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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors describe Chord – a computational pipeline for scRNA-seq doublet detection that 

leverages an ensemble approach to aggregate the results of existing doublet detection tools. The 

authors begin by providing an overview of the Chord workflow, which includes three key steps: (i) 

Generation of training data after coarse removal of doublets using existing methods and 

generation of artificial doublets from the “cleaned” data, (ii) Adaboost model fitting which 

integrates and weights the predictions of existing doublet detection tools based on classification 

performance on the training data, and (iii) Application of the trained adaboost model to the original 

dataset to predict real doublets. We find the authors description of the Chord workflow to be well-

considered and a notable contribution to the single-cell genomics doublet detection literature. 

However, we have concerns regarding the choice of doublet detection methods used during 

training data generation (Major Comment #1) and adaboost model training (Major Comment #2), 

as well as concerns regarding documentation of scRNA-seq pre-processing and doublet method 

parameter fitting (Major Comment #3). 

 

After describing the Chord workflow, the authors benchmark Chord against the four ‘built-in’ 

doublet detection methods used to generate the training data (e.g., DoubletFinder, doubletCells, 

bcds, and cxds) on two publicly-available PBMC scRNA-seq datasets where doublets are 

empirically-defined using cell hashing or in silico genotyping. This analysis reveals that Chord 

performs with similar accuracy and stability to existing doublet tools on the full datasets, as well 

across datasets where doublets are proportionally up- and down-sampled. The authors then repeat 

this benchmarking workflow for Chord-plus (ChordP), which incorporates additional doublet 

detection methods (e.g., DoubletDetection, Solo, and Scrublet) into the Chord adaboost training 

step. This analysis reveals that including more doublet detection methods into the adaboost 

training step improves ChordP performance relative to Chord, although improvements over 

existing doublet detection methods remain modest. Altogether, we found these benchmarking 

workflows to be well-executed. 

 

Having established that Chord and ChordP are amenable to scRNA-seq doublet detection, the 

authors then use simulated scRNA-seq datasets from Xi & Li (Cell Systems, 2020) to benchmark 

their method during pseudotemporal ordering and differential gene expression analyses 

(computational tasks known to be improved after doublet removal). This work reveals that Chord 

performs comparably to other doublet detection tools, although we disagree strongly with some of 

the claims the authors make in this section of the manuscript (Major Comment #4). 

 

Finally, the authors apply Chord to ‘real-world’ scRNA-seq data of primary lung tissue from 

Lambrechts et al (Nature Medicine, 2018) where doublets are unknown, and demonstrate how 

Chord improves scRNA-seq analysis workflows downstream of doublet removal such as cell type 

purity (ROGUE), cell type identification (SciBet), differential gene expression analysis, and 

pseudotemporal ordering. While we appreciate the purpose of this analysis, we have serious 

concerns about how to authors applied Chord to these data (Major Comment #5) and believe that 

the authors should repeat this workflow on a scRNA-seq dataset that is more amenable to their 

purposes. 

 

On balance, we consider the theoretical underpinnings of Chord to be sound and sufficiently novel, 

and find that the authors’ benchmarking workflows were well-executed. Moreover, while Chord 

does not perform better than existing doublet detection methods with regards to absolute accuracy 

or improvements in scRNA-seq analyses downstream of doublet removal, we are convinced by the 

authors’ claims that Chord will perform more robustly across diverse scRNA-seq datasets due to its 

aggregated nature. For these reasons, we believe this manuscript should be conditionally-accepted 

for publication in Communications Biology, assuming that our Major Comments are adequately 

addressed. 

 

 

 

 



 

Major Comments 

 

1. In both Chord and ChordP, the authors use “representative” computational doublet detection 

methods to remove doublets during the training data generation step. Specifically, they use the 

kNN classifiers DoubletFinder and doubletCells, as well as the marker gene co-expression 

classifiers bcds and cxds. While it is true that these are two distinct types of doublet detection 

tools, there are other doublet detection tools that could also be incorporated to make this step 

truly “representative”. For example, Solo and DoubletDetection use neural networks and the 

hypergeometric test to classify doublets in a fashion that is distinct from bcds, cxds, DoubletFinder 

and doubletCells. Moreover, it is clear from the authors’ own analyses that doubletCells performs 

quite poorly across most of the benchmarking datasets, which begs the question why doubletCells 

is relied upon at all for training data generation. 

 

One critical analysis that we encourage the authors to include in the revised manuscript is a 

systematic analysis of Chord performance (e.g., mean AUC across benchmarking datasets) using 

all combinations of doublet detection methods for training data generation. Is there an ideal 

combination of methods to use for this step? Are there methods that decrease performance when 

they are included? 

 

 

2. In a similar vein as Major Comment #1, we are curious whether further optimization can be 

introduced with regards to which models are included in the adaboost training step. We see that 

ChordP improves upon Chord as more models are used – however, does this improvement 

represent the optimal performance of the method? Moreover, does inclusion of more models with 

more similar underlying algorithms bias the aggregated Chord result (in a fashion that reflects 

biases amongst the existing doublet detection literature)? 

 

We encourage the authors to repeat the analysis suggested in Major Comment #1 but on the 

adaboost training step to identify whether Chord performance is sensitive to which sets of models 

are included. 

 

 

3. The authors note in the Methods section that Chord uses default parameter settings for the 

aggregated doublet detection models. However, it is key to note that some doublet detection 

models require parameter optimization for effective performance. For example, the authors 

implement DoubletFinder “with parameter selection PCs = 1:10, pN = 0.25, and automatically 

extracting the pk value corresponding to the highest bimodal coefficient to extract the doublet 

score.” It must be noted that DoubletFinder is implemented to interface with a pre-processed 

Seurat object wherein the ideal number of PCs are determined by the user for their particular 

dataset before using the method. That is, hard-setting PCs = 1:10 will necessarily result in sub-

optimal DoubletFinder (and, as a result, Chord) performance. Moreover, it is not uncommon for 

mean-variance-normalized bimodality coefficient distributions to exhibit multimodality (this often 

happens when data is not properly quality-controlled), which in turn requires DoubletFinder users 

to manually interrogate the predictions after using distinct pK values to identify the “correct” 

parameters. As a result, automatically setting pK to the maximum bimodality coefficient value may 

further cause Chord performance to deteriorate. 

 

Thus, we think it is very important that the authors build out the pre-processing guidelines for 

scRNA-seq data prior to using Chord, as well as parameter optimization guidelines for each doublet 

detection method used in their aggregated pipeline. 

 

4. While we found the differential gene expression analyses and pseudotemporal ordering 

comparisons to be well-executed, the authors posit a perplexing explanation for the increase in 

detected DEGs relative to “clean” synthetic data following doublet removal by some doublet 

detection methods. Specifically, the authors state in lines 194-197: “...TPRs of the datasets 

processed by some doublet detection methods were higher than those for the clean data, which 

may be due to the deletion of transition state cells between cell types that were identified as 

doublets through these methods, resulting in obvious differences between cell types to detect 



more DEGs.” 

This claim is confusing because the synthetic data used in Xi & Li (and this paper) does not include 

any “transition state cells”, as is evident in Fig. 3D of this manuscript. Please provide an 

explanation as to why we are incorrect in this interpretation, or remove this claim from the 

manuscript. Moreover, the authors should cite Xi & Li for the description of why TNR is high across 

all datasets. 

 

5. The authors use the primary lung scRNA-seq data from Lambrechts et al to demonstrate the 

utility of applying Chord to ‘real-world’ scRNA-seq data. According to the associated Nature 

Medicine manuscript, this dataset was generated by running 19 distinct 10x Genomics microfluidic 

lanes representing normal lung tissue and tumor core/middle/edge tissue from 5 distinct patients, 

each with unique cellular compositions and cell loading densities. The explanation of how this data 

was analyzed is a bit sparse – so apologies if we are interpreting your work incorrectly – but was 

Chord run on the aggregated dataset including all of these samples? Or was Chord run 

independently on each sample prior to combining each sample? If it is the former, then Chord will 

be attempting to find doublets that could not possibly exist (e.g., tumor-tumor doublets from 

distinct patients; tumor-endothelial doublets from normal and tumor samples, etc.) which would 

seriously confound these results. At a minimum, the authors must clarify how exactly they did this 

analysis – although other scRNA-seq datasets are likely to be more amenable to the points the 

authors intend to make (which we are confident will hold up). 

 

Minor Comments 

 

1. Paper needs significant editing for clarity and grammar. 

 

2. The authors should explain more clearly why removing doublets during training data generation 

is beneficial for Chord performance. Also, the authors should clarify the workflow for generating 

artificial doublets – specifically, we are confused how weighting expression profiles from randomly-

selected cells with a “biological random number from a N(0.1,1) distribution” avoids generating 

synthetic doublets derived from the same cell type. Wouldn’t it be easier to manually sample cell 

pairs from different gene expression clusters? What is the purpose of the random number 

generation? 

 

3. Lines 111-112: “Ground-truth comparisons illustrate that Chord detects most doublets” — The 

authors use qualitative comparisons of UMAP embeddings to make this quantitative claim. Authors 

should either provide the statistics underlying the claim or change the statement (e.g., Chord-

derived doublet scores are enriched in regions of gene expression space associated with ground-

truth doublet classifications). 

 

4. Lines 568-569: Authors say they benchmarked Chord on the publicly-available HTO8 dataset 

which is comprised of “samples of cell lines using twelve barcoded antibodies to mark and label 

doublets.” – According to the Seurat web-page and Stoeckius et al, HTO8 is scRNA-seq of PBMCs 

from 8 donors, while HTO12 is the dataset the authors are referring to in the Fig. 1 legend. The 

UMAP embedding looks like PBMCs, so the authors should change the text to reflect the correct 

dataset. The authors also need to change their references to HTO8 as “cell line” data throughout 

the manuscript and supplemental tables. 

