Supplementary Material

1. Descriptions of feature descriptors for peptide sequences

Here we set the length of a peptide to be N, and all feature extraction methods are based on 20 natural amino acids (i.e., "ACDEFGHIKLMNPQRSTVWY"). Feature extraction was implemented by an in-house script.

1.1 Composition/Transition/Distribution (CTD)

Feature descriptors of CTD represent the amino acid distribution models of particular physicochemical property or structural in a peptide or protein sequence (Dubchak et al., 1995; Dubchak et al., 1999; Cai et al., 2003; Cai et al., 2004). 13 kinds of physicochemical properties have been used to calculate these features, including hydrophobicity, solvent accessibility, charge, secondary structures, polarity, and normalized Van der Waals Volume. For the detailed process of feature extractions, please refer to (Chen et al., 2018).

1.1.1 CTDC

CTDC describes the composition of each amino acid, which consists of three values: the percentage of hydrophobic, polar and neutral residues of the protein and can be defined as follows:

$$C(r) = \frac{N(r)}{N}, r \in \{polar, neutral, hydrophobic\}$$
(1)

where N(r) describes the number of amino acid type r in the sequence.

1.1.2 CTDT

CTDT describes the frequency of amino acid combined with another amino acids residues, which also consists of three values. It is given as

$$T(r,s) = \frac{N(r,s) + N(s,r)}{N-1}, r, s \in \{(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)\}$$
(2)

where N(r,s) and N(s,r) are numbers of dipeptides as 'rs' and 'sr' in the sequence,

respectively.

1.1.3 CTDD

CTDD consists of five values for each of the three groups (polar, neutral and hydrophobic). The details of CTDD features can be available in (Dubchak et al., 1995; Dubchak et al., 1999; Chen et al., 2018).

1.2 Dipeptide Deviation from Expected Mean (DDE)

DDE feature vector is constructed by the following three parameters(Saravanan and Gautham, 2015).

 $D_c(r,s)$, the frequency of dipeptide 'rs' in sequence, is given as

$$D_{c}(r,s) = \frac{N_{rs}}{N-1}, r, s \in \{A, C, D, \dots Y\}$$
(3)

where N_{rs} is the number of the dipeptide consisting of amino acids r and s in the peptide sequence.

 $T_m(r,s)$, the theoretical mean, is given by:

$$T_m(r,s) = \frac{C_r}{C_N} \times \frac{C_S}{C_N}$$
(4)

where C_r represents the number of codons that code for amino acid r in dipeptide 'rs'

and C_s represents the number of codons which code for amino acid s in dipeptide

'*rs*'. *CN* is the number of all possible codons excluding the three stop codons. $T_V(r,s)$, the theoretical variance of the dipeptide '*rs*', is defined as:

$$T_{V}(r,s) = \frac{T_{m}(r,s)(1 - T_{m}(r,s))}{N - 1}$$
(5)

Finally, DDE(r,s) is given by:

$$DDE(r,s) = \frac{D_c(r,s) - T_m(r,s)}{\sqrt{T_V(r,s)}}$$
(6)

1.3 Grouped Di-Peptide Composition (GDPC)

The GDPC encoding is similar to DPC descriptor. It is composed of a total of 25 descriptors, which can be calculated as:

$$f(r,s) = \frac{N_{rs}}{N-1}, r, s \in \{g1, g2, g3, g4, g5\}$$
(7)

where *Nrs* is the number of amino acid type groups *r* accompanied by and type groups *s*. g1, g2, g3, g4 and g5 represent amino acid groups (GAVLMI), (FYW), (KRH), (DE) and (STCPNQ), respectively.

1.4 Moran correlation (Moran)

The Moran feature is described according to the distribution of amino acid properties in peptides or protein sequence(Horne, 1988; Feng and Zhang, 2000; Sokal and Thomson, 2006; Xiao et al., 2015). The amino acid properties are descripted based on different types of amino acids index that can be accessed at http://www.genome.jp/dbget/aaindex.html/.The computation of Moran is available in (Chen et al., 2018).

