

Supplementary information

Interacting bioenergetic and stoichiometric controls on microbial growth

Arjun Chakrawal^{1, 2*}, Salvatore Calabrese³, Anke M. Herrmann⁴, and Stefano Manzoni^{1, 2}

¹Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden

²Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden

³Department of Biological and Agricultural Engineering, Texas A&M University, 333 Spence St, College Station, TX 77843 USA.

⁴Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden

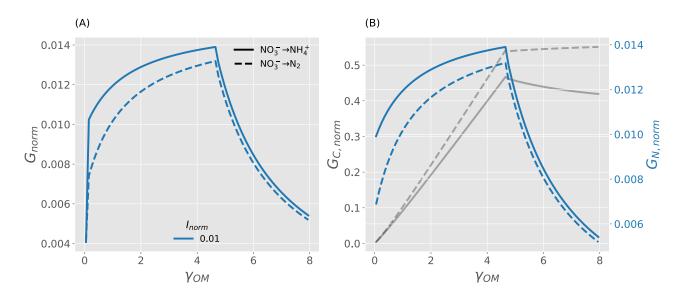
* Correspondence: Arjun Chakrawal arjun.chakrawal@natgeo.su.se

1 Supplementary Tables

Table S1. Half-reactions of reduction of electron acceptors (EAs), moles of electron received by the EA (γ_{EA}), and change in Gibbs energy ($\Delta_{red}G_{EA}$) expressed per mol of EA or per mol of electron (LaRowe and Amend, 2015; Dick, 2019).

Compound	YEA	Half-reaction	Δ _{red} G _{EA} (kJ/mol EA)	$\frac{\Delta_{red}G_{EA}}{\gamma_{EA}}$ (kJ/mol e^-)
0 ₂ (oxygen)	4	$0_2 + 4e^- + 4H^+ \rightarrow 2H_2O$	-490.9	-122.72
Mn ⁺⁴ (pyrolusite)	2	$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	-240	-120
Fe ⁺³ (goethite)	1	$FeOOH + 3H^+ + e^- \rightarrow Fe^{2+} + 2H_2O$	-75.6	-75.6
Fe ⁺³ (ferrihydrite)	1	$FeOOH + 3H^+ + e^- \rightarrow Fe^{2+} + 2H_2O$	-100.6	-100.6
SO4 ⁻² (sulfate)	8	$SO4^{2-} + 8e^{-} + 9H^{+} \rightarrow HS^{-} + 4H_{2}O$	-192.3	-24.04
			$\Delta_{red}G_{EA} = \Delta_{red}G_N$ (kJ/mol NO ₃ ⁻)	
NO_3^- (nitrate, DNRA)	8	$NO_3^- + 8e^- + 10H^+ \rightarrow NH_4^+ + 3H_2O$	-680	-85
NO ₃ ⁻ (nitrate, denitrification)	8	$NO_3^- + 5e^- + 6H^+ \rightarrow 0.5 N_2 + 3H_2O$	-591.5	-118.2

Table S2. Example of reaction for microbial growth on glucose/oxygen/nitrate and glycine/nitrate/nitrate as organic matter (OM)/electron acceptor (EA)/ inorganic N source, including chemical equations and change in Gibbs energy (ΔG).


Reaction	Chemical equation (Glycine/NO $_3^-$ /NO $_3^-$)	ΔG
Catabolism	OM oxidation: $CH_{2.5}ON_{0.5} + 2H_2O \rightarrow HCO_3^- + 0.5NH_4^+ + 3.5 H^+ + 3e^-$	48.9 kJ (C-mol glycine) ⁻¹
	EA reduction: $NO_3^- + 8e^- + 10H^+ \rightarrow NH_4^+ + 3H_2O$	$-680 ext{ kJ (mol NO_3^-)^{-1}}$
	Overall catabolic reaction: $CH_{2.5}ON_{0.5} + 0.375NO_3^- + 0.875H_2O + 0.25 H^+ → HCO_3^- + 0.875 NH_4^+$	-223 kJ (C-mol glycine) ⁻¹
Anabolism	$1.4 \text{ CH}_{2.5}\text{ON}_{0.5} + 0.1\text{H}^+ + 0.3\text{H}_2\text{O}$ $\rightarrow \text{CH}_{1.8}\text{O}_{0.5}\text{N}_{0.2} + 0.4 \text{ HCO}_3^- + 0.5\text{NH}_4^+$	-8.95 kJ (C-mol biomass) ⁻¹
Overall metabolic reaction*	$\begin{array}{c} \mathrm{CH_{2.5}ON_{0.5}+0.2175\ NO_{3}^{-}+0.6\mathrm{H_{2}O}+0.175\mathrm{H^{+}}}\\ \rightarrow0.3\ \mathrm{CH_{1.8}O_{0.5}N_{0.2}+0.6575\ N\mathrm{H_{4}^{+}+0.7\ HCO_{3}^{-}} \end{array}$	-137 kJ (C-mol glycine) ⁻¹
	$\begin{array}{l} 3.33 \text{CH}_{2.5} \text{ON}_{0.5} + 0.725 \text{ NO}_3^- + 2\text{H}_2\text{O} + 0.5833 \text{H}^+ \rightarrow \\ \text{CH}_{1.8} \text{O}_{0.5} \text{N}_{0.2} + 2.2 \text{NH}_4^+ + 2.33 \text{HCO}_3^- \end{array}$	-465 kJ (C-mol biomass) ⁻¹

