Supplementary information

Extracellular vesicles in kidney disease

In the format provided by the authors and unedited

Supplementary Table 1 | Therapeutic use of extracellular vesicle in animal models of kidney damage.

Extracellular vesicle origin	Model	Type of injury	Dose	Effects	Refs
MSCs		J			1
Bone Marrow	Glycerol	AKI	Single injection:15 μg 2.2x10 ⁸ EVs	Stimulation of tubular epithelial cells proliferation and apoptosis resistance	1, 2
	IRI	AKI	Single injection: 5×10^{10} EVs	Delivery of miR-199a-3p with Sema3A downregulation and AKT and ERK pathways activation	3
	Cisplatin	AKI	Single injection: 100 µg	Anti-apoptotic effect, by up-regulating anti- apoptotic genes	4
	Gentamicin	AKI	Single injection: 100 μg	Anti-inflammatory effect	5
	IRI	AKI	Single injection:200 µg	Anti-inflammatory effect; CCR2 EVs acting as decoy receptor to suppress CCL2 activity	6
	Cisplatin	CKD	Multiple injections: 100 µg followed by 50 µg every 4 days	Anti-apoptotic effect by up-regulating anti- apoptotic genes	4
	Remnant kidney	CKD	Single injection: 30 µg	Inhibition of fibrosis, interstitial lymphocyte infiltration and tubular atrophy	7
	UUO	CKD	Single injection: 30 µg	Decrease of serum creatinine and BUN	8
	UUO	CKD	Single: 0.5 mg/kg	Inhibition of fibrosis, by inhibiting the RhoA/ROCK pathway	9
	Type 1 diabetes	CKD	Multiple injections: 1x10 ¹⁰ EVs	Inhibition of fibrosis, via EV miRNA cargo	10
	Type 1 diabetes	CKD	Single injection: 100 µg/Kg	Induction of authophagy by increase of LC3 and Beclin-1 and decrease of mTOR and fibrotic markers	11
	Aristolochic acid nephropathy	CKD	Multiple injections: 1x10 ¹⁰ EVs	Inhibition of pro-fibrotic genes α -Sma, Tgfb1, and Col1a1	12
Human umbilical cord	Cisplatin	AKI	Single injection: 200 µg	Amelioration of oxidative stress and cell apoptosis, promotion of proliferation	13
	IRI	AKI	Single injection: 30 µg	Induction of HGF synthesis that facilitates cell dedifferentiation and growth	14
	UUO	CKD	Multiple injections: 200 µg (10mg/Kg)	Attenuation of fibrosis through inhibition of YAP activity by CK1 δ/β -TRCP	15
	Sepsis/ cecal ligation	AKI	Single injection: 100 μg	Anti-inflammatory effect by miR-146b up- regulation and NF-κB activity inhibition	16
Wharton Jelly-	IRI	AKI	Single injection:100 µg	Anti-inflammatory effect through suppression of CX3CL1	17
	IRI	AKI	Single injection:100 µg	Inhibition of mitochondrial fission via miR-30	18
	Cyclosporine A	CKD	Multiple injections: 100 µg	Anti-oxidative property by inhibition of α -sma and ROS generation	19

Renal	IRI	AKI	Single injection: 2x10 ⁷ EVs	Pro-angiogenic effect with increase of peritubular capillaries and amelioration of microvascular rarefaction	20
	IRI	AKI	Single injection: 4x10 ⁸ EVs	Stimulation of tubular proliferation	21
Liver (HLSCs)	Aristolochic acid nephropathy	CKD	Multiple injections: 1x10 ¹⁰ EVs	Inhibition of fibrosis by reducing of pro-fibrotic genes α -Sma, Tgfb1, and Col1a1	22
	Type 1 diabetes	CKD	Multiple injections: 1x10 ¹⁰ EVs	Inhibition of fibrosis via miRNA transfer	10
Adipose tissue	Metabolic syndrome and renal artery stenosis	CKD	Single injection: 1x10 ¹⁰ EVs	Anti-inflammatory effect ^{84,85} ; increase of T reg population ⁸⁵	23 24
	Cisplatin	AKI	Double injections: 100 µg	Inhibition of apoptosis and inflammation by modulating Wnt/ TGF-β, and epithelial– mesenchymal transition signaling pathways.	25
	Sepsis/ cecal ligation	AKI	Single injection: 100 µg	Inhibition of inflammation and apoptosis through SIRT1 signaling pathway	26
	DOCA-salt hypertension	CKD	Multiple injections: 1.5x10 ⁹ EVs	Anti-inflammatory effect	27
	Spontaneous diabetes mice	CKD	Multiple injections	Promotion of autophagy flux and inhibition of apoptosis ⁹³ ; Amelioration of podocyte damage by transfer of miR-26a-5p ⁹⁴	28 29
Embryonic	Remnant kidney	CKD	Multiple injections: 7 µg twice daily for 4 consecutive days	Reduction of tubular and glomerular damage	30
Human placenta	IRI	AKI	Multiple injections: 100 µg	Promotion of renal regeneration by Sox9+ cell activation	31
EPCs					
	IRI	AKI/C KD	Single injection: 30 µg	Promotion of renal regeneration by reprogramming hypoxic resident renal cells	32
	Thy1.1 glomerulonephri tis	AKI	Single injection: 30 µg	Inhibition of antibody- and complement- mediated injury of mesangial cells	33
ECFCs		•			
	IRI	AKI	Single injection: 15 µg Single injection: 20 µg	Inhibition of endothelial cell apoptosis ⁸² ; Renal protection via transfer of miR-486-5p targeting PTEN ⁸³	34-36
Human-induce	d pluripotent stem	cells	· • •	•	•
hiPSC-MSCs	ÎRI	AKI	Single injection: 1x10 ¹² EVs	Anti-necroptosis effect via delivering SP1	37
hiPSCs	IRI	AKI	Single injection: 1x10 ⁹ EVs	Reduction of cell death and inflammatory	38
Embryonic ster	m cells	-		•	•
ESC line	IRI	AKI	Double injections: 100 µg	Stimulation of proliferation and angiogenesis, inhibition of renal fibrosis	39