Geary correlation (Geary)

Geary is also a features descriptor that describes the properties of amino acids for a protein or peptide sequence (Sokal and Thomson, 2006; Chen et al., 2018). It can be calculated as:

$$C(d) = \frac{\frac{1}{2(N-d)} \sum_{i=1}^{N-d} (P_i - P_{i+d})^2}{\frac{1}{N-1} \sum_{i=1}^{N} (P_i - \overline{P'})^2}, d = 1, 2, ..., nlag$$
(8)

Where d represents the lag of the autocorrelation, *nlag* is the maximum value of the lag (default value:30), P_i is the properties of the amino acids at positions *i*, P_{i+d} is the properties of the amino acids at positions i+d. \overline{P} is average of the considered property P over the entire sequence, it can be calculated as:

$$\overline{P'} = \frac{\sum_{i=1}^{N} P_i}{N}$$
(9)

1.5 Normalized Moreau-Broto Autocorrelation (NMBroto)

The MBroto descriptors (Horne, 1988) are defined as follows:

$$AC(d) = \sum_{i=1}^{N-d} P_i \times P_{i+d}, d = 1, 2, ..., nlag$$
(10)

The normalized descriptors are thus calculated as:

$$ATS(d) = \frac{AC(d)}{N-d}, d = 1, 2, ..., nlag$$
 (11)

where definitions of d, P_i and P_{i+d} are consistent with the description above.

1.6 SOCNumber (Sequence-Order-Coupling Number)

The *d*-th rank sequence-order-coupling number is calculated as:

$$\tau_d = \sum_{i=1}^{N-d} (d_{i,i+d})^2, d = 1, 2, 3, \dots n lag$$
(12)

where $d_{i,i+d}$ is the entry in a given distance matrix describing a distance between the amino acids at position *i* and the amino acids at position *i* + *d*, *nlag* has the same definitions with the description above.

1.7 QSOrder (Quasi-sequence-order)

A quasi-sequence-order descriptor can calculate for each amino acid type, it defined as:

$$X_{r} = \frac{f_{r}}{\sum_{r=1}^{20} f_{r} + \sum_{d=1}^{nlag} \tau_{d}}, r = 1, 2, \dots, 20$$
(13)

where f_r represents the normalized occurrence of amino acid type r, there are same definitions as described above of nlag and τ_d . X_r represents the first 20 quasi-sequence-order descriptors. The other 30 quasi-sequence-order descriptors are calculated as:

$$X_{d} = \frac{w\tau_{d} - 20}{\sum_{r=1}^{20} f_{r} + w \sum_{d=1}^{nlag} \tau_{d}}, d = 21, 22, \dots 20 + nlag$$
(14)

where *w* is a weighting factor (w = 0.1).

1.8 APAAC (Amphiphilic Pseudo-Amino Acid Composition)

APAAC was proposed in (Chou, 2005; Jiao and Du, 2016), which is like the PAAC descriptors. The details of APAAC features can be found in (Chou, 2001; Chen et al., 2018).

In this study, 1428 features can be obtained from the BBP/non-BBP sequence finally.

2. Nested cross validation

A nested five-fold cross-validation was applied on the training dataset (326 BBPs and 326 non-BBPs) to evaluate the prediction performance. Nested cross-validation has an inner and outer loop. The inner loop serves for model/parameter selection, while the outer loop is responsible for estimating the quality of the models trained in the inner layer. In this work, the training dataset (326 BBPs and 326 non-BBPs) was equally divided into five subsets in the outer layer. Among these five subsets, a subset was used as the testing-set and the other four subsets as the training-set. In the inner loop, the data of the training-set constructed in the outer layer were regrouped into five subsets of the same size, where four subsets were employed for tuning parameters (feature number and classifier parameters, details could be found in Tables S1 and S2), and one for evaluating models. It should be noted that the F-scores were calculated based on the training-set of the inner loop.