 

5. Fig. S1A: “taning data set” instead of “training data set”, “adboost” instead of “adaboost” 

 

6. Lines 320-321: “...extracted the doublet scores evaluated by two methods for each cell: i) 

through the DBF( ) function in the called R package DoubletFinder” – we are not aware of a ‘DBF’ 

function in DoubletFinder. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This manuscript proposes a new computational doublet-detection method based on the ensemble 

of multiple cutting-edge methods. The basic idea is 1) remove high-confidence doublets by four 



independent methods; 2) after removal, simulate artificial doublets by adding two randomly 

selected cells, and merge these artificial doublets back to obtain a training set; 3) train an 

Adaboost model on the training set, in which each independent method’s doublet score vector is 

one predictor, and the singlet/artificial-doublet label from step one is the target variable; 4) apply 

the trained Adaboost to the original dataset for doublet prediction. The authors performed various 

validations on real and synthetic datasets to check the method’s prediction accuracy and impacts 

on downstream analysis. The proposed ensemble framework is novel in the doublet-detection field. 

It also resolves some issues in other related studies. On the other hand, there are major concerns 

in the manuscript in terms of methods implementation, validation, and writing. I hope the authors 

could fix them to improve the current work. 

 

Method and technical details 

1. In lines 307-309, the authors claimed that the performance of Chord is robust across different 

doublet rates yet without evidence. I suggest providing a sensitivity analysis to support this 

argument. Some other methods have similar parameters, for example, the number of artificial 

doublets in DoubletFinder 1 and Scrublet 2. The selection of those parameters has been clearly 

shown to be robust by sensitive analysis. 

2. Line 326 introduces the overkillrate parameter and claims “we filtered the 

doubletrate*overkillrate percentage of cells …” It seems that overkillrate is a numerical parameter 

that controls the conservativeness of preliminary doublet removal. I hope the authors could 

provide practical guidance on how to choose this parameter and how robust the model 

performance is under different values. Although the software GitHub page sets this parameter a 

default value 1, the authors did not specify which value they use in the analysis of the manuscript. 

3. After reading the “Model training” part (line 345-351) initially, I did not understand how the 

Adaboost model was trained, until I checked the figure on the GitHub page. I suggest adding those 

figures into the manuscript and explicitly demonstrating that each method’s doublet score serves 

as the predictor/variable in the Adaboost model. 

4. The methods included in Chord need to be reconsidered. First, there is one method, scDblFinder 

3, not in the ensemble or extension part. This method was published last year and has been shown 

excellent performance and speed compared with others 4. Second, the doubletCells method has 

been shown to significantly underperform others in the previous benchmark study 5, Figure 2, and 

Figure S1. Actually, doubletCells was removed from the latest version of package scran (v 1.20.1), 

and the author of scran recommends using scDblFinder to substitute doubletCells in that package. 

Therefore, I suggest using scDblFinder instead of doubletCells as one of the four backbones. At 

least scDblFinder should be included in the ChordP. 

5. In the “Cluster purity” part (line 440), the author should clarify which package and function 

were used to calculate the ROGUE value. While I can understand by checking the GitHub page of 

ROGUE, it is not user-friendly without a clear illustration. The same issue applies to SciBet method, 

where the execution details were not shown. 

 

Validation 

1. The comparison of detection accuracy on real data is not convincing. In Table S3, Chord or 

ChordP only achieved two highest AUROCs and one highest AUPRC on seven real datasets. The 

proposed methods are not attractive if they did not show a strong advantage over single methods. 

This is a major concern also because the running time of Chord or ChordP will be the sum of all 

methods included plus the training time of Adaboost. One potential solution, as stated in the last 

section, is to substitute doubletCells with scDblFinder or another better single method. 

2. One of the main reasons for detecting doublets is to remove spurious clusters in the datasets. 

The importance of this goal has been demonstrated repeatedly in previous studies 1,2,5. While the 

authors evaluated the impacts of doublet-detection on the quality of true clusters, the capacity of 

removing spurious clusters has not been discussed. I suggest adding this analysis, either through 

purely simulated data or real data with artificial doublets. 

3. In practice, users will choose a cutoff on doublet scores to call doublets. I suggest adding one 

validation, which is to calculate the precision, recall, and true negative rate under certain doublet 

rates on real data. This analysis can give a more comprehensive evaluation of proposed methods. 

 

Writing 

Some sections of this manuscript were either not written in the academic style or with confusion. 

Some examples include: 



1. There are several “STAR Methods” in the manuscript, which seems a unique item in articles 

from Cell Press. 

2. Line 122 “we used random sampling to proportionally sample singlets…” seems redundant 

expression. 

3. Line 152 pAUCXXX was shown without definition. This may confuse readers who lack expertise 

in machine learning terminology. 

4. Line 249 “A pseudotime analysis of the myeloid cells was conducted”. Please consider rewriting 

this sentence. 

5. Line 348 “The R package ‘adabag’, through the AdaBoost algorithm, DBboostTrain() is used to 

implement model training for training based on the scoring results of the four methods.” This 

sentence is ambiguous. Please consider rewriting. 

6. Line 370 “Doublet detection” should be DoubletDetection. 

7. Line 421 “the highest scoring cells for the number of double cells according to the results were 

removed”. Consider rewriting this sentence. 

8. Line 456 should be followed by lines 458 and 459. 

 

Reference 
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RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8, 329-337.e4 (2019). 

2. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets in 

Single-Cell Transcriptomic Data. Cell Syst 8, 281-291.e9 (2019). 

3. Germain, P.-L., Sonrel, A. & Robinson, M. D. pipeComp, a general framework for the evaluation 

of computational pipelines, reveals performant single cell RNA-seq preprocessing tools. Genome 

Biol. 21, 227 (2020). 

4. Xi, N. M. & Li, J. J. Protocol for Benchmarking Computational Doublet-Detection Methods in 

Single-Cell RNA Sequencing Data Analysis. arXiv [q-bio.GN] (2021). 

5. Xi, N. M. & Li, J. J. Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA 

Sequencing Data. Cell Syst (2020) doi:10.1016/j.cels.2020.11.008. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript, “Chord: Identifying Doublets in Single-Cell RNA Sequencing Data by an Ensemble 

Machine Learning Algorithm” by Xiong et al. has focused doublet detection in single-cell 

Sequencing datasets. 

 

Doublets/Multiplets in single-cell datasets are one of the challenging problems in field of single-cell 

droplet sequencing and detecting and removing them from the analyses, can have significant 

effect on down-stream analyses, depending on removing False Positive or False Negative Doublets. 

As a result, tools that can detect these doublets/multiplets in single-cell RNA-Seq are important 

and will be beneficial in the field. The authors have developed a tool named Chord and ChordP, 

which detect the doublets with high accuracy. Especially, combining the power of many available 

tools and machine learning are the two important points that I think makes this an excellent tool in 

the field and this manuscript should be considered for publication. 

 

I have some minor comments which are not clear in the manuscript and need clarification (at least 

for me). 

 

Minor Comments: 

In general for machine learning, an input data and expected results (target) are given and a model 

is trained by using these inputs for training. While I can see this in material methods, I think the 

author can expand this part for clarity. 

For instance, the input matrix that has been used for training will have gene names from the 

model organism, whose data have been used for training. As a result, using this may be 

challenging to be used for other model organisms. What does training here means? Does 

Chord/ChordP has a weight matrix that can be used on any new datasets, or here training is to use 

every new input data for learning or optimization? This part is not clear to me. 

 



Suggestion: 

 

Even on fresh samples, more than 5% of cells may be doublets. However, for frozen human 

samples collected from patients, single-nuclear RNA-Seq (snuc-Seq) is commonly used and getting 

high quality data, removing doublets and low quality cells is important and can be more 

challenging. As a result, I suggest the authors to test Chord/ChordP on available snuc-Seq 

datasets as well. 

 

For instance; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147528, which is publicly 

available. 



Dear reviewer, 

High-throughput single-cell RNA sequencing is accompanied by doublet 

problems that disturb the downstream analysis. Several computational 

approaches have been developed to detect doublets, but most of these 

methods are not always satisfactory in different datasets. Our study was 

designed to unveil a new method, Chord, which is an accurate and stable 

solution to the doublet detection problem. The Chord workflow is 

composed of three main steps. (i) Generating training data after coarse 

removal of doublets using primary methods and generating artificial 

doublets from the filtered data. (ii) Generalized Boosted Regression 

Modeling (GBM) model fitting which integrates and weights the 

predictions of published doublet detection tools based on classification 

performance on the training data. (iii) Application of the trained GMB 

model to the original dataset to predict doublets. 

 

According to the suggestions of reviewers and editors, we made the 

following changes to the article: 

Optimizations of Chord workflow: 

1) Replace the Adaboost algorithm with the more efficient GBM 

algorithm. 

2) Remove build-in method doubletCells which has poor performance. 

3) Optimize the combination of doublet detection methods to improve 

ChordP’s performance. 

 

Changes of analysis: 

1) The results of the previous version of Chord are replaced by the new 

version results in figures and tables (fig1, fig2g, fig4, figs1, figs2, 

figs3, table1, table s3-s11). 

2) Display average pAUC800 pAUC900, pAUC950 pAUC975, AUC and 

PR of doublet detection methods in benchmark datasets to show 



ChordP’s performance more comprehensive (fig 2d). 

3) Change the filtering criterions of DEGs and use R package Seurat 

4.0.2 for calculation. Change the evaluation content through TPR, 

TNR and accuracy to make the result display more clearly (fig 3a). 

4) According to suggestions from reviewers. In part “Applying Chord to 

real-world scRNA-Seq data”, among the 19 microfluidic lanes in this 

data set, 5 tumor samples with the highest expected doublet rate 

were used for processing. The same evaluation as our previous 

version of the manuscript are performed and consistent conclusions 

are obtained (fig 4). 

5) Describe the features of these doublets which trend to be a cluster in 

lung cancer data (fig 4b, c, d). 

6) Replace line chart with bar chart to show the changes in the total 

number of differentially expressed genes before and after doublet 

removal (fig 4f). 

7) Add cluster label to Figure4h in the trajectory analysis of lung cancer 

dataset, which visualize the trajectory changes at the cluster level 

(fig 4h). 

