The PDF file includes:

Figure S1. Palmitoylation of cGAS suppresses its activation.

- Figure S2. ZDHHC18 is a major acyltransferase for cGAS palmitoylation.
- Figure S3. Palmitoylation inhibits DNA binding to cGAS.
- Figure S4. Palmitoylation dampens cGAS dimerization.
- Figure S5. ZDHHC18 negatively regulates cGAS activation.
- Figure S6. Zdhhc18 deficiency promotes antiviral activity against DNA viruses in mice.

Table S1. Materials.

- Table S2. Target sequences of shRNAs.
- Table S3. Primers for Quantitative PCR.

Figure S1. Palmitoylation of cGAS suppresses its activation.

(A) A schematic diagram showing the general process of the acyl resine-assisted capture (acyl-RAC) assay.

(**B**) Acyl-RAC assay of HEK293T cells transfected with Flag-cGAS and the indicated plasmids for 24 h or treated with cGAMP (1 μ g/ml) for 1 h.

(C) Quantification of palmitoylation levels of Flag-cGAS in (B)

(**D** to **F**) The positions of C405(D), C409(E) and C474(F) in the human cGAS-DNA complex. The blue sphere indicates cysteines and the yellow helix indicates DNA.

(G-I) L929 cells were treated with palmitic acid (0, 100 μ M, or 200 μ M) for 12 h and transfected with HT-DNA (2 μ g/mL) for 6 h before RT-qPCR analysis of Ifnb1 (G), Rantes (H) and Cxcl10 (I) expression. HT-DNA: herring testis DNA. BSA: Bovine serum albumin.

(J) HEK293T cells (5×10^5) were transfected with HA-cGAS (200 ng) and Flag-STING (200 ng) expression plasmids and treated with palmitic acid (0, 50 μ M, or 100 μ M) for 12 h before luciferase reporter assays were conducted.

Data information: Data are representative of at least two independent experiments; mean \pm SEM from triplicates of technical replicates, unpaired t test; *, P<0.01. ***, P<0.001.

Figure S2. ZDHHC18 is a major acyltransferase for cGAS palmitoylation.

(A and B) Expression level of ZDHHCs in THP-1 cells (A) and HEK293T cells (B) according to The Human Protein Atlas (https://www.proteinatlas.org/). TPM: transcripts per million.

(C) The knockdown efficiency of individual ZDHHCs in HEK293T cells analyzed by RT-qPCR.

(**D**) Immunofluorescence analysis of endogenous ZDHHC18 in HeLa cells. Scale bars: 10 µm.

(E) Immunofluorescence analysis of Flag-ZDHHC18 (FL or truncated mutants) and GM130 or calnexin in HeLa cells. FL: full length. Scale bars: 7 μm.

(**F**) Colocalization (Pearson's correlation coefficient) of ZDHHC18 (FL or truncated mutants) and GM130 or calnexin in (E).

(G) Immunofluorescence analysis of stably overexpressed Flag-ZDHHC18 and GM130 or calnexin in HeLa cells with HT-DNA stimulation (or not). Scale bars: $10 \mu m$.

(H) Immunofluorescence analysis of Myc-ZDHHC18 and endogenous cGAS in HeLa cells. Scale bars: 7 μ m.

(I) Overall structure of the human ZDHHC18/cGAS/DNA complex. Cartoon representation of human ZDHHC18/cGAS/DNA complex. The ZDHHC18 is shown in salmon and the cGAS is highlighted with light blue, while two chains of DNA are limon and green, respectively. The three spheres represent the Zn^{2+} ions.

(**J**) Close-up of the ZDHHC18 active sites in (I). The ZDHHC motif is shown in firebrick sticks which surrounds C474 (skyblue stick) of cGAS.

(**K**) Close-up of the interaction face between ZDHHC18 and cGAS in (I). The key residues involved in the interaction are highlighted with pink sticks (cGAS) and limegreen sticks (ZDHHC18).

(L) Comparison of the binding free energy between ZDHHC18/cGAS/DNA complexes.

(**M**) Comparison of the structure of cGAS in different complexes. The cGAS proteins in ZDHHC18/cGAS/DNA and ZDHHC18/cGAS compelxes are shown with pink cartoon and marine cartoon respectively.

(**N-Q**) Distribution frequency of the distance between R176:CZ and E398:CD (N), between E216:CD and T211:OG (O), between K384:NZ and E216:CD (P) and between K384:NZ and E385:CD (Q) in different complexes during the simulation in (M).

Data information: Data are representative of at least two independent experiments; mean ± SEM from triplicates of technical replicates, unpaired t test; ns, not significant; ***, P<0.001.