3. Pseudo code of nested cross validation and final model construction

3.1 Pseudo code of the nested cross validation

parameter_combinations = grid_search(feautre_selection_parameters, classifier_parameters) for i = 1:5 data_test_cv_outer = data_whole{i} data_train_cv_outer = data_whole-data_test_cv_outer for k = 1:number_of_parameter_combinations for j = 1:5 data_test_cv_inner = data_train_cv_outer{j} data_train_cv_inner = data_train_cv_outer{j} data_train_cv_inner = data_train_cv_outer_data_test_cv_inner feature_selected_inner =

```
Fscore(data train cv inner, feature selection parameters \{k\})
              classifer inner
                                           classifier construct(feature selected inner,
                                   =
classifier parameters \{k\})
              label predict cv{i} = predict(classifer inner,data test cv inner)
           end
           acc cv(k) = acc calculate(label actual cv,label predict cv)
    end
    index max acc cv = max index(acc cv)
    best parameter = parameter combinations {index max acc cv)
    feature selected outer
                                                                                    =
Fscore(data train cv outer,best feature selection parameter)
    classifier outer
                                                                                    =
classifier construct(feature selected outer,best classifier parameter)
    label predict\{i\} = predict(classifier outer,data test cv outer)
end
acc final = acc calculate(label actual, label predict)
```

3.2 Pseudo code of the final model construction

```
parameter combinations
                                           grid search(feautre selection parameters,
                                 =
classifier parameters)
for i = 1:5
    data test cv outer = data whole \{i\}
    data train cv outer = data whole-data test cv outer
    for k = 1:number of parameter combinations
         for j = 1:5
              data test cv inner = data train cv outer\{i\}
              data train cv inner = data train cv outer-data test cv inner
              feature selected inner
                                                                                    =
Fscore(data train cv inner, feature selection parameters {k})
              classifer inner
                                   =
                                          classifier construct(feature selected inner,
classifier parameters \{k\})
              label predict cv{i} = predict(classifer inner,data test cv inner)
           end
           acc cv(k) = acc calculate(label actual cv,label predict cv)
    end
    index max acc cv = max index(acc cv)
    best parameter = parameter combinations {index max acc cv)
    feature selected outer
                                                                                    =
Fscore(data train cv outer, best feature selection parameter)
    classifier outer
                                                                                    =
classifier construct(feature selected outer,best classifier parameter)
    label predict\{i\} = predict(classifier outer,data test cv outer)
end
acc final = acc calculate(label actual,label predict)
```

4. Result of the reproducibility analysis

The results of the reproducible analysis are listed in Table S9. In Table S9, the accuracy, MCC, AUC, sensitivity and specificity of 100 data-sets based on RF algorithm are $76.25\% \pm 3.56\%$, 0.5264 ± 0.0710 , 0.8563 ± 0.0309 , $75.36\% \pm 5.54\%$ and

 $77.14\% \pm 4.62\%$, respectively. These results are highly consistent with the results in Table 3.

5. Supplementary Tables

Table S1. Parameters in the feature selection							
Feature	02	18/	275	367	/158	550	
number)2	104	215	507	- 50	550	

	1						
Classifier			Mode	l paramet	er		
RF	Tree depth	1	3	15	63	251	1000
KNN	k-value	1	2	3	4	5	6
linearSVM	g	1.0000 e-04	0.0025	0.0631	1.5849	39.817 0	1000
	с	1.0000 e-05	3.9811e -04	0.0158	0.6310	25.118 9	1000
	g	1.0000 e-05	3.9811e -04	0.0158	0.6310	25.118 9	1000
DT	/	/	/	/	/	/	/
AdaBoost	/	/	/	/	/	/	/
GentleBoo st	/	/	/	/	/	/	/
LogitBoos t	/	/	/	/	/	/	/

Table S2. Model parameters of different classifiers

Table S3.	Parameters	for	final	model	construction

Classifier	Easture much on	Madal nanomatan
Classifier	Feature number	Model parameter
RF	184	Tree depth $= 63$
KNN	275	k-value = 1
linearSVM	550	g=1.5849
rbfSVM	367	c=25.119, g=0.6310
DT	275	/
AdaBoost	550	/
GentleBoost	184	/
LogitBoost	275	/

reature scoring methods based on nve-rold cross-vandation							
Machine	Feature						
learning	scoring	SN(%)	SP(%)	ACC(%)	MCC	AUC	
method	method						
	Fscore	79.14	84.66	81.90	0.6390	0.9030	
RandomForest	Pearson	79.14	83.13	81.13	0.6232	0.9046	
	Lasso	78.83	83.74	81.29	0.6265	0.8978	

Table S4. Performance of the predictions under the combinations of RF with three feature scoring methods based on five-fold cross-validation