8) According to suggestions from reviewers, calculate TP, FN, FP, TN, 

True Positive Rate(TPR), True Negative Rate(TNR), Precision, 

Accuracy in DM-A and HTO8 data sets (fig s2c).  

9) Evaluate Chord's performance when using different boost algorithms 

and GBM is selected as Chord’s default boost algorithms (fig s3a). 

10) Test different combinations of methods for ChordP. In all 

combinations, “Chord+Scrublet+DoubletDetection” performs best 

(fig s3b). 

11) Evaluate the robustness of the parameter “doubletrate” (fig s3e). 

 

Writing: 

1) Improve description of Chord workflow, especially how to train GBM 

models. 

2) Describe usage details of the software cited in this article, such as 

SciBet and ROGUE. 



3) In the method section, improve the description of execution steps, 

such as analysis on lung cancer data and the process of DEGs 

analysis. 

4) Improve the description of assessment indexes, such as TPR, TNR 

and pAUC. 

5) Correct grammatical errors and inaccurate descriptions. 

 

 

 

Reviewer #1 (Remarks to the Author): 

The authors describe Chord – a computational pipeline for scRNA-seq 

doublet detection that leverages an ensemble approach to aggregate the 

results of existing doublet detection tools. The authors begin by 

providing an overview of the Chord workflow, which includes three key 

steps: (i) Generation of training data after coarse removal of doublets 

using existing methods and generation of artificial doublets from the 

―cleaned‖ data, (ii) Adaboost model fitting which integrates and weights 

the predictions of existing doublet detection tools based on classification 

performance on the training data, and (iii) Application of the trained 

adaboost model to the original dataset to predict real doublets. We find 

the authors description of the Chord workflow to be well-considered and 

a notable contribution to the single-cell genomics doublet detection 

literature. However, we have concerns regarding the choice of doublet 

detection methods used during training data 

generation (Major Comment #1) and adaboost model training (Major 

Comment #2), as well as concerns regarding documentation of 

scRNA-seq pre-processing and doublet method parameter fitting (Major 

Comment #3). 

After describing the Chord workflow, the authors benchmark Chord 

against the four ‗built-in‘ doublet detection methods used to generate 

the training data (e.g., DoubletFinder, doubletCells, bcds, and cxds) on 

two publicly-available PBMC scRNA-seq datasets where doublets are 

empirically-defined using cell hashing or in silico genotyping. This 



analysis reveals that Chord performs with similar accuracy and stability 

to existing doublet tools on the full datasets, as well across datasets 

where doublets are proportionally up- and down-sampled. The authors 

then repeat this benchmarking workflow for Chord-plus (ChordP), which 

incorporates additional doublet detection methods (e.g., 

DoubletDetection, Solo, and Scrublet) into the Chord adaboost training 

step. This analysis reveals that including more doublet detection 

methods into the adaboost training step improves ChordP performance 

relative to Chord, although improvements over existing doublet 

detection methods remain 

modest. Altogether, we found these benchmarking workflows to be 

well-executed. 

Having established that Chord and ChordP are amenable to scRNA-seq 

doublet detection, the authors then use simulated scRNA-seq datasets 

from Xi & Li (Cell Systems, 2020) to benchmark their method during 

pseudotemporal ordering and differential gene expression analyses 

(computational tasks known to be improved after doublet removal). This 

work reveals that Chord performs comparably to other doublet detection 

tools, although we disagree strongly with some of the claims the authors 

make in this section of the manuscript (Major Comment #4). 

Finally, the authors apply Chord to ‗real-world‘ scRNA-seq data of 

primary lung tissue from Lambrechts et al (Nature Medicine, 2018) 

where doublets are unknown, and demonstrate how Chord improves 

scRNA-seq analysis workflows downstream of doublet removal such as 

cell type purity (ROGUE), cell type identification (SciBet), differential 

gene expression analysis, and pseudotemporal ordering. While we 

appreciate the purpose of this analysis, we have serious concerns about 

how to authors applied Chord to these data (Major Comment #5) and 

believe that the authors should repeat this workflow on a scRNA-seq 

dataset that is more amenable to their purposes. 

On balance, we consider the theoretical underpinnings of Chord to be 

sound and sufficiently novel, and find that the authors‘ benchmarking 

workflows were well-executed. Moreover, while Chord does not perform 



better than existing doublet detection methods with regards to absolute 

accuracy or improvements in scRNA-seq analyses downstream of 

doublet removal, we are convinced by the authors‘ claims that Chord will 

perform more robustly across diverse scRNA-seq datasets due to its 

aggregated nature. For these reasons, we believe this manuscript should 

be conditionally-accepted for publication in Communications Biology, 

assuming that our Major Comments are adequately addressed. 

 

Major Comments1 

In both Chord and ChordP, the authors use ―representative‖ 

computational doublet detection methods to remove doublets during the 

training data generation step. Specifically, they use the kNN classifiers 

DoubletFinder and doubletCells, as well as the marker gene 

co-expression classifiers bcds and cxds. While it is true that these are 

two distinct types of doublet detection tools, there are other doublet 

detection tools that could also be incorporated to make this step truly 

―representative‖. For example, Solo and DoubletDetection use neural 

networks and the hypergeometric test to classify doublets in a fashion 

that is distinct from bcds, cxds, DoubletFinder and doubletCells. 

Moreover, it is clear from the authors‘ own analyses that doubletCells 

performs quite poorly across most of the benchmarking datasets, which 

begs the question why doubletCells is relied upon at all for training data 

generation. 

One critical analysis that we encourage the authors to include in the 

revised manuscript is a systematic analysis of Chord performance (e.g., 

mean AUC across benchmarking datasets) using all combinations of 

doublet detection methods for training data generation. Is there an ideal 

combination of methods to use for this step? Are there methods that 

decrease performance when they are included? 

 

Reply 1： 

We removed doubletCells from Chord and ChordP. After evaluating 7 

combinations (table r1) by calculating the specificity and sensitivity of 



the generated data, we found that the suitability of overkill varies greatly 

on different samples (fig r1.1). In addition, we found that false positive 

doublets may enrich in some region in UMAP plot (fig r1.2). We were 

concerned that this might have a negative impact on simulation of 

Doublets. Based on the results, we use bcds, cxds and DoubltFinder as 

the default combination, and open the parameter selections of “overkill”, 

so that advanced users can freely choose the method required by the 

overkill. 

 

The assessment of overkill： 

We evaluated 7 combinations in the step of overkill from different 

methods: 

Name of 

combination 

The methods in combination 

Overkill-1 DoubletFinder,cxds 

Overkill-2 bcds,DoubletFinder 

Overkill-3 bcds,cxds 

Overkill-4 bcds,cxds,DoubletFinder 

Overkill-5 bcds,cxds,DoubletFinder,Solo 

Overkill-6 bcds,cxds,DoubletFinder,Solo,DoubletDetection 

Overkill-7 bcds,cxds,DoubletFinder,Solo,DoubletDetection,Scrublet 

(table r1) 

Overkill-5, Overkill-6 and Overkill-7 are based on the combination of 

bcds, cxds and doubltfinder by adding Solo, DoubletDetection and 

Scrublet. Because the average AUC of Solo, DoubletDetection and 

Scrublet in the test datasets is from high to low. 



 

(fig r1.1) 

Among the seven combinations, overkill-1 performed the worst in 

sensitivity, and overkill-2 and overkill-3 had their own advantages and 

disadvantages in different data sets. After gradually adding the number 

of combination methods, the accuracy will be improved, but the 

specificity will be reduced accordingly. We found that the specificity of 

the data set with a low expected doublet rate can still be maintained 

above 90% under the condition of high sensitivity, such as DM-A, DM-B 

and DM-C, and the data set with a high expected doublet rate, for 

example, HTO8 and HTO12, as the number of combined methods 

increase, the sensitivity increases, but its specificity is greatly reduced. 

When HTO12 uses 6 methods in the step of overkill, its specificity is only 

51.3%. In addition, displaying false-positive doublets in the UMAP plot 

shows that adding too many methods will result in a large number of 

false positives and the formation of obvious clusters. Different clusters 

may be different cell types. Removing these false positives might affect 

the synthesis of simulated doublets from these cell types. Thereby this 

will introduce bias into the simulated doublet dataset. 



 

      HTO8 overkill-4 UMAP       HTO8 overkill-5 UMAP 

 

 

     HTO8 overkill6 UMAP       HTO8 overkill7 UMAP 

(fig r1.2) 

 

Major Comments2 

In a similar vein as Major Comment #1, we are curious whether further 

optimization can be introduced with regards to which models are 

included in the adaboost training step. We see that ChordP improves 

upon Chord as more models are used – however, does this improvement 

represent the optimal performance of the method? Moreover, does 

inclusion of more models with more similar underlying algorithms bias 

the aggregated Chord result (in a fashion that reflects biases amongst 

the existing doublet detection literature)? 

We encourage the authors to repeat the analysis suggested in Major 

Comment #1 but on the adaboost training step to identify whether Chord 

performance is sensitive to which sets of models are included. 



 

Reply2 ： 

Based on your suggestions, we optimized the step of ensemble doublet 

detected methods. However, before evaluating the performance of 

different method combinations, we made another optimization. Firstly, 

we tested the performance of four ensemble algorithms, GBM, xgboost, 

lightgbm, and adaboost. The results show that the selection of the GBM 

algorithm has a significant improvement in the integration effect of the 

doublet scoring values (t.test, alternative = "greater", paired=T). 

Therefore, we modified gbm as the default ensemble method and 

re-evaluated the follow-up evaluation. 