Figure S3. Palmitoylation inhibits DNA binding to cGAS.

(A) Structure of the functionally active human cGAS-DNA 1:1 complex (PDB ID: 6CT9).

(**B**) The human cGAS-DNA 2:2 complex was constructed by SWISS MODEL based on the mouse cGAS-DNA 2:2 complex (PDB ID: 406A). Monomer A and monomer B in the dimer are displayed as cartoons and colored pale cyan and white, respectively. DNA-1 and DNA-2 are colored magenta and orange, respectively.

(C) Human cGAS-DNA 2:2 complex in the palmitoylation state. The S-palmitoylated C474 residues in monomer A and monomer B are shown as sticks and colored fire brick and deep teal, respectively.

(**D**) The interaction locations of monomer A and monomer B. I340-S345, N389-C405 and P450-R457 are the key residues involved in the interaction between monomer A and monomer B.

(E and F) The location of the S-palmitoylation C474 site in monomer A.

(**G-K**) Evolution of the distance between R339:HH12 and E481:OE1 (G), R339:HH22 and E481:OE1, (H), H444:HH22 and E481:OE1 (I), K479:HZ3 and E481:OE1 (J), and K479:HZ3 and E481:OE2 (K) of the WT and palmitoylated cGAS proteins over time.

(L) HEK293T cells (1×10^6) were transfected with HA-cGAS and Flag-ZDHHC18 (FL or truncated mutants) expression plasmids. Biotin-conjugated ISD was transfected into cells 6 h before harvesting. Lysates were coprecipitated with streptavidin beads and then assessed by immunoblot analysis as shown.

Data information: FL: full length; WCL: whole cell lysate; IP: immunoprecipitation.

Figure S4. Palmitoylation dampens cGAS dimerization.

(A) Distribution frequency of the distance between the center masses of monomer A and monomer B in the human cGAS-DNA 2:2 complex in the resting and palmitoylation states during the simulation.

(**B**) Distribution frequency of the radius of gyration (Rg) of the human cGAS-DNA 2:2 complex in the resting and palmitoylation states during the simulation.

(**C** and **D**) Comparison of the per-residue binding energy decomposition to the binding affinity between complex I and complex II in the human cGAS-DNA 2:2 complex in the resting (C) and palmitoylation (D) states.

(E) The MM-GBSA results for the human cGAS-DNA 2:2 complex in the resting and palmitoylation states.

(**F**) Immunoprecipitation (with an anti-Flag antibody) and immunoblot analysis of HEK293T cells transfected with plasmids encoding Flag-cGAS (2 μ g), HA-cGAS (2 μ g), and Myc-ZDHHC18 (0, 1, or 2 μ g) for 24 h. WCL: whole cell lysate; IP: immunoprecipitation.

(G) FRET assay of HeLa cells transfected with cGAS-EGFP and cGAS-mCherry expression plasmids for 24 h after transfection with the indicated shRNA. Scale bar: 8 µm.

(H) FRET efficiency of cGAS-GFP and cGAS-mCherry in (G).

Data information: Data are representative of at least two independent experiments; mean \pm SEM from triplicates of technical replicates, unpaired t test; nc: negative control; **, P<0.005.

Figure S5. ZDHHC18 negatively regulates cGAS activation.

(A and B) THP-1 cells were transfected with scrambled siRNA or ZDHHC18 siRNA (cocktail) for 48 h and then transfected with HT-DNA (2 μ g/mL) for the indicated times before RT-qPCR analysis of IFNB1 expression. The knockdown efficiency of ZDHHC18 is shown in A. ISD: IFN-stimulatory DNA.

(C) ZDHHC18 stably knockdown L929 cells were infected with HSV-1 (MOI:5). After six hours, the cGAMP concentration was tested using LC-MS/MS.

(**D-E**) MEFs (*Zdhhc18*^{+/+} or *Zdhhc18*^{-/-}) were infected with SeV (1:500) (D) or R848 (100 ng/ml) and LPS (100 ng/ml) (E). After six hours, the expression of interferon alpha and TNF beta were analyzed by RT-qPCR.

Data information: Data are representative of at least two independent experiments; mean \pm SEM from triplicates of technical replicates, unpaired t test; nc: negative control; ***, P<0.001; NS; no significance.

(A) Schematic presentation of the knockout strategy.

(B) Representative photomicrographs of spleen tissue H&E-stained sections from mice $(Zdhhc18^{+/+} \text{ or } Zdhhc18^{-/-})$ intravenously injected with HSV-1-FS (5 × 10⁷ PFU per mouse) or not after 2 days. PFU: plaque-forming units. H&E staining: hematoxylin-eosin staining. Scale bars: 200 µm.