Table S5. Performance of the predictions under the combinations of RF with three feature scoring methods based on independent testing dataset

Machine	Feature					
learning	scoring	SN(%)	SP(%)	ACC(%)	MCC	AUC
method	method					
	Fscore	76.77	77.78	77.27	0.5455	0.8332
RandomForest	Pearson	72.73	73.74	73.23	0.4647	0.8276
	Lasso	67.68	79.80	73.74	0.4783	0.8276

Table S6. The prediction performances of different classifiers based on five-fold cross-validation

Number	of					
feature	Classifier	SN(%)	SP(%)	ACC(%)	MCC	AUC
descriptors						
	RF	80.06	82.52	81.29	0.6260	0.9019
	KNN	68.71	78.83	73.77	0.4779	0.8067
	rbfSVM	67.79	74.23	71.01	0.4211	0.7898
	linearSVM	78.22	79.14	78.68	0.5736	0.8496
sixteen	DT	69.95	72.09	71.01	0.4203	0.7085
	LSTM	65.23	75.38	70.31	0.4083	0.7313
	AdaBoost	78.53	79.75	79.14	0.5829	0.8742
	GentleBoost	78.53	80.06	79.29	0.5860	0.8687
	LogitBoost	78.53	80.98	79.75	0.5953	0.8744

Table S7.	The	prediction	performances	of	different	classifiers	based	on	independ	dent
testing dat	taset									

Number of						
feature	Classifier	SN(%)	SP(%)	ACC(%)	MCC	AUC
descriptors						
	RF	74.45	76.77	75.76	0.5153	0.8414
	rbfSVM	69.70	77.78	73.74	0.4763	0.7783
sixteen	KNN	58.59	75.76	67.17	0.3486	0.6717
	DT	73.74	60.61	67.17	0.3464	0.6797
	linearSVM	64.65	71.72	68.18	0.3645	0.7306

LSTM	58.59	63.64	61.11	0.2225	0.6041
AdaBoost	71.72	69.70	70.71	0.4142	0.7810
GentleBoost	73.74	68.69	71.21	0.4248	0.7792
LogitBoost	75.76	74.75	75.25	0.5051	0.8008

Table S8. The data sources of three predictors

	BBPpred	B3Pred	BBPpredict
	Positive: Brainpeps,	Positive: B3Pdb	Positive: Brainpeps,
	Pepbank, articles,		B3Pdb, BBPpred,
Data source	STAPdb		B3Pred, articles
	Negative: UniPort	Negative: UniPort	Negative: UniPort
		PubMed: 'blood-brain	PubMed:(((Brain[Title/A
		barrier' or	bstract]) OR (blood-brain
		'penetrating/crossing/perm	barrier[Title/Abstract]))
		eating peptides' till July	AND
		2020, as an advanced	peptide[Title/Abstract])
		search query that should be	AND
Article search		included in the research	(transport[Title/Abstract]
rules	none	articles' title/abstract.	OR
			transfer[1itle/Abstract]
			OK
			permeation[11tte/Abstract
] OK
			ct])" covering the period
			2011.01–2021.11
	UniProt with guery		UniProt with the query
	"peptides length: [5		"peptides length: [5 TO
	TO 50] NOT blood		50] NOT blood brain
	brain barrier NOT		barrier NOT brain NOT
	brain NOT		brainpeps NOT b3pdb
	permeation NOT		NOT permeation NOT
	permeability		permeability NOT venom
Negative	NOT brainpeps	Randomly generated 2690	NOT toxin NOT
sample search	NOT	non-BBPs from the	transmembrane NOT
rules	transmembrane	Swiss-Prot database	transport NOT transfer
	NOT transport NOT		NOT membrane NOT
	transfer NOT venom		neuro NOT hemolysis
	NOT toxin NOT		AND reviewed: yes"
	membrane NOT		
	neuro NOT		
	nemolysis AND		
	reviewed: yes''.		