 

(fig s3a) 

 

AUC: 

 
gbm adaboost xgboost lightgbm 

DM-A 
0.828709094 0.823839679 0.815055328 0.783883994 

DM-B 
0.776636192 0.741326187 0.758812526 0.719949559 

DM-C 
0.831603921 0.826640536 0.820030036 0.776291885 

DM-2.1 
0.896349756 0.844874912 0.85716306 0.681049952 



DM-2.2 
0.896874132 0.835183151 0.854743351 0.692092863 

HTO8 
0.83297564 0.82238169 0.818058764 0.788461959 

HTO12 
0.619319805 0.608800927 0.612047955 0.60849529 

(table r2.1) 

PR: 

 
gbm adaboost xgboost lightgbm 

DM-A 
0.437387219 0.422423682 0.378218451 0.123876233 

DM-B 
0.268571408 0.268511582 0.228284954 0.086083067 

DM-C 
0.463697516 0.436685827 0.416613875 0.164943788 

DM-2.1 
0.609248075 0.495271883 0.542787839 0.171111164 

DM-2.2 
0.627032041 0.495042412 0.542548 0.181290533 

HTO8 
0.622647098 0.59527651 0.585503212 0.382684894 

HTO12 
0.411325584 0.402126599 0.403308516 0.353428775 

(table r2.2) 

Then, after excluding doubletCells, different combinations were 

evaluated in HTO8, HTO12, DM-A, DM-B, DM-C, DM-2.1, and DM-2.2. 

We refer to the best performing combination as ChordPlus (ChordP). We 

will conduct corresponding evaluations on new methods that officially 

published in the future, and recommend a combination of methods in our 

github for users' reference. 



 

(fig s3b) 

The new version of ChordP has an average AUC of 0.8132 in the test data 

set, higher than the second-place SOLO's 0.8031. (Line:172-174) 

 

Major Comments3 

The authors note in the Methods section that Chord uses default 

parameter settings for the aggregated doublet detection models. 

However, it is key to note that some doublet detection models require 

parameter optimization for effective performance. For example, the 

authors implement DoubletFinder ―with parameter selection PCs = 1:10, 

pN = 0.25, and automatically extracting the pk value corresponding to 

the highest bimodal coefficient to extract the doublet score.‖ It must be 

noted that DoubletFinder is implemented to interface with a 

pre-processed Seurat object wherein the ideal number of PCs are 

determined by the user for their particular dataset before using the 

method. That is, hard-setting PCs = 1:10 will necessarily result in 

sub-optimal DoubletFinder (and, as a result, Chord) performance. 



Moreover, it is not uncommon for mean-variance-normalized bimodality 

coefficient distributions to exhibit multimodality (this often happens 

when data is not properly quality-controlled), which in turn requires 

DoubletFinder users to manually interrogate the predictions after using 

distinct pK values to identify the ―correct‖ parameters. As a result, 

automatically setting pK to the maximum bimodality coefficient value 

may further cause Chord performance to deteriorate. 

Thus, we think it is very important that the authors build out the 

pre-processing guidelines for scRNA-seq data prior to using Chord, as 

well as parameter optimization guidelines for each doublet detection 

method used in their aggregated pipeline. 

 

Reply3 ： 

We adopted the default parameters of each integrated software as the 

preset parameters in Chord. For example, for DoubletFinder, the 

parameter settings recommended by the original author are used, and 

according to the author’s guide, the theoretical optimal PK through the 

find.pK() function (https:/ 

/github.com/chris-mcginnis-ucsf/DoubletFinder/) are calculated. Indeed, 

we also think that may result in the inability to calculate the appropriate 

PK value, so we summarize the hyperparameter setting guide for users 

and set up the build-in methods’ key parameter adjustable for users. 

 

Major Comments4 

While we found the differential gene expression analyses and 

pseudotemporal ordering comparisons to be well-executed, the authors 

posit a perplexing explanation for the increase in detected DEGs relative 

to ―clean‖ synthetic data following doublet removal by some doublet 

detection methods. Specifically, the authors state in lines 194-197: 

―...TPRs of the datasets processed by some doublet detection methods 

were higher than those for the clean data, which may be due to the 

deletion of transition state cells between cell types that were identified as 

doublets through these methods, resulting in obvious differences 



between cell types to detect more DEGs.‖ 

This claim is confusing because the synthetic data used in Xi & Li (and 

this paper) does not include any ―transition state cells‖, as is evident in 

Fig. 3D of this manuscript. Please provide an explanation as to why we 

are incorrect in this interpretation, or remove this claim from the 

manuscript. Moreover, the authors should cite Xi & Li for the description 

of why TNR is high across all datasets. 

 

Reply4 : 

According to your valuable suggestion, we deleted the conclusion of 

improper description in the paper and quote Xi & Li's description of TNR.  

In previous assessment, we used Seurat 3.1.3's FindMarkers function to 

calculate DEGs, but in later versions the authors of Seurat made a series 

of changes to the FindMakers function 

(https://satijalab.org/seurat/news/index.html) .We updated the DEGs 

filtering standard and the software version used for calculation (Seurat 

4.0.4), and adopted TNR, TPR and accuracy as evaluation indexes.  

(Line:243-244) 

 

Major Comments5 

The authors use the primary lung scRNA-seq data from Lambrechts et al 

to demonstrate the utility of applying Chord to ‗real-world‘ scRNA-seq 

data. According to the associated Nature Medicine manuscript, this 

dataset was generated by running 19 distinct 10x Genomics microfluidic 

lanes representing normal lung tissue and tumor core/middle/edge 

tissue from 5 distinct patients, each with unique cellular compositions 

and cell loading densities. The explanation of how this data was analyzed 

is a bit sparse – so apologies if we are interpreting your work incorrectly 

– but was Chord run on the aggregated dataset including all of these 

samples? Or was Chord run independently on each sample prior to 

combining each sample? If it is the former, then Chord will be attempting 

to find doublets that could not possibly exist (e.g., tumor-tumor doublets 

from distinct patients; tumor-endothelial doublets from normal and 

https://satijalab.org/seurat/news/index.html)


tumor samples, etc.) which would seriously confound these results. At a 

minimum, the authors must clarify how exactly they did this analysis – 

although other scRNA-seq datasets are likely to be more amenable to the 

points the authors intend to make (which we are confident will hold up). 

 

Reply5 : 

Thank you for pointing out this problem. We used Chord to re-evaluate 

the primary lung cancer scRNA-seq data set from Lambrechts et al. 

Among the 19 microfluidic lanes in this data set, 5 tumor samples with 

the highest expected doublet rate were used for processing. The same 

evaluation as our previous version of the manuscript were performed, 

and the conclusions obtained were basically the same as those in the 

previous version of the manuscript. (line:288-290) 

 

Minor Comments1 

1. Paper needs significant editing for clarity and grammar. 

 

Reply1 : 

Thank you for comments. We checked and revised the grammatical 

errors in the article. 

 

Minor Comments2 

The authors should explain more clearly why removing doublets during 

training data generation is beneficial for Chord performance. Also, the 

authors should clarify the workflow for generating artificial doublets – 

specifically, we are confused how weighting expression profiles from 

randomly-selected cells with a ―biological random number from a 

N(0.1,1) distribution‖ avoids generating synthetic doublets derived from 

the same cell type. Wouldn‘t it be easier to manually sample cell pairs 

from different gene expression clusters? What is the purpose of the 

random number generation? 

 

Reply2 : 



We added descriptions： “Doublets in the original data set might cause 

two types of potential errors which may be introduced into the training 

set: (i) In the process of generating doublets, the doublets will also be 

treated as singlets to simulate new doublets, resulting in wrong doublets 

are introduced into the training set. (ii) In the generated training set, the 

remaining doublets in the original data will be marked as singlets.” 

(line 106-110) 

When generating the simulated doublets, the random number of the 

normal distribution N(0.1,1) is assigned to two single cells as mixing 

ratio, which could mimic the randomness of doublets generation in real 

experiments. 

 

Minor Comments3 

Lines 111-112: ―Ground-truth comparisons illustrate that Chord detects 

most doublets‖ — The authors use qualitative comparisons of UMAP 

embeddings to make this quantitative claim. Authors should either 

provide the statistics underlying the claim or change the statement (e.g., 

Chord-derived doublet scores are enriched in regions of gene expression 

space associated with ground-truth doublet classifications). 

 

Reply3 : 

We analyzed the true positives and false positives of the doublet 

identification results using UMAP plot (fig S2a, b), and supplemented the 

corresponding statistical results (fig S2c). At the same time, we modified 

the description " Chord-derived doublet scores are enriched in regions of 

gene expression space associated with ground-truth doublet 

classifications”. 



 

(fig s2c) 

Minor Comments4 

Lines 568-569: Authors say they benchmarked Chord on the 

publicly-available HTO8 dataset which is comprised of ―samples of cell 

lines using twelve barcoded antibodies to mark and label doublets.‖ – 

According to the Seurat web-page and Stoeckius et al, HTO8 is 

scRNA-seq of PBMCs from 8 donors, while HTO12 is the dataset the 

authors are referring to in the Fig. 1 legend. The UMAP embedding looks 

like PBMCs, so the authors should change the text to reflect the correct 

dataset. The authors also need to change their references to HTO8 as 

―cell line‖ data throughout the manuscript and supplemental tables. 

 

Reply4 : 

It is a description mistake, and we corrected this error in the manuscript 

and supplemental tables. 

 

Minor Comments5 

Fig. S1A: ―taning data set‖ instead of ―training data set‖, ―adboost‖ 

instead of ―adaboost‖ 

 

Reply5 : 

We corrected this misspelling. 

 

Minor Comments6 

Lines 320-321: ―...extracted the doublet scores evaluated by two 



methods for each cell: i) through the DBF( ) function in the called R 

package DoubletFinder‖ – we are not aware of a ‗DBF‘ function in 

DoubletFinder. 

 

Reply6 : 

DBF() is the function we defined in Chord. The function of DBF() is to run 

the DoubletFinder software and output the result. To avoid 

misunderstanding, we rewrote the description. 

(Line412-415) 



Dear reviewer, 

High-throughput single-cell RNA sequencing is accompanied by doublet 

problems that disturb the downstream analysis. Several computational 

approaches have been developed to detect doublets, but most of these 

methods are not always satisfactory in different datasets. Our study was 

designed to unveil a new method, Chord, which is an accurate and stable 

solution to the doublet detection problem. The Chord workflow is 

composed of three main steps. (i) Generating training data after coarse 

removal of doublets using primary methods and generating artificial 

doublets from the filtered data. (ii) Generalized Boosted Regression 

Modeling (GBM) model fitting which integrates and weights the 

predictions of published doublet detection tools based on classification 

performance on the training data. (iii) Application of the trained GMB 

model to the original dataset to predict doublets. 