Kidney	IRI	AKI	Double injections: 100 µg	Reduction of tubular damage, neutrophil infiltration and fibrosis	40
Urine	·				
Urine	Glycerol	AKI	Single injection: 2x10 ⁸ EVs	Stimulation of tubular cell proliferation, reduction of inflammatory and injury markers, and restoration of endogenous Klotho loss	41
Urine-deriv	ved MSCs				
Urine	streptozotocin induced-diabetic nephropathy	CKD	Multiple injections: 100 µg	Inhibition of podocyte apoptosis and promotion of vascular regeneration	42

Studies administering extracellular vesicles, released by different sources, in models of AKI and CKD are listed, with the different modalities of administration and dosage. MSCs: mesenchymal stromal cells; EPCs: endothelial progenitor cells; ECFCs: endothelial colony forming cells; HLSCs: human liver stem cells; UUO: obstruction of the ureter; IRI: ischemia reperfusion injury; hiPSCs: human-induced pluripotent stem cells; ESCs: embryonic stem cells.

References

- 1. Bruno, S., et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. *J. Am. Soc. Nephrol.* **20**, 1053-1067 (2009).
- 2. Collino, F., et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNA. *J. Am. Soc. Nephrol.* **26**, 2349-2360 (2015).
- 3. Zhu, G., et al. Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. *J. Cell. Physiol.* **234**, 23736-23749 (2019).
- 4. Bruno, S., et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. *PLoS One* **7**, e33115 (2012).
- Reis, L.A., Borges, F.T., Simões, M.J., Borges, A.A., Sinigaglia-Coimbra, R. & Schor, N. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicininduced acute kidney injury through paracrine effects in rats. *PLoS One* 7, e44092 (2012).
- Shen, B., et al. CCR2 Positive Exosome Released by Mesenchymal Stem Cells Suppresses Macrophage Functions and Alleviates Ischemia/Reperfusion-Induced Renal Injury. *Stem Cells Int.* 1240301 (2016).
- 7. He, J., et al. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. *Nephrology (Carlton)* **17**, 493-500 (2012).

- He, J., et al. Micro-vesicles derived from bone marrow stem cells protect the kidney both in vivo and in vitro by microRNA-dependent repairing. Nephrology (Carlton) 20, 591-600 (2015).
- Shi, Z., Wang, Q., Zhang, Y. & Jiang, D. Extracellular vesicles produced by bone marrow mesenchymal stem cells attenuate renal fibrosis, in part by inhibiting the RhoA/ROCK pathway, in a UUO rat model. Stem Cell Res. Ther. 11, 253 (2020).
- 10. Grange, C., et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. *Sci. Rep.* **9**, 4468 (2019).
- Ebrahim, N., et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. *Cells* 7, 226 (2018).
- Kholia, S., et al. Mesenchymal Stem Cell Derived Extracellular Vesicles Ameliorate Kidney Injury in Aristolochic Acid Nephropathy. *Front. Cell Dev. Biol.* 8, 188 (2020).
- Zhou, Y., et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. *Stem Cell Res. Ther.* 4, 34 (2013).
- 14. Ju, G.Q., et al. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. *PLoS One* **10**, e0121534 (2015).
- 15. Ji C., et al. Exosomes derived from hucMSC attenuate renal fibrosis through CK1δ/β-TRCPmediated YAP degradation. *Cell Death Dis.* **11**, 327 (2020).
- 16. Zhang, R., et al. Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression. *Biotechnol. Lett.*42, 669-679 (2020).

