, doi:10. 1109/TMI.2011.2142189. URL http://www.ncbi.nlm.nih.gov/pubmed/21536524{%}OAhttp: //www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3708319.
- Zhao F, Noll DC, Nielsen JF, Fessler JA. Separate magnitude and phase regularization via compressed sensing. *IEEE transactions on medical imaging* 2012; **31**(9):1713–1723.
- Ghadimi E, Teixeira A, Shames I, Johansson M. Optimal parameter selection for the alternating direction method of multipliers (admm): quadratic problems. *IEEE Transactions on Automatic Control* 2014; **60**(3):644–658.
- Ning L, Setsompop K, Michailovich O, Makris N, Shenton ME, Westin CF, Rathi Y. A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging. *NeuroImage* 2016; 125:386-400, doi:10.1016/j.neuroimage.2015.10.061. URL http://dx.doi. org/10.1016/j.neuroimage.2015.10.061.
- Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. *NeuroImage* 2002; 17(2):825 - 841, doi:https://doi.org/10.1006/nimg.2002.1132. URL http://www.sciencedirect.com/science/ article/pii/S1053811902911328.



Figure 1: Reconstructed super-resolution DWI sets as well as diffusion-based metrics maps used in the simulation based experiment. Acceleration factor 2X.



Figure 2: Reconstructed super-resolution DWI sets as well as diffusion-based metrics maps used in the simulation based experiment. Acceleration factor 3X.



Figure 3: Reconstructed super-resolution DWI sets as well as diffusion-based metrics maps used in the simulation based experiment. Acceleration factor 4X.



Figure 4: Reconstructed super-resolution DWI sets as well as diffusion-based metrics maps used in the simulation based experiment. Acceleration factor 5X.



Figure 5: Estimated thick-slice phases map with gSlider-SR for two different gradient diffusion directions (left and right) and for the five RF-encoding profiles (a-e). Magnitude data as well as noisy phase thick slices are also shown.