 

According to the suggestions of reviewers and editors, we made the 

following changes to the article: 

Optimizations of Chord workflow: 

1) Replace the Adaboost algorithm with the more efficient GBM 

algorithm. 

2) Remove build-in method doubletCells which has a mediocre 

performance. 

3) Optimize the combination of doublet detection methods to improve 

ChordP’s performance. 

 

Changes of analysis: 

1) The results of the previous version of Chord are replaced by the new 

version results in figures and tables (fig1, fig2g, fig4, figs1, figs2, 

figs3, table1, table s3-s11). 

2) Display average pAUC800 pAUC900, pAUC950 pAUC975, AUC and 



PR of doublet detection methods in benchmark datasets to show 

ChordP’s performance more comprehensive (fig 2d). 

3) Change the filtering criterions of DEGs and use R package Seurat 

4.0.2 for calculation. Change the evaluation content through TPR, 

TNR and accuracy to make the result display more clearly (fig 3a). 

4) According to suggestions from reviewers. In part “Applying Chord to 

real-world scRNA-Seq data”, among the 19 microfluidic lanes in this 

data set, 5 tumor samples with the highest expected doublet rate 

were used for processing. The same evaluation as our previous 

version of the manuscript are performed and consistent conclusions 

are obtained (fig 4). 

5) Describe the features of these doublets which trend to be a cluster in 

lung cancer data (fig 4b, c, d). 

6) Replace line chart with bar chart to show the changes in the total 

number of differentially expressed genes before and after doublet 

removal (fig 4f). 

7) Add figure labeled by clusters to Figure4h in the trajectory analysis 

of lung cancer dataset, which visualize the trajectory changes at the 

cluster level (fig 4h). 

8) According to suggestions from reviewers, calculate TP, FN, FP, TN, 

True Positive Rate(TPR), True Negative Rate(TNR), Precision, 

Accuracy in DM-A and HTO8 data sets (fig s2c).  

9) Evaluate Chord's performance when using different boost algorithms 

and GBM is selected as Chord’s default boost algorithms (fig s3a). 

10) Test different combinations of methods for ChordP. In all 

combinations, “Chord+Scrublet+DoubletDetection” performs best 

(fig s3b). 

11) Evaluate the robustness of the parameter doubletrate (fig s3e). 

 

Writing: 

1) Improve description of Chord workflow, especially how to train GBM 

models. 

2) Describe usage details of the software cited in this article, such as 



SciBet and ROGUE. 

3) In the method section, improve the description of execution steps, 

such as analysis on lung cancer data and the process of DEGs 

analysis. 

4) Improve the description of assessment indexes, such as TPR, TNR 

and pAUC. 

5) Correct grammatical errors and inaccurate descriptions. 

 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

This manuscript proposes a new computational doublet-detection 

method based on the ensemble of multiple cutting-edge methods. The 

basic idea is 1) remove high-confidence doublets by four independent 

methods; 2) after removal, simulate artificial doublets by adding two 

randomly selected cells, and merge these artificial doublets back to 

obtain a training set; 3) train an Adaboost model on the training set, in 

which each independent method‟s doublet score vector is one predictor, 

and the singlet/artificial-doublet label from step one is the target 

variable; 4) apply the trained Adaboost to the original dataset for doublet 

prediction. The authors performed various validations on real and 

synthetic datasets to check the method‟s prediction accuracy and 

impacts on downstream analysis. The proposed ensemble framework is 

novel in the doublet-detection field. It also resolves some issues in other 

related studies. On the other hand, there are major concerns in the 

manuscript 

in terms of methods implementation, validation, and writing. I hope the 

authors could fix them to improve the current work. 

 

Method and technical details1 



In lines 307-309, the authors claimed that the performance of Chord is 

robust across different doublet rates yet without evidence. I suggest 

providing a sensitivity analysis to support this argument. Some other 

methods have similar parameters, for example, the number of artificial 

doublets in DoubletFinder 1 and Scrublet 2. The selection of those 

parameters has been clearly shown to be robust by sensitive analysis. 

 

Reply1: 

We added sensitivity analysis to show the robustness. Chord’s 

performance with different doubletrate from 0.11 to 0.29 on six data sets. 

These 6 datasets were randomly sampled and generated by the DEG test 

dataset, and the true doublet rate was 0.2. We didn't see a particularly 

noticeable deviation in AUC from the boxplot as the doubletrate 

parameter deviated from the true Doublet rate (0.2) (Figure S3e). At the 

same time, doubletrate in this range is not significant correlated with the 

average AUC value (p value=0.2792) (Table S11) 

 

Figure S3e 

 

Table S11 

Method and technical details2 

Line 326 introduces the overkillrate parameter and claims “we filtered 

the doubletrate*overkillrate percentage of cells …” It seems that 

overkillrate is a numerical parameter that controls the conservativeness 



of preliminary doublet removal. I hope the authors could provide 

practical guidance on how to choose this parameter and how robust the 

model performance is under different values. Although the software 

GitHub page sets this parameter a default value 1, the authors did not 

specify which value they use in the analysis of the manuscript. 

 

Reply2: 

In Chord and ChordP, the parameter overkillrate adopts the default value 

of 1, and this parameter is only set to increase the adjustability of the 

software. We use the combination "bcds+cxds+DoubletFinder" to test 

each data set under different overkillrates, where the overkillrate is 

increased from 1 to 2, and UMAP plot is used to visualize the results. The 

results showed that although more true positive doublets could be 

detected as the overkillrate increases, false positive doublets gradually 

increase and are enriched in some clusters. Therefore, we recommend 

that the overkillrate value adopts 1 in the overkill step, that mean to 

remove the Doublets identified by the expected doublet rate of bcds, 

cxds and DoubletFinder. 

 

   

    HTO8 overkill=1         HTO8 overkill=1.2      HTO8 overkill=1.4 



   

   HTO8 overkill=1.6        HTO8 overkill=1.8         HTO8 overkill=2 

 

Method and technical details3 

After reading the “Model training” part (line 345-351) initially, I did not 

understand how the Adaboost model was trained, until I checked the 

figure on the GitHub page. I suggest adding those figures into the 

manuscript and explicitly demonstrating that each method‟s doublet 

score serves as the predictor/variable in the Adaboost model. 

 

Reply3: 

Based on your suggestions, we rewrote this part. Besides, we also 

optimized the ensemble algorithms. We first tested the performance of 

four ensemble algorithms, GBM, xgboost, lightgbm, and Adaboost. The 

results show that the selection of the GBM algorithm has a significant 

improvement in the integration effect of the doublet scoring values 

(t.test, alternative = "greater", paired=T). Therefore, we modified GBM 

as the default ensemble method and then rewrote the description. 

 

(fig S3a) 



We update the specific description of the training to make it clearer and 

explicitly demonstrating that each method’s doublet score serves as the 

predictor. 

 “The Chord workflow is composed of three main steps (Figure 1a). (i) 

Generating training data after coarse removal of doublets using existing 

methods and generating artificial doublets from the filtered data. (ii) 

Generalized Boosted Regression Modeling (GBM) mode fitting which 

integrates and weights the predictions of existing doublet detection tools 

based on classification performance on the training data. (iii) Application 

of the trained GMB model to the original dataset to predict doublets.” 

(Line 100-105) 

 “After evaluating the simulation training set using DoubletFinder, bcds 

and cxds to get their predicted scores, the GBM algorithm was adopted to 

integrate these predicted scores which served as the predictors in the 

GBM model.” (line 117-119) 

 

Method and technical details4 

The methods included in Chord need to be reconsidered. First, there is 

one method, scDblFinder, not in the ensemble or extension part. This 

method was published last year and has been shown excellent 

performance and speed compared with others. Second, the doubletCells 

method has been shown to significantly underperform others in the 

previous benchmark study, Figure 2, and Figure S1. Actually, 

doubletCells was removed from the latest version of package scran (v 

1.20.1), and the author of scran recommends using scDblFinder to 

substitute doubletCells in that package. Therefore, I suggest using 

scDblFinder instead of doubletCells as one of the four backbones. At least 

scDblFinder should be included in the ChordP. 

 



Reply4: 

We removed doubletCells, and recombined the methods and evaluated 

the integration effects of adding different combinations of methods on 

the basis of Chord. Then we set the best-performing combination as 

ChordPlus. We will evaluate the new officially published method in the 

future, evaluate whether the method is suitable for integration, and 

recommend the optimal combination method on our github for users' 

reference. scDblFinder is an ensemble method based on xgboost, which 

is not an individual method and not suitable to be included in our 

integration. 

 

Figure S3b 

 

Method and technical details5 

In the “Cluster purity” part (line 440), the author should clarify which 

package and function were used to calculate the ROGUE value. While I 

can understand by checking the GitHub page of ROGUE, it is not 

user-friendly without a clear illustration. The same issue applies to 

SciBet method, where the execution details were not shown. 

 

Reply5: 



We added descriptions of ROGUE and SciBet, as well as implementation 

details. 

“Secondly, we used SciBet, a cell type annotation tool based on Bayes 

decision, to annotate the cell types from the original data and filtered 

data, and calculated the changes in the cell types before and after 

applying the doublet filter.” (line:306-308) 

“We utilized ROGUE an entropy-based metric for assessing the purity of 

cell types in the original data and filtered data. The ROGUE index has 

been scaled to the range of zero to one where the larger value means the 

higher purity.” (line:302-304) 

“Automated cell type annotation of this data set was performed using 

SciBet. The training model provided by SciBet, which was trained from 

42 human single-cell datasets containing 30 major human immune cell 

types, was used to automatically annotate the datasets before and after 

doublet removal.” (fig S3d) 

 

Validation1 

The comparison of detection accuracy on real data is not convincing. In 

Table S3, Chord or ChordP only achieved two highest AUROCs and one 

highest AUPRC on seven real datasets. The proposed methods are not 

attractive if they did not show a strong advantage over single methods. 

This is a major concern also because the running time of Chord or ChordP 

will be the sum of all methods included plus the training time of Adaboost. 