Reaction	Chemical equation (Glucose/ O_2/NO_3^-)	ΔG	
Catabolism	OM oxidation: $CH_2O + 2H_2O \rightarrow HCO_3^- + 5H^+ + 4e^-$	60.3 kJ (C-mol glucose) ⁻¹	
	EA reduction: $0_2 + 4e^- + 4H^+ \rightarrow 2H_20$	-490.9 kJ (mol 0_2) ⁻¹	
	N source reduction: $NO_3^- + 8e^- + 10H^+ \rightarrow NH4^+ + 3H_2O$	-680 kJ (mol NO ₃ ⁻) ⁻¹	
	Overall catabolic reaction: $CH_2O + 0.185NO_3^- + 0.63O_2 + 0.185H_2O \rightarrow 0.63 H^+ + HCO_3^- + 0.185 NH_4^+$	-375 kJ (C-mol glucose) ⁻¹	
Anabolism	$\begin{array}{l} 1.05 \ \mathrm{CH_2O} + 0.2 \ \mathrm{NH_4^+} \rightarrow \mathrm{CH_{1.8}O_{0.5}N_{0.2}} + 0.05 \ \mathrm{HCO_3^-} + 0.25 \ \mathrm{H^+} + \\ 0.4 \mathrm{H_2O} \end{array}$	-8.95 kJ (C-mol biomass) ⁻¹	
Overall metabolic reaction*	$\begin{array}{c} \mathrm{CH_2O} + 0.094~\mathrm{NO_3^-} + 0.32\mathrm{O_2} \\ \rightarrow 0.47~\mathrm{CH_{1.8}O_{0.5}N_{0.2}} + 0.53~\mathrm{HCO_3^-} + 0.436\mathrm{H^+} \\ + 0.097\mathrm{H_2O} \end{array}$	-192 kJ (C-mol glucose) ⁻¹	
	$2.12CH_2O + 0.2 NO_3^- + 0.68O_2 \rightarrow CH_{1.8}O_{0.5}N_{0.2} + 1.12HCO_3^- + 0.927H^+ + 0.2 H_2O$	-408.5 kJ (C-mol biomass) ⁻¹	

* To obtain the overall metabolic reaction for glycine and glucose, the growth efficiencies ($e_{glycine} = 0.3$ and $e_{glucose} = 0.47$) are estimated from Eq. (34) and then used Eq.(22).

Table S3. Values of Gibbs energy of formation for selected compounds at pH 7 from Kleerebezem and Van Loosdrecht (2010).

Compound	Gibbs energy of formation $\Delta_f G^0$ (kJ/mol)
Water	-237.2
Bicarbonate	-586.85
Glucose	-917.22
H^+	0
Oxygen	16.4
Nitrate	-111
Ammonium	-79.5

2 Supplementary Figures

Figure S1. Enlarged view of growth rates in Figure 4 for $I_{norm} = 0.01$. (A) normalized microbial growth rate (G_{norm}) as a function of degree of reduction of the OM, when the OM is catabolized via denitrification (dashed curves) or DNRA pathway (solid curves). (B) normalized microbial growth rate under C ($G_{C,norm}$; Eq. (3)) and N ($G_{N,norm}$; Eq. (4)) limited conditions.

