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Abstract

This supplementary files includes additional results that complement the content of the main

paper. In particular, we include theoretical details of gSlider-SR in section 1, whereas additional

results of the simulation and in-vivo experiments are presented in sections 2 and 3, respectively.
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1 gSlider-SR: theoretical aspects

1.1 Selection of the number of spherical ridgelets, M

The number of spherical ridgelets functions, M , is defined as M =
∑J

j=−1 (2j+1m0 + 1)
2
, where

J is the highest level of desired “resolution” and m0 the minimum spherical order that fulfills a

given error constraint (see construction of Spherical Ridgelets function in (1) for more details). We

followed the recommendations of (1) and chose three resolution levels (J = 1) and m0 = 4, giving

a total of M = 395 SR basis functions. The multi-resolution and multi-frequency basis so obtained

can represent any dMRI signal in the brain with high accuracy.

1.2 Analytical gradient formula w.r.t. phase maps of the Lagrangian cost-

function, Eq.8

The gradient of cost-function Eq. 8 (in the main paper) w.r.t. Pk (with L(Pk) being the short-hand

notation for the cost-function) can be calculated as (2):

∇L(Pk) = 2 Re{ie−iPk�(DkSΩk�MH(Yk−M(eiPk�DkSΩk))+λphase(e
−iPk�FHF eiPk)} [S1]

where Re{·} indicates the real part operator.

1.3 Convergence and computational complexity of gSlider-SR

It should be noted that the ADMM algorithm guarantees monotonic decrease of the cost-function

of Eq. 6 even if the cost-function to be minimized is nonconvex (3) . Though we only iterate

once in Eq. 8, that step guarantees a monotonically decrease, which does not compromise the

overall convergence of the ADMM algorithm to a local minimum (at least). In cases where there is

lack of proof for convergence to a global minimum, a common approach is to provide a reasonably

well-chosen initialization (4). We adopted that approach, initializing gSlider-SR with a a Tikhonov

regularization-based solution, providing satisfactory results both in simulated and in-vivo data

experiments.

Computational complexity gSlider-SR was implemented in Matlab with some specific parts

developed in C++, e.g.., the FISTA algorithm of Eq.9. This l1 optimization problem is separable

for every voxel, and was implemented to make use of multi-threading. For a super-resolution DWI
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set with N = 256×256×190 voxels and Nq = 64 q-space points, and a mask considering brain-tissue

only, the computation time was about Tl1 = 15 min in a computer with CPU: Intel Xeon Silver

4210 Processor with 20 cores at 2.2 GHz and 525 GB of RAM. Estimating S in Eq. 8 is a LLS

problem that can be implemented very efficiently, about TS = 10 min in Matlab code. The most

computationally demanding part was the non-linear estimation of thick-slice phase information Pk

in Eq. 8. It took around TPk
= 60 min with a Matlab implementation of the NLCG method with

Polak-Ribiere step. Solving the non-linear problem with quasi-Newton method would have perhaps

converged faster, however, the memory requirements to estimate the Hessian would have rendered

the problem infeasible. Total time of the gSlider-SR algorithm is then the number of iterations

multiplied by TS + TPk
+ Tl1 = 85 min. In the experiment section, we provide specific times for

each experiment that is run with simulation and in-vivo data.

2 Simulation experiment

2.1 Mathematical details on the metrics used for validation

1. Quality of signal reconstruction. We used the following definition of NMSE

NMSE =
||ŝn − sn||22
||sn||22

. [S2]

2. Accuracy and precision in Fractional Anisotropy estimation. To assess accuracy, we use the

relative sample bias (or error), which is defined as

FAe − FAGT
FAGT

, [S3]

where FAe is the sample mean (over MC = 20 realizations) of FAe, and FAGT stands for the

ground-truth FA. Precision is assessed by calculating the standard deviation of the MC = 20

realizations, std(FAe).

3. Angular error in main diffusion tensor eigenvector. The angular error (in degrees), ∆θ,

between the principal diffusion directions was computed (white matter region) as,

∆θ =
180

π
arccos (û · u), [S4]
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where û is the main eigenvector of the tensor that is estimated from Ŝ and u is that of the

diffusion tensor estimated from S.

4. High Angular Reconstruction Diffusion Imaging (HARDI) results.

The principal diffusion directions and the number of fiber crossings (fiber peaks) were calcu-

lated. For a chosen peak in the ground-truth ODF, the angular error (in degrees) between

the direction of that peak, u, and the corresponding direction from the reconstructed ODF û,

was calculated as in Eq. S4. Next, a single average angular error per voxel ∆θ was computed

by averaging all errors from each of the ODF peaks in that voxel.

2.2 DWI and diffusion-metrics maps for the four accelerated factors

Super-resolution DWI set and diffusion-metrics maps for acceleration factors: two, three, four and

five are shown in Fig.1, Fig.2, Fig.3, and Fig.4, respectively.

3 In-vivo data experiment

3.1 Accounting for eddy-current and subject motion

The rationale behind the integrated affine registration step into gSlider-SR is the folllowing. Since

the LLS problem for estimating S in Eq. 8 is separable along diffusion directions, the reconstruc-

tion of each high-resolution diffusion image is then free from motion artifacts. Nevertheless, the

estimated DWI set S(t+1) should be volume-wise registered before solving for Eq.9, as spherical-

ridgelets fitting requires the DWI data to be aligned. Coefficients {c(t+1)
n }

N

n=1 are then estimated

from a registered DWI dataset, R{S(t+1)}, where registration is performed with the FSL tool FLIRT

(5). Next, the synthetically generated image defined by Ac
(t+1)
n , n = 1, ..., N , (third summand in

Eq.8) is “unregistered” with the inverse transformation of R, as the solution S in Eq. 8 is assumed

to be affected by inter-volume motion, and voxel-wise correspondence is required. After iterating

through this process, head motion and eddy-current distortion can be corrected using R{S(tend)}

where tend denotes the last iteration of the algorithm. The reference image for registration is the

same b0 image that was used to account for eddy-current distortions and motion in the ground-truth

dataset.
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3.2 Estimated phase thick-slices maps

Estimated thick-slices phase maps with gSlider-SR are presented in Fig.5
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Figure 1: Reconstructed super-resolution DWI sets as well as diffusion-based metrics maps used in
the simulation based experiment. Acceleration factor 2X.
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Figure 2: Reconstructed super-resolution DWI sets as well as diffusion-based metrics maps used in
the simulation based experiment. Acceleration factor 3X.
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Figure 3: Reconstructed super-resolution DWI sets as well as diffusion-based metrics maps used in
the simulation based experiment. Acceleration factor 4X.
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Figure 4: Reconstructed super-resolution DWI sets as well as diffusion-based metrics maps used in
the simulation based experiment. Acceleration factor 5X.
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Figure 5: Estimated thick-slice phases map with gSlider-SR for two different gradient diffusion
directions (left and right) and for the five RF-encoding profiles (a-e). Magnitude data as well as
noisy phase thick slices are also shown.
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