One potential solution, as stated in the last section, is to substitute 

doubletCells with scDblFinder or another better single method.  

 

Reply1: 

We removed doubletCells from the overkill step and the model 

integration step. At the same time, we adjusted the algorithm used for 

integration to Gradient Boosting Machine (GBM). After adjustment, the 

performance of ChordP and Chord has been improved. In the 7 data sets 

tested, the average AUC of ChordP increased from 0.806 to 0.813, the 

average PR increased from 0.427 to 0.467, the average AUC of Chord 



increased from 0.793 to 0.801, and the average PR increased from 0.395 

increased to 0.465. 

 

Validation2 

One of the main reasons for detecting doublets is to remove spurious 

clusters in the datasets. The importance of this goal has been 

demonstrated repeatedly in previous studies 1,2,5. While the authors 

evaluated the impacts of doublet-detection on the quality of true clusters, 

the capacity of removing spurious clusters has not been discussed. I 

suggest adding this analysis, either through purely simulated data or real 

data with artificial doublets. 

 

Reply2: 

We totally agree that the capacity of removing spurious clusters is 

valuable to be discussed. Therefore, we tried to find spurious clusters by 

increasing resolution (resolution =1.2) in the clustering step (function 

FindClusters() of R package Seurat 4.0.2). However, we found that even 

if we used a high resolution (default resolution=0.8), it was difficult to 

find a spurious cluster where most cells were doublets. Doublets might 

not easily cluster into separate spurious clusters, but rather enrich in 

partial clusters. In addition, the results of clustering may depend on 

resolution and other parameters. Based on these, we think that the 

capacity of removing spurious clusters may be difficult to accurately 

evaluate. 

 



 

DM-A (doublet rate 0.036)    HTO8 (doublet rate 0.157) 

 

Validation3 

In practice, users will choose a cutoff on doublet scores to call doublets. 

I suggest adding one validation, which is to calculate the precision, recall, 

and true negative rate under certain doublet rates on real data. This 

analysis can give a more comprehensive evaluation of proposed 

methods. 

 

Reply3: 

We added these analysis with the HTO8 and DM-A data sets. We 

calculated the case of the doublet rate as a threshold, and calculated the 

accuracy, recall rate and true rate. The overall performance of these 

indicators is slightly different from that of AUC, but the trends are 

consistent. 

 



(fig S2c) 

 

Writing 

Some sections of this manuscript were either not written in the academic 

style or with confusion. Some examples include: 

1. There are several “STAR Methods” in the manuscript, which seems a 

unique item in articles from Cell Press. 

2. Line 122 “we used random sampling to proportionally sample 

singlets…” seems redundant expression. 

3. Line 152 pAUCXXX was shown without definition. This may confuse 

readers who lack expertise in machine learning terminology. 

4. Line 249 “A pseudotime analysis of the myeloid cells was conducted”. 

Please consider rewriting this sentence. 

5. Line 348 “The R package „adabag‟, through the AdaBoost algorithm, 

DBboostTrain() is used to implement model training for training based on 

the scoring results of the four methods.” This sentence is ambiguous. 

Please consider rewriting. 

6. Line 370 “Doublet detection” should be DoubletDetection. 

7. Line 421 “the highest scoring cells for the number of double cells 

according to the results were removed”. Consider rewriting this sentence. 

8. Line 456 should be followed by lines 458 and 459. 

 

Reply: 

Thanks for pointing out these problems. We corrected the above errors 

and similar errors in the manuscript by referring to the suggestions 

above and those of other reviewers. 

1. Change to “Methods” 

2. line 135-136  

“we used random sampled singlets and doublets in the dataset to build a 

doublet rate gradient” 

3. line 182-184 



“Moreover, partial areas under the ROC curve (pAUC) at 80%(pAUC800), 

90%(pAUC900), 95%(pAUC950) and 97.5%(pAUC975) specificity was 

calculated” 

4. line316-318 

“In the pseudotime of myeloid cells in the dataset, the doublets were 

unevenly distributed in the dimensionality reduction plot and aggregated 

on the right side.” 

5. line438-440 

“GBM (R package gbm) which performed better than adaboost, xgboost, 

and lightgbm (Figure S3a) was used to combine the prediction scores of 

the build-in methods to fit a model for robust estimate.” 

6. line 464 

“DoubletDetection settings” 

7. line 516-518 

“After evaluating the contaminated data set through a doublet detection 

method, cells predicted to be doublets were deleted.” 

8. The table of software was removed from the manuscript after revise. 



Dear reviewer, 

High-throughput single-cell RNA sequencing is accompanied by doublet 

problems that disturb the downstream analysis. Several computational 

approaches have been developed to detect doublets, but most of these 

methods are not always satisfactory in different datasets. Our study was 

designed to unveil a new method, Chord, which is an accurate and stable 

solution to the doublet detection problem. The Chord workflow is 

composed of three main steps. (i) Generating training data after coarse 

removal of doublets using primary methods and generating artificial 

doublets from the filtered data. (ii) Generalized Boosted Regression 

Modeling (GBM) model fitting which integrates and weights the 

predictions of published doublet detection tools based on classification 

performance on the training data. (iii) Application of the trained GMB 

model to the original dataset to predict doublets. 

 

According to the suggestions of reviewers and editors, we made the 

following changes to the article: 

Optimizations of Chord workflow: 

1) Replace the Adaboost algorithm with the more efficient GBM 

algorithm. 

2) Remove build-in method doubletCells which has poor performance. 

3) Optimize the combination of doublet detection methods to improve 

ChordP’s performance. 

 

Changes of analysis: 

1) The results of the previous version of Chord are replaced by the new 

version results in figures and tables (fig1, fig2g, fig4, figs1, figs2, 

figs3, table1, table s3-s11). 

2) Display average pAUC800 pAUC900, pAUC950 pAUC975, AUC and 

PR of doublet detection methods in benchmark datasets to show 

ChordP’s performance more comprehensive (fig 2d). 



3) Change the filtering criterions of DEGs and use R package Seurat 

4.0.2 for calculation. Change the evaluation content through TPR, 

TNR and accuracy to make the result display more clearly (fig 3a). 

4) According to suggestions from reviewers. In part “Applying Chord to 

real-world scRNA-Seq data”, among the 19 microfluidic lanes in this 

data set, 5 tumor samples with the highest expected doublet rate 

were used for processing. The same evaluation as our previous 

version of the manuscript are performed and consistent conclusions 

are obtained (fig 4). 

5) Describe the features of these doublets which trend to be a cluster in 

lung cancer data (fig 4b, c, d). 

6) Replace line chart with bar chart to show the changes in the total 

number of differentially expressed genes before and after doublet 

removal (fig 4f). 

7) Add cluster label to Figure4h in the trajectory analysis of lung cancer 

dataset, which visualize the trajectory changes at the cluster level 

(fig 4h). 

8) According to suggestions from reviewers, calculate TP, FN, FP, TN, 

True Positive Rate(TPR), True Negative Rate(TNR), Precision, 

Accuracy in DM-A and HTO8 data sets (fig s2c).  

9) Evaluate Chord's performance when using different boost algorithms 

and GBM is selected as Chord’s default boost algorithms (fig s3a). 

10) Test different combinations of methods for ChordP. In all 

combinations, “Chord+Scrublet+DoubletDetection” performs best 

(fig s3b). 

11) Evaluate the robustness of the parameter “doubletrate” (fig s3e). 

 

Writing: 

1) Improve description of Chord workflow, especially how to train GBM 

models. 

2) Describe usage details of the software cited in this article, such as 

SciBet and ROGUE. 

3) In the method section, improve the description of execution steps, 



such as analysis on lung cancer data and the process of DEGs 

analysis. 

4) Improve the description of assessment indexes, such as TPR, TNR 

and pAUC. 

5) Correct grammatical errors and inaccurate descriptions. 

 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

The manuscript, “Chord: Identifying Doublets in Single-Cell RNA 

Sequencing Data by an Ensemble Machine Learning Algorithm” by Xiong 

et al. has focused doublet detection in single-cell Sequencing datasets. 

Doublets/Multiplets in single-cell datasets are one of the challenging 

problems in field of single-cell droplet sequencing and detecting and 

removing them from the analyses, can have significant effect on 

down-stream analyses, depending on removing False Positive or False 

Negative Doublets. As a result, tools that can detect these 

doublets/multiplets in single-cell RNA-Seq are important and will be 

beneficial in the field. The authors have developed a tool named Chord 

and ChordP, which detect the doublets with high accuracy. Especially, 

combining the power of many available tools and machine learning are 

the two important points that I think makes this an excellent tool in the 

field and this manuscript should be considered for publication. 

I have some minor comments which are not clear in the manuscript and 

need clarification (at least for me). 

 

Minor Comments: 

In general for machine learning, an input data and expected results 

(target) are given and a model is trained by using these inputs for 

training. While I can see this in material methods, I think the author can 

expand this part for clarity. 



For instance, the input matrix that has been used for training will have 

gene names from the model organism, whose data have been used for 

training. As a result, using this may be challenging to be used for other 

model organisms. What does training here means? Does Chord/ChordP 

has a weight matrix that can be used on any new datasets, or here 

training is to use every new input data for learning or optimization? This 

part is not clear to me. 

 

Reply: 

We are sorry for the unclear description of the manuscript. We evaluated 

and replaced a more effective integration algorithm GBM instead of 

Adaboost, and we updated the description of the integration step process 

in the text and methods section, so that it can describe our method more 

accurately. 

Our model does not use a fixed data set to generate a model, and then 

apply the fixed model to other data. Instead, it automatically generates 

a training set based on the data itself and performs model training based 

on it. Then get the most suitable model for the data, so Chord/ChordP 

can also work normally on new input data. 