- Zou, X., et al. Microvesicles derived from human Wharton's Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. *Stem Cell Res. Ther.* 5, 40 (2014).
- Gu, D., Zou, X., Ju, G., Zhang, G., Bao, E. & Zhu, Y. Mesenchymal Stromal Cells Derived Extracellular Vesicles Ameliorate Acute Renal Ischemia Reperfusion Injury by Inhibition of Mitochondrial Fission through miR-30. *Stem Cells Int.* 2093940 (2016).
- Zhang, G.Y., et al. Extracellular-vesicles derived from human Wharton-Jelly mesenchymal stromal cells ameliorated cyclosporin A-induced renal fibrosis in rats. *Int. J. Clin. Exp. Med.* 12, 8943-8949 (2019).
- 20. Choi, H.Y., et al. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury. *PLoS One* 9, e87853 (2014).
- 21. Ranghino, A., et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. *Stem Cell Res. Ther.* **8**, 24 (2017).
- 22. Kholia, S., et al. Human Liver Stem Cell-Derived Extracellular Vesicles Prevent Aristolochic Acid-Induced Kidney Fibrosis. *Front. Immunol.* **9**, 1639 (2018).
- 23. Eirin, A., et al. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. *Kidney Int.* **92**,114-124 (2017).
- 24. Song, T.R., et al. Mesenchymal stem cell-derived extracellular vesicles induce regulatory T cells to ameliorate chronic kidney injury. *Hypertension* **75**, 1223-1232 (2020).
- 25. De Almeida D.C., et al. A Regulatory miRNA-mRNA Network Is Associated with Tissue Repair Induced by Mesenchymal Stromal Cells in Acute Kidney Injury. *Front. Immunol.* 7, 645 (2017).
- 26. Gao, F., Zuo, B., Wang, Y., Li, S., Yang, J. & Sun, D. Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. *Life Sci.* 255, 117719 (2020).

- Lindoso, R.S., et al. Adipose Mesenchymal Cells-Derived EVs Alleviate DOCA-Salt-Induced Hypertension by Promoting Cardio-Renal Protection. *Mol. Ther. Methods Clin. Dev.* 16, 63-77 (2019).
- 28. Jin, J., et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. *Stem Cell Res.* 10, 95 (2019).
- 29. Duan, Y., et al. Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p target TLR4 and protect against diabetic nephropathy. *J. Biol. Chem.* **295**, 12868-12884 (2020).
- 30. Van Koppen, A., et al. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. *PLoS One* 7, e38746 (2012).
- 31. Zhang, K., et al. In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment. *J. Biol. Chem.* 295, 12203-12213 (2020).
- 32. Cantaluppi, V., et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. *Kidney Int.* **82**, 412-427 (2012).
- 33. Cantaluppi, V., et al. Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. *Nephrol. Dial. Transplant.* **30**, 410-422 (2015).
- 34. Burger, D., et al. Human Endothelial Colony-Forming Cells Protect against Acute Kidney Injury Role of Exosomes. *Am. J. Pathol.* **185**, 2309-2323 (2015).
- 35. Viñas, J.L., et al. Transfer of microRNA-486-5p from human endothelial colony forming cellderived exosomes reduces ischemic kidney injury. *Kidney Int.* **90**, 1238-1250 (2016).

- 36. Viñas, JL., et al. Receptor-Ligand Interaction Mediates Targeting of Endothelial Colony Forming Cell-derived Exosomes to the Kidney after Ischemic Injury. Sci. Rep. 8, 16320 (2018).
- 37. Yuan, X., et al. Extracellular vesicles from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect against renal ischemia/reperfusion injury via delivering specificity protein (SP1) and transcriptional activating of sphingosine kinase 1 and inhibiting necroptosis. *Cell Death Dis.* **8**, 3200-3218 (2017).
- 38. Collino, F., et al. Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model. *Cells* 9, 453 (2020).
- 39. Yu, L., et al. Embryonic stem cell-derived extracellular vesicles promote the recovery of kidney injury. *Stem Cell Res. Ther.* **12**, 379 (2021).
- 40. Dominguez, J.H., Liu, Y., Gao, H., Dominguez, J.M. 2nd., Xie, D. & Kelly, K.J. Renal Tubular Cell-Derived Extracellular Vesicles Accelerate the Recovery of Established Renal Ischemia Reperfusion Injury. J. Am. Soc. Nephrol. 28, 3533-3544 (2017).
- 41. Grange, C., et al. Urinary Extracellular Vesicles Carrying Klotho Improve the Recovery of Renal Function in an Acute Tubular Injury Model. *Mol. Ther.* **28**, 490-502 (2020).
- 42. Jiang, Z.Z., et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. *Stem Cell Res. Ther.* **7**, 24-37 (2016).