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Supplementary Table 1 | Therapeutic use of extracellular vesicle in animal models of kidney 

damage. 

 
Extracellular 

vesicle origin 

Model Type 

of 

injury 

Dose Effects Refs 

MSCs 

Bone Marrow Glycerol AKI Single 

injection:15 g 

2.2x108 EVs 

Stimulation of tubular epithelial cells 

proliferation and apoptosis resistance  

1, 2 

IRI AKI Single injection: 

5 × 1010 EVs 

Delivery of miR-199a-3p with Sema3A 

downregulation and AKT and ERK pathways 

activation  

3 

Cisplatin AKI Single injection: 

100 g 

Anti-apoptotic effect, by up-regulating anti-

apoptotic genes 

4 

Gentamicin AKI Single injection: 

100 g 

Anti-inflammatory effect 5 

IRI AKI Single 

injection:200 g 

Anti-inflammatory effect; CCR2 EVs acting as 

decoy receptor to suppress CCL2 activity  

6 

Cisplatin CKD Multiple 

injections: 100 g 

followed by 50 g 

every 4 days 

Anti-apoptotic effect by up-regulating anti-

apoptotic genes 

4 

Remnant kidney CKD Single injection: 

30 g 

Inhibition of fibrosis, interstitial lymphocyte 

infiltration and tubular atrophy 

7 

UUO CKD Single injection: 

30 g 

Decrease of serum creatinine and BUN 8 

UUO CKD Single: 0.5 mg/kg Inhibition of fibrosis, by inhibiting the 

RhoA/ROCK pathway 

9 

Type 1 diabetes CKD Multiple 

injections: 1x1010 

EVs 

Inhibition of fibrosis, via EV miRNA cargo  10 

Type 1 diabetes CKD Single injection: 

100 g/Kg 

Induction of authophagy by increase of LC3 and 

Beclin-1 and decrease of mTOR and fibrotic 

markers  

11 

Aristolochic 

acid 

nephropathy 

CKD Multiple 

injections: 1x1010 

EVs 

Inhibition of pro-fibrotic genes α-Sma, Tgfb1, 

and Col1a1 

12 

Human 

umbilical cord 

Cisplatin AKI Single injection: 

200 g 

Amelioration of oxidative stress and cell 

apoptosis, promotion of proliferation 

13 

IRI AKI Single injection: 

30 g 

Induction of HGF synthesis that facilitates cell 

dedifferentiation and growth 

14 

UUO CKD Multiple 

injections: 200 μg 

(10mg/Kg) 

Attenuation of fibrosis through inhibition of 

YAP activity by CK1δ/β-TRCP  

15 

Sepsis/ cecal 

ligation 

AKI Single injection: 

100 μg 

Anti-inflammatory effect by miR-146b up-

regulation and NF-κB activity inhibition  

16 

Wharton Jelly- IRI AKI Single 

injection:100 g 

Anti-inflammatory effect through suppression of 

CX3CL1 

17  

IRI AKI Single 

injection:100 g 

Inhibition of mitochondrial fission via miR-30 18 

Cyclosporine A CKD Multiple 

injections: 100 g 

Anti-oxidative property by inhibition of α-sma 

and ROS generation 

19 



Renal IRI AKI Single injection: 

2x107 EVs 

Pro-angiogenic effect with increase of 

peritubular capillaries and amelioration of 

microvascular rarefaction 

20 

IRI AKI Single injection: 

4x108 EVs 

Stimulation of tubular proliferation  21 

Liver (HLSCs) Aristolochic 

acid 

nephropathy 

CKD Multiple 

injections: 1x1010 

EVs 

Inhibition of fibrosis by reducing of pro-fibrotic 

genes α-Sma, Tgfb1, and Col1a1 

22 

Type 1 diabetes CKD Multiple 

injections: 1x1010 

EVs 

Inhibition of fibrosis via miRNA transfer 10 

Adipose tissue Metabolic 

syndrome and 

renal artery 

stenosis 

CKD Single injection: 

1x1010 EVs 

Anti-inflammatory effect84,85; increase of T reg 

population85 

23 
24 

Cisplatin AKI Double injections: 

100 g 

Inhibition of apoptosis and inflammation by 

modulating Wnt/ TGF-β, and epithelial–

mesenchymal transition signaling pathways. 

25 

Sepsis/ cecal 

ligation 

AKI Single injection: 

100 μg 

Inhibition of inflammation and 

apoptosis through SIRT1 signaling pathway 

26 

DOCA-salt 

hypertension 

CKD Multiple 

injections: 

1.5x109 EVs 

Anti-inflammatory effect 27 

Spontaneous 

diabetes mice 

CKD Multiple 

injections 

Promotion of autophagy flux and inhibition of 

apoptosis93; 

Amelioration of podocyte damage by transfer of 

miR-26a-5p94 

28 
29 

Embryonic Remnant kidney CKD Multiple 

injections: 7 g 

twice daily for 4 

consecutive days 

Reduction of tubular and glomerular damage 30 

Human 

placenta 

IRI AKI Multiple 

injections: 100 g 

Promotion of renal regeneration by Sox9+ cell 

activation 

31 

EPCs 

 IRI AKI/C

KD 

Single injection: 

30 g 

Promotion of renal regeneration by 

reprogramming hypoxic resident renal cells 

32 

Thy1.1 

glomerulonephri

tis 

AKI Single injection: 

30 g 

Inhibition of antibody- and complement-

mediated injury of mesangial cells 

33 

ECFCs 

 IRI AKI Single injection: 

15 g 

Single injection: 

20 g 

Inhibition of endothelial cell apoptosis82; 

Renal protection via transfer of miR-486-5p 

targeting PTEN83 

34-36 

Human-induced pluripotent stem cells 

hiPSC-MSCs IRI AKI Single injection: 

1x1012 EVs 

Anti-necroptosis effect via delivering SP1 37 

hiPSCs IRI AKI Single injection: 

1x109 EVs 

Reduction of cell death and inflammatory 38 

Embryonic stem cells 

ESC line IRI AKI Double injections: 

100 μg 

Stimulation of proliferation and angiogenesis, 

inhibition of renal fibrosis 

39 

Renal tubular cells 



Kidney IRI AKI Double injections: 

100 μg 

Reduction of tubular damage, neutrophil 

infiltration and fibrosis 

40 

Urine 

Urine Glycerol AKI Single injection: 

2x108 EVs 

Stimulation of tubular cell proliferation, 

reduction of inflammatory and injury markers, 

and restoration of endogenous Klotho loss 

41 

Urine-derived MSCs 

Urine streptozotocin 

induced-diabetic 

nephropathy  

CKD Multiple 

injections: 100 g 

Inhibition of podocyte apoptosis and promotion 

of vascular regeneration 

42 

 

Studies administering extracellular vesicles, released by different sources, in models of AKI and CKD 

are listed, with the different modalities of administration and dosage. MSCs: mesenchymal stromal 

cells; EPCs: endothelial progenitor cells; ECFCs: endothelial colony forming cells; HLSCs: human 

liver stem cells; UUO: obstruction of the ureter; IRI: ischemia reperfusion injury; hiPSCs: human-

induced pluripotent stem cells; ESCs: embryonic stem cells. 
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