The training step of GBM: 

“After evaluating the simulation training set using DoubletFinder, bcds 

and cxds to get their predicted scores, the GBM algorithm was adopted to 

integrate these predicted scores which served as the predictors in the 

GBM model. Then the doublet scores output was calculated by the GBM 

model for the input droplets data (Figure S1a)” (Line: 116-120) 

“GBM (R package gbm) which performed better than adaboost, xgboost, 

and lightgbm (Figure S3a) was used to combine the prediction scores of 

the build-in methods to fit a model for robust estimate. In GBM, each 

individual model consists of classification or regression trees, also called 

boosted regression trees (BRT). We defined 1000 trees for fitting, and 

set parameter shrinkage = 0.01, cv.folds = 5. Function DBboostTrain() 

was defined to implement model training, which combinded the scoring 

results of these build-in methods into a matrix. Then the matrix was 



input data for the function gbm() in R package gbm. The simulated 

doublets were set as true positives (TPs), and the singlets were set as 

true negatives (TNs) for model training.” (Line: 438-446) 

 

Suggestion: 

Even on fresh samples, more than 5% of cells may be doublets. However, 

for frozen human samples collected from patients, single-nuclear 

RNA-Seq (snuc-Seq) is commonly used and getting high quality data, 

removing doublets and low quality cells is important and can be more 

challenging. As a result, I suggest the authors to test Chord/ChordP on 

available snuc-Seq datasets as well. 

 

For 

instance; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14

7528, which is publicly available. 

 

Reply: 

It's meaningful to test Chord/ChordP on snuc-Seq datasets. For the data 

recommended, we selected "GSM4432635_SFG2", 

"GSM4432642_SFG9" and "GSM4432643_SFG8" which have the largest 

cell number for testing. 

 

GSM4432635_SFG2 

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE147528&data=04%7C01%7Cliguibo%40genomics.cn%7Cbaddc7cf44544b3bb42e08d9569a9af3%7C853aa2281adc4d91bb286065c1e9963d%7C0%7C1%7C637636044470357710%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=nL6SpUVoXpQtHUOew626ne116r%2FOFqnHQT4CtuYWXpA%3D&reserved=0
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE147528&data=04%7C01%7Cliguibo%40genomics.cn%7Cbaddc7cf44544b3bb42e08d9569a9af3%7C853aa2281adc4d91bb286065c1e9963d%7C0%7C1%7C637636044470357710%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=nL6SpUVoXpQtHUOew626ne116r%2FOFqnHQT4CtuYWXpA%3D&reserved=0


  

GSM4432642_SFG9 

  

GSM4432643_SFG8 

In the GSM4432635_SFG2 data, we simulated the doublets by adding 

the expression matrices of two random cells and adding them to the data. 

Chord clearly identified most areas where simulated doublets are 

concentrated.  

  

However, currently we have not found the single-cell nuclear sequencing 

data with doubles labeling through experiments, so we are unable to 

comprehensively evaluate Chord on snuc-Seq. We will continue to pay 



attention to the relevant data in the follow-up and supplement rigorous 

evaluation. 

 



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Major Comments 

 

1. The authors did not satisfactorily address Major Comment #3, which discusses PC and pK 

selection for DoubletFinder, and continued to use the hard-set PC=1:10 argument for their 

method, which is incorrect. PC and pK needs to be chosen in a dataset-specific fashion. This could 

explain why the authors observe a concentration of DoubletFinder false-positives in UMAP space 

when applied to the HTO-8 dataset (lines 296-298), which was not observed in the original 

DoubletFinder paper where the method was benchmarked on the same HTO-8 dataset. 

 

 

2. Since doubletCells is no longer being used as part of Chord, the authors need to adjust the text 

accordingly. For example: 

• Remove reference in Fig. 1 legend 

• Remove from panels in Fig. 2 to enable better comparisons between methods (doubletCells is an 

obvious outlier that make such comparisons difficult visually) 

• Lines 905-906: Authors say in the “Preliminary deletion of doublets” section, "doubletCells() was 

used to evaluate doublet cells with parameters 906 k = 50, d = 50 and extract the scores.” — the 

authors do not use doubletCells in this step (unless we are misunderstanding). 

 

3. Unless we are misunderstanding, the authors did not satisfactorily address Minor Comment #2. 

From the Methods section, artificial doublets are generated using the following workflow: (1) 

Normalize data using Seurat, (2) PCA and unsupervised clustering to get 20 total clusters (side 

note: this feels like a strange heuristic to apply), (3) Proportionally-sample cells from each cluster 

according to doublet rate and weight cell gene expression counts according to random number 

from N(1,0.1) distribution, (4) Average cell pair gene expression profiles using these weights, and 

(5) Add simulated doublets into filtered data to make the training set. 

 

We agree with the authors that doublets are generated randomly in real experiments, but this 

concept applies to the process of cell encapsulation itself, not transcript capture/barcoding within 

the droplet. Once two cells are lysed in the droplet, transcripts from each cell are sampled 

according to the total RNA content of each component cell type, not according to a random 

number from an N(1,0.1) distribution. It is unclear if the authors have tested whether/how this 

random sampling alters Chord performance, but this should be explored explicitly because the 

method assumption doesn’t reflect reality. 

 

 

4. Figure 4A is confusing — heterotypic doublets are from two cell types. How are the authors 

assigning doublets to single cell types? Authors do not describe this in the methods or anywhere in 

the manuscript. 

 

 

5. For the lung cancer data, it remains unclear whether the authors applied Chord to the 

aggregated data from the 5 tumor samples from distinct patients (which would be incorrect) or 

applied Chord individually to each sample before aggregation (which would be correct, in order to 

avoid attempting to predict inter-patient doublets that could not exist in the real data). 

 

 

6. Lines 480-483: "According to the number of predicted doublets in different clusters, cluster 10 

had the highest doublets enrichment trend (Figure 4b, Figure 4c). The doublets in cluster 10 

simultaneously expressed markers of T cells and plasma cells (Figure 4d)” — This is a confusing 

result because plasma cells (normally MZB1+ cells co-expressing B-cell markers such as MS4A1) 

are not shown in the previous figure panels are normally quite rare compared to their B-cell 

precursors. Authors need to refine this analysis — do they mean B-cells? 

 

 



7. It is unclear why the authors apply pseudotemporal ordering to infer myeloid cell trajectories in 

the tumor data — is there a biological rationale for expecting myeloid cells to be undergoing a 

differentiation trajectory in this system? 

 

 

Minor Comments 

 

1. Lines 82-84: "However, there are inherent limitations to these experimental techniques used for 

doublet detection. First, these methods require their special experimental operations and 

additional costs, so they are not suitable for existing scRNA-seq data.” — It is true that 

multiplexing approaches require extra sample handling/costs, but this is unrelated to their inability 

to be applied retroactively to existing scRNA-seq datasets. 

 

 

2. Lines 157-159: "We called this step “overkill” and an adjustable parameter called “overkillrate” 

to preliminarily delete doublets. Selecting this parameter could improve the accuracy of the 

program (Methods; Figure S1a).” — Authors need to clarify this statement, especially since Fig. 

S1a is just a schematic of the Chord method and doesn’t specifically address whether “overkillrate” 

parameter selection could improve accuracy. 

 

 

3. Reviewer response #3 (although I don’t totally agree with the reviewer that this is a necessary 

analysis): There are many papers currently in press that apply sample multiplexing approaches to 

nuclei, for example: 

 

https://www.sciencedirect.com/science/article/pii/S1934590921001557 

https://www.nature.com/articles/s41467-019-10756-2 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724892/ 

 

 

4. Paper still needs significant editing for grammar/clarity. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors addressed my concerns in the first-round review. Thank you! 

 

 

Reviewer #3 (Remarks to the Author): 

 

The current version of the manuscript by Xiong et al., has been improved based on the reviewer 

comments. The author addressed all of my questions. 

 

The author has evaluated the power of Chord/P with the available single-cell datasets. I think, a 

follow-up and rigorous evaluation of the Chord/P will improve the power of doublet detection by 

Chord/P but not required for the current study for publication. 

 

I recommend the paper to be accepted with the current version. 



Dear reviewer,  

 

We would like to start by thanking the thoughtful comments. We have 

considered the comments and addressed the concerns raised. 

 

Major Comments1 

The authors did not satisfactorily address Major Comment #3, which 

discusses PC and pK selection for DoubletFinder, and continued to use 

the hard-set PC=1:10 argument for their method, which is incorrect. PC 

and pK needs to be chosen in a dataset-specific fashion. This could 

explain why the authors observe a concentration of DoubletFinder 

false-positives in UMAP space when applied to the HTO-8 dataset (lines 

296-298), which was not observed in the original DoubletFinder paper 

where the method was benchmarked on the same HTO-8 dataset. 

 

Reply1 ： 

The reviewer touches upon an important issue and pointed out that a 

concentration of DoubletFinder false-positives we observed may be 

caused by unspecific selection of PC and pK. However, we cannot fully 

agree with the comment.  

First of all, if we interpret correctly, the supplementary figures from the 

original DoubletFinder paper did not label false positives in the HTO-8 

visualization (please see SFig1B of DoubletFinder paper), and it was not 

specified like we did. Besides, even in the case of "ground-truth", the 

sensitivity of HTO-8 was 0.64, indicating there were also false positives 

in their DoubletFinder’s results. Therefore, both of our results showed 

false-positives, which may not be attributed to the incorrect parameters 

setting. 



 

SFig1B of DoubletFinder paper 

 

Second, the authors of DoubletFinder recommended PC parameter set as 

1:10 (https://github.com/chris-mcginnis-ucsf/DoubletFinder) which 

was also directly used for all data sets in their study. 

(https://doi.org/10.1016/j.cels.2019.03.003)

 

Parameters of DoubletFinder paper 

In addition, the choice of this parameter has been widely recognized, and 

the recommended PC=1:10 has been adopted in many papers involving 

the evaluation of DoubletFinder, for example: 

https://doi.org/10.1016/j.cels.2020.11.008 

https://doi.org/10.1093/bioinformatics/btz698 

https://doi.org/10.1016/j.celrep.2019.09.082 

https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cels.2020.11.008
https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1016/j.celrep.2019.09.082


PC1:10 might be a parameter with generality. For example, on the same 

HTO-8 dataset, function ElbowPlot() in Seurat was applied to calculate 

the standard deviations of the principle components. An elbow is 

observed around the 10 PC in the graph, which suggests that the 

majority of true signal is probably captured in the first 10 PCs. 