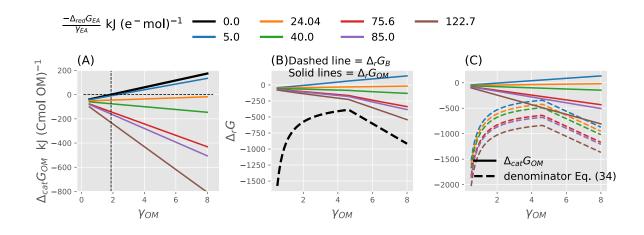


Figure S2. (A) Change in Gibbs energy dissipated from the catabolic reaction ($\Delta_{cat}G_{OM}$; kJ (C-mol OM)⁻¹) as a function of the degree of reduction of OM (γ_{OM}), for different values of change in Gibbs energy of the EA reduction reaction ($\Delta_{red}G_{EA}/\gamma_{EA}$; kJ per mol of electrons accepted by 1 mol of EA), shown as curves of different colors. The black line indicates $\Delta_{cat}G_{OM} = \Delta_{ox}G_{OM}$, when $\Delta_{red}G_{EA} = 0$. The thin dashed lines indicate $\Delta_{cat}G_{OM} = 0$ and $\gamma_{ED} = 1.8$, above which $\Delta_{cat}G_{OM} > 0$. (B) Change in Gibbs energy dissipated from overall reaction $\Delta_r G_{OM}$ (solid lines; kJ (C-mol OM)⁻¹) and $\Delta_r G_B$ (dashed line; kJ (C-mol B)⁻¹) as a function of γ_{ED} . (C) Numerator ($\Delta_{cat}G_{ED}$) and denominator of Eq. (34) ($\Delta_r G_B - \Delta_{ana} G_B + \gamma_B / \gamma_{OM} \Delta_{cat} G_{OM}$) as a function of γ_{OM} ; these two terms determine trends in *e* with γ_{OM} .

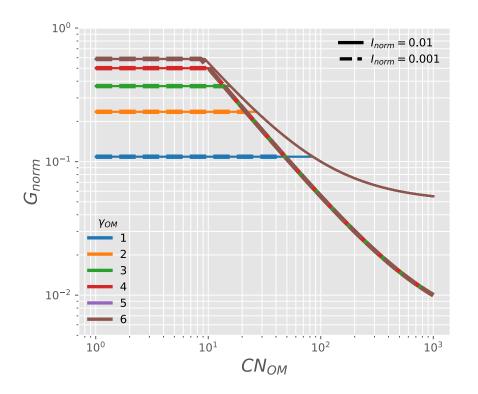


Figure S3. Variation of normalized microbial growth rate (G_{norm}) when overflow respiration is assumed instead of decreased organic matter(OM) uptake under N limitation (see Figure 5 for the latter scenario). Variations in G_{norm} are assessed along a gradient of OM C:N ratio (CN_{OM}) under aerobic conditions, and with varying degree of reduction of OM (γ_{OM} ; curves with different colors), and different inorganic N availability (I_{norm} , solid vs. dashed curves).

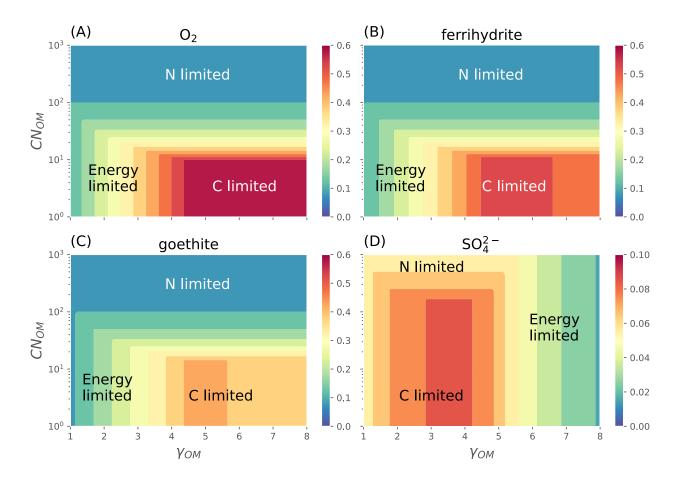


Figure S4. Variation of normalized microbial growth rate (G_{norm} ; contours curves with different colors) when overflow respiration is assumed instead of decreased organic matter(OM) uptake under N limitation (see Figure 6 for the latter scenario). Variations in G_{norm} are assessed along a gradient of OM C:N ratio (CN_{OM}) and degree of reduction (γ_{OM}), for different electron acceptors. A constant value of $I_{norm} = 0.01$ was assumed.

3 Code availability

A python script used to generate all figures is provided in this Github repository <u>https://github.com/ArjunChakrawal/Stoichiometry-and-Thermodynamics.git</u>.