(C-F) BMDMs ($Zdhhc18^{+/+}$ or $Zdhhc18^{-/-}$) were transfected with ISD (2 µg/ml) for 8 h before RTqPCR analysis for the expression of *Ifnb1* (C), *Ifna4* (D), *Cxcl10* (E) and *Il6* (F).

(G-H) PBMCs form two healthy people and three RA patients were analyzed by RT-qPCR for the expression of cGAS and ZDHHC18.

(I) PBMCs form healthy people were transfected with scrambled siRNA or ZDHHC18 siRNA (cocktail) for 48 h and then infected with VACV (1:200) for the indicated time before RT-qPCR analysis of ZDHHC18 expression.

Data information: Data are representative of at least two independent experiments; mean ± SEM from triplicates of technical replicates, unpaired t test; nc: negative control; *, P<0.05; **, P<0.01; ****, P<0.001; ****, P<0.0001.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
cGAS (D3O8O) (mouse specific)	Cell Signaling Tech	31659S
cGAS (D1D3G)	Cell Signaling Tech	15102S
ZDHHC18	Abcam	ab154790
STING/TMEM173	Proteintech	19851-1-AP
p-STING (S365) (D8F4W)	Cell Signaling Tech	72971S
IRF3 (D6I4C)	Cell Signaling Tech	11904S
p-IRF3 (S396) (4D4G)	Cell Signaling Tech	4947S
$p-I\kappa B\alpha$ (Ser32)	Bioss	bsm-52169S
Anti-Flag tag pAb	MBL	PM020
Anti-Myc tag pAb	MBL	562
Anti-HA tag pAb	MBL	561
Rabbit IgG (DA1E) Isotype Control	Cell Signaling Tech	3900S
GAPDH (14C10)	Cell Signaling Tech	2118S
Calnexin	Abcam	ab22595
Rab7 (D95F2)	Cell Signaling Tech	9367T
EEA1 (C45B10)	Cell Signaling Tech	3288T
Alexa Fluor 488 goat anti-mouse IgG (H+L)	Invitrogen	A11001
Alexa Fluor 488 goat anti-rabbit IgG (H+L)	Invitrogen	A11034
Alexa Fluor 568 goat anti-mouse IgG (H+L)	Invitrogen	A11031
Alexa Fluor 568 goat anti-rabbit IgG (H+L)	Invitrogen	A11011
Bacterial and virus strains		
HSV-1	Zhengfan Jiang's	N/A
	laboratory	
HSV-1 F strain	Zhengfan Jiang's	N/A
	laboratory	
GFP-HSV-1	Zhengfan Jiang's	N/A
	laboratory	
Chemicals, peptides, and recombinant proteins		
Protease Inhibitor Cocktail	Thermo Fisher Scientific	Cat#78430
Phosphatase inhibitor	Thermo Fisher Scientific	Cat#A32957
HT-DNA	Sigma	Cat#D6898
Palmitic acid	Sigma	Cat#P5585
2-Bromopalmitate	Sigma	Cat#238422
NEM	Sigma	Cat#04260
Hydroxylamine	Beyotime	Cat#ST093
Palmostatin B	Merck	Cat#178501
NBD-palmitoyl-CoA	Avanti	Cat#810705
IRDye 800 CW Azide Infrared Dye	LI-COR	Cat#929-60000
17-ODYA	Cayman	Cat#90270
M-CSF, mouse	Sigma	Cat#SRP3221
PMA	Sigma	Cat#P1585
Anti-Myc Magnetic Beads	Bimake	Cat#B26301
Anti-Flag M2 Magnetic Beads	Sigma	Cat#M8823
Anti-Flag affinity gel	Bimake	Cat#B23102
Dessive lysis buffer	Promega	Cat#F194A

Table S1. Materials.

Luciferase Assay Reagent	Promega	Cat#E1483
TRIzol Reagent	Invitrogen	Cat#15596018
Streptavidin Sepharose-R Beads	Cell Signaling Tech	Cat#3419S
Pierce RIPA Buffer	Thermo Fisher Scientific	Cat#89900
Protein A/G Plus-Agarose	Santa Cruz	Cat#sc-2003
cGAMP	Sigma	Cat#SML1299
DAPI	Beyotime	Cat#C1006
Fluoromount TM Aqueous Mounting Medium	Sigma	Cat#F4680
Crystal Violet Staining Solution	Beyotime	Cat#C0121
Critical commercial assays	, , , , , , , , , , , , , , , , , , ,	
Lipofectamine 3000 Transfection Kit	Invitrogen	Cat#2145954
iScript cDNA synthesis kit	Bio-Rad	Cat#1706691
iTag Universal SYBR Green Supermix	Bio-Rad	Cat#172521
Pierce BCA Protein Assav Kit	Thermo Fisher Scientific	Cat#23225
Mouse IEN Beta ELISA Kit	Abcam	Cat#252363
Fast Mutagenesis System	Transgen	Cat#FM111
nFASY-Uni Seamless Cloning and Assembly Kit	Transgen	Cat#CU101
SuperSignalTM West Pico PLUS Substrate Kit	Thermo Fisher Scientific	Cat#34578
2'3'-cGAMP FLISA Kit	Cayman	501700
Experimental models: Cell lines	Cayman	501700
	ATCC	Cot#CDL 2216
Helle	NICP (National	Cal#CKL-5210
HeLa	INICK (Inational Infrastructure of Cell	IN/A
	Line Resource)	
RAW264.7	NICR	N/A
L929	NICR	N/A
Vero	NICR	N/A
THP-1	NICR	N/A
Experimental models: Organisms/strains		
Zdhhc18-/- mice	Cyagan Biosciances	N/A
C57BL/6 mice	Lackson Laboratory	IN/A IAX: 000664
Olicementatides	Jackson Laboratory	JAA. 000004
	m1 :	37/4
(FITC-, Biotin-) ISD (45 bp):	This paper	N/A
siRNA targeting sequence: 7DHHC18 #1:	This naper	N/A
CCGGCCUCUUCUUCGUCUU	rins paper	11/11
siRNA targeting sequence: ZDHHC18 #2:	This paper	N/A
GCGCUCAGGGAAGCAACUU	1 1	
siRNA targeting sequence: ZDHHC18 #3:	This paper	N/A
CCAAGCCUGAUGCCAGCAU		
Scrambled (control): UUCUCCGAACGUGUCACGU	This paper	N/A
Recombinant DNA		
IFN-Beta pGL3	Addgene	#102597
pCMV3-IRF3-Flag	Sino Biological	#HG12007-CF
pCMV-3Tag (Flag)	Agilent Technologies	#240195
pCMV-3Tag (Myc)	Agilent Technologies	#240196
pLKO.1	Addgene	#10878
pMD2.G	Addgene	#12259

psPAX2	Addgene	#12260
pEF-TBK1-Flag	Dr. Zhengfan Jiang	N/A
pET28b-His-sumo-cGAS	Dr. Conggang Zhang	N/A
pTY-EGFP-cGAS	Dr. Conggang Zhang	N/A
pEF-HA-cGAS	This manuscript	N/A
pCMV-Flag-cGAS	This manuscript	N/A
pCDNA3.1-STING-Flag	This manuscript	N/A
pCMV-Myc-cGAS	This manuscript	N/A
pCMV-Flag-ZDHHC18	This manuscript	N/A
pCMV-Myc-ZDHHC18	This manuscript	N/A
pCMV-HA-ZDHHC18	This manuscript	N/A
pCMV-Myc-ZDHHC18 (CS)	This manuscript	N/A
pCMV-Flag-cGAS (1-160)	This manuscript	N/A
pCMV-Flag-cGAS (161-522)	This manuscript	N/A
pCMV-Flag-ZDHHC18 (M)	This manuscript	N/A
pCMV-Flag-ZDHHC18 (deltaM)	This manuscript	N/A
pLKO.1-shZDHHC2	This manuscript	N/A
pLKO.1-shZDHHC3	This manuscript	N/A
pLKO.1-shZDHHC4	This manuscript	N/A
pLKO.1-shZDHHC5	This manuscript	N/A
pLKO.1-shZDHHC6	This manuscript	N/A
pLKO.1-shZDHHC7	This manuscript	N/A
pLKO.1-shZDHHC8	This manuscript	N/A
pLKO.1-shZDHHC9	This manuscript	N/A
pLKO.1-shZDHHC12	This manuscript	N/A
pLKO.1-shZDHHC13	This manuscript	N/A
pLKO.1-shZDHHC16	This manuscript	N/A
pLKO.1-shZDHHC17	This manuscript	N/A
pLKO.1-shZDHHC18	This manuscript	N/A
pLKO.1-shZDHHC20	This manuscript	N/A
pLKO.1-shmZDHHC18	This manuscript	N/A
Software and algorithms		
	https://www.graphpad.co	N/A
GraphPad Prism 7	m/	
Adobe Illustrator CC	https://www.adobe.com/	N/A
Adobe individion ele	products/illustrator.html	
NIS-Elements Viewer 5.21	https://www.microscope.	N/A