    

Standard deviations of PCs (HTO8)     Standard deviations of PCs (DM-A) 

    

Standard deviations of PCs (DM-B)     Standard deviations of PCs (DM-C) 

        

Standard deviations of PCs (DM-2.1)   Standard deviations of PCs (DM-2.2) 



 

Standard deviations of PCs (HTO12) 

Finally, as for the pK value setting, the DoubletFinder paper explicitly 

states that “DoubletFinder parameters must be selected using a 

ground-truth-agnostic strategy called mean-variance-normalized 

bimodality coefficient (BCMVN) maximization”, and they suggested 

“Optimal pK for any scRNA-seq data can be manually discerned as 

maxima in BCmvn distributions.” in their instruction of function find.pK(). 

Therefore, we set pK values in this way. We think the reviewer’s point “it 

is not uncommon for mean-variance-normalized bimodality coefficient 

distributions to exhibit multimodality (this often happens when data is 

not properly quality-controlled)” is valuable, so we have set pK and PC in 

Chord as parameters that can be adjusted by users. 

 

Major Comments2 

Since doubletCells is no longer being used as part of Chord, the authors 

need to adjust the text accordingly. For example: 

• Remove reference in Fig. 1 legend 

• Remove from panels in Fig. 2 to enable better comparisons between 

methods (doubletCells is an obvious outlier that make such comparisons 

difficult visually) 

• Lines 905-906: Authors say in the “Preliminary deletion of doublets” 

section, "doubletCells() was used to evaluate doublet cells with 

parameters 906 k = 50, d = 50 and extract the scores.” — the authors do 

not use doubletCells in this step (unless we are misunderstanding). 

 



Reply2 ： 

We appreciate the reviewer’s helpful suggestions and the careful review.  

 We have adjusted the text about doubletCells accordingly.  

 We hope to keep the panel of doubletCells, because this method is 

well recognized and the fact that it is an outlier explains why we 

did not integrate it into ChordP. Also, Heatmap in Fig 2 was 

re-plotted without doubletCells (please see the figure below). 

Judging by the results, with or without doubletCells would not affect 

comparisons particularly. 

 

Fig 2b (comparisons were made without doubletCells) 

 We have removed the redundant description. 

 

Major Comments3 ： 

Unless we are misunderstanding, the authors did not satisfactorily 

address Minor Comment #2. From the Methods section, artificial 

doublets are generated using the following workflow: (1) Normalize data 

using Seurat, (2) PCA and unsupervised clustering to get 20 total 

clusters (side note: this feels like a strange heuristic to apply), (3) 

Proportionally-sample cells from each cluster according to doublet rate 

and weight cell gene expression counts according to random number 



from N(1,0.1) distribution, (4) Average cell pair gene expression profiles 

using these weights, and (5) Add simulated doublets into filtered data to 

make the training set. 

 

We agree with the authors that doublets are generated randomly in real 

experiments, but this concept applies to the process of cell encapsulation 

itself, not transcript capture/barcoding within the droplet. Once two cells 

are lysed in the droplet, transcripts from each cell are sampled according 

to the total RNA content of each component cell type, not according to a 

random number from an N(1,0.1) distribution. It is unclear if the authors 

have tested whether/how this random sampling alters Chord 

performance, but this should be explored explicitly because the method 

assumption doesn’t reflect reality. 

 

Reply3 ： 

In the process of doublets generation, mRNA degradation of two cells in 

the same droplet is different, and ambient RNA in background 

contamination may cause the cell mixing ratio to deviate from 1:1. Erica 

A.K. DePasquale, the author of DoubletDecon: Deconvoluting Doublets 

from Single-Cell RNA-Sequencing Data, also discussed about mixing 

cells ratio: "differing RNA abundance and/or technical variation in cDNA 

generation may result in uneven contribution from each cell. Hence, 

modeling doublets as an equal contribution of two different cells is likely 

to be overly simplistic". (https://doi.org/10.1016/j.celrep.2019.09.082 ) 

So, in our study, we added a random number from an N(1,0.1) 

distribution to roughly represent these randomness. We apologize for 

the unclear description and we have made modifications in the 

manuscript accordingly. 

Further discussion on the factors that potentially alter the cell mixing 

rate may be required another study to pursue, however, it falls out of the 

scope of the current study.  

Major Comments4 ： 

Figure 4A is confusing — heterotypic doublets are from two cell types. 

https://doi.org/10.1016/j.celrep.2019.09.082


How are the authors assigning doublets to single cell types? Authors do 

not describe this in the methods or anywhere in the manuscript. 

 

Reply4： 

We apologize for the unclear statement. We wanted to show doublets 

ratio of all the cell types which had already been labelled by the lung 

cancer paper. In that study, the author did not perform doublets 

detection, so we calculated the percentage of doublets in cells which 

assigned to single cell types by their study. 

We amended the description to “After detecting doublets by Chord on the 

labelled cell from the original paper 

(https://gbiomed.kuleuven.be/scRNAseq-NSCLC)”. 

Line:285-286 

 

Major Comments5 ： 

For the lung cancer data, it remains unclear whether the authors applied 

Chord to the aggregated data from the 5 tumor samples from distinct 

patients (which would be incorrect) or applied Chord individually to each 

sample before aggregation (which would be correct, in order to avoid 

attempting to predict inter-patient doublets that could not exist in the 

real data). 

 

Reply5： 

We applied Chord individually to each sample and labelled doublets, then 

we integrated 5 tumor samples to aggregated data for other analysis. We 

add description in Method accordingly. 

“After evaluating the predicted double cell rate for each sample based on 

the number of cells, we selected the 5 tumour samples (sample 11, 13, 

17, 18, 22) with the highest predicted double cell rate and applied Chord 

individually to each sample. Then we performed a standard Seurat 

analysis” 

line:540-543 

 



Major Comments6 ： 

Lines 480-483: "According to the number of predicted doublets in 

different clusters, cluster 10 had the highest doublets enrichment trend 

(Figure 4b, Figure 4c). The doublets in cluster 10 simultaneously 

expressed markers of T cells and plasma cells (Figure 4d)” — This is a 

confusing result because plasma cells (normally MZB1+ cells 

co-expressing B-cell markers such as MS4A1) are not shown in the 

previous figure panels are normally quite rare compared to their B-cell 

precursors. Authors need to refine this analysis — do they mean B-cells? 

 

Reply6： 

According to the cell type label of the original paper of this dataset, B 

cells were not further classified to cell subtype in this dataset. As shown 

in Figure 4b, B cells consist of 2 clusters (cluster 6 and 8), where cluster 

8 is the plasma cell, proven by cell specific markers like XBP1, SSR4, 

SSR3, and CD38. We have added a description about this into 

manuscript: " Cluster 10 is shown to be the closest neighbor to both 

cluster 1 and cluster 8 on the UMAP plot (Figure 4b). Cluster 1 is T cell 

cluster, while cluster 8 is plasma cell cluster which is a cell subtype of B 

cells. " 

Line:293-296 

 

Major Comments7 ： 

It is unclear why the authors apply pseudotemporal ordering to infer 

myeloid cell trajectories in the tumor data — is there a biological 

rationale for expecting myeloid cells to be undergoing a differentiation 

trajectory in this system? 

 

Reply7： 

Accurate prediction of the cell trajectory would benefit interpretation of 

tumor data in real situation. We wanted to demonstrate 

methodologically that Chord is able to correct the direction of the cell 

trajectory. Since myeloid has the highest proportion of doublets (8.15%) 



and have a biological rationale in tumour microenvironment 

(https://doi.org/10.1016/j.cell.2021.01.010). So, myeloid cells were 

selected for analysis. We have changed our description in the manuscript 

in lines 314-320. 

 

Minor Comments1： 

Lines 82-84: "However, there are inherent limitations to these 

experimental techniques used for doublet detection. First, these 

methods require their special experimental operations and additional 

costs, so they are not suitable for existing scRNA-seq data.” — It is true 

that multiplexing approaches require extra sample handling/costs, but 

this is unrelated to their inability to be applied retroactively to existing 

scRNA-seq datasets. 

 

Reply1： 

We changed it to “First, these methods require their special experimental 

operations and additional costs. Moreover, these experimental 

techniques are not suitable for existing scRNA-seq data.” 

Line:62-64 

 

Minor Comments2： 

Lines 157-159: "We called this step “overkill” and an adjustable 

parameter called “overkillrate” to preliminarily delete doublets. Selecting 

this parameter could improve the accuracy of the program (Methods; 

Figure S1a).” — Authors need to clarify this statement, especially since 

Fig. S1a is just a schematic of the Chord method and doesn’t specifically 

address whether “overkillrate” parameter selection could improve 

accuracy. 

 

Reply2： 

We modified the description of “overkillrate”. 

 “Selecting “overkill” could improves the accuracy of training sets which 

is beneficial to model fitting (Methods; Figure S1c).” 

https://doi.org/10.1016/j.cell.2021.01.010


line:112-113 

 

Minor Comments3： 

Reviewer response #3 (although I don’t totally agree with the reviewer 

that this is a necessary analysis): There are many papers currently in 

press that apply sample multiplexing approaches to nuclei, for example: 

 

https://www.sciencedirect.com/science/article/pii/S193459092100155

7 

https://www.nature.com/articles/s41467-019-10756-2 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724892/ 

 

Reply3： 

We thank the reviewer for the helpful information. 

 

Minor Comments4： 

Paper still needs significant editing for grammar/clarity. 

 

Reply4： 

We have checked and edited our manuscript carefully, we hope it is now 

easier to follow. 

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1934590921001557&data=04%7C01%7Cliguibo%40genomics.cn%7Cc67e53834b564983da9e08d9f47867b9%7C853aa2281adc4d91bb286065c1e9963d%7C0%7C1%7C637809620313124905%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=QfNPgH8BoX27sYMuCOdZTDtdmAu685Iux4Eh%2FVcPifU%3D&reserved=0
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Thank you for addressing my concerns, the manuscript is much improved! 
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