Article search deadline	/	2020.07.22	2021.11
Number of articles	7	271	300
Number of positive samples	119	269	425
Number of negative samples	119	2690	425
Peptide length	5-50	6-30	5-50

Table S9 The prediction performances of the reproducibility analysis for nine classifiers

Classifier	SN(%)	SP(%)	ACC(%)	MCC	AUC
RF	75.36 ± 5.54	77.14±4.62	76.25±3.56	0.5264 ± 0.0710	0.8563 ± 0.0309
rbfSVM	78.3 ± 5.29	74.32 ± 5.60	76.31±3.67	0.5283 ± 0.0141	0.8300 ± 0.0365
KNN	$75.66{\pm}5.09$	$74.52{\pm}5.07$	75.09 ± 3.47	0.5032 ± 0.0696	0.7509 ± 0.0347
DT	68.9 ± 6.95	$67.36{\pm}5.88$	68.13±4.35	$0.3643 {\pm} 0.0876$	$0.6795 {\pm} 0.0507$
linearSV M	66.68±6.52	74.74±5.30	70.71±4.24	0.4169±0.0848	0.7713±0.0433
LSTM	57.70±9.93	56.26±10.74	56.98±6.18	$0.1410{\pm}0.1244$	$0.5795 {\pm} 0.0767$
AdaBoost	64.96 ± 5.97	71.40±6.33	68.18±4.33	$0.3658 {\pm} 0.0872$	0.7398 ± 0.0435
GentleBoo st	70.24±6.76	72.72±5.29	71.48±4.05	0.4314±0.0812	0.7730 ± 0.0384
LogitBoos t	69.46±6.26	73.96±5.49	71.71±3.41	0.4367±0.0684	0.7770±0.0393

References

- Cai, C.Z., Han, L.Y., Ji, Z.L., Chen, X., and Chen, Y.Z. (2003). SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. *Nucleic Acids Res* 31(13), 3692-3697. doi: 10.1093/nar/gkg600.
- Cai, C.Z., Han, L.Y., Ji, Z.L., and Chen, Y.Z. (2004). Enzyme family classification by support vector machines. *Proteins* 55(1), 66-76. doi: 10.1002/prot.20045.
- Chen, Z., Zhao, P., Li, F., Leier, A., Marquez-Lago, T.T., Wang, Y., et al. (2018). iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. *Bioinformatics* 34(14), 2499-2502. doi: 10.1093/bioinformatics/bty140.
- Chou, K.C. (2001). Prediction of protein cellular attributes using pseudo-amino acid composition. *Proteins* 43(3), 246-255. doi: 10.1002/prot.1035.
- Chou, K.C. (2005). Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. *Bioinformatics* 21(1), 10-19. doi: 10.1093/bioinformatics/bth466.
- Dubchak, I., Muchnik, I., Holbrook, S.R., and Kim, S.H. (1995). Prediction of protein folding class using global description of amino acid sequence. *Proc Natl Acad Sci U S A* 92(19), 8700-8704. doi: 10.1073/pnas.92.19.8700.
- Dubchak, I., Muchnik, I., Mayor, C., Dralyuk, I., and Kim, S.H. (1999). Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. *Proteins* 35(4), 401-407.
- Feng, Z.P., and Zhang, C.T. (2000). Prediction of membrane protein types based on the hydrophobic index of amino acids. J Protein Chem 19(4), 269-275. doi: 10.1023/a:1007091128394.
- Horne, D.S. (1988). Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. *Biopolymers* 27(3), 451-477. doi: 10.1002/bip.360270308.
- Jiao, Y.S., and Du, P.F. (2016). Predicting Golgi-resident protein types using pseudo amino acid compositions: Approaches with positional specific physicochemical properties. J Theor Biol 391, 35-42. doi: 10.1016/j.jtbi.2015.11.009.
- Saravanan, V., and Gautham, N. (2015). Harnessing Computational Biology for Exact Linear B-Cell Epitope Prediction: A Novel Amino Acid Composition-Based Feature Descriptor. *Omics* 19(10), 648-658. doi: 10.1089/omi.2015.0095.
- Sokal, R.R., and Thomson, B.A. (2006). Population structure inferred by local spatial autocorrelation: an example from an Amerindian tribal population. Am J Phys Anthropol 129(1), 121-131. doi: 10.1002/ajpa.20250.
- Xiao, N., Cao, D.S., Zhu, M.F., and Xu, Q.S. (2015). protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. *Bioinformatics* 31(11), 1857-1859. doi: 10.1093/bioinformatics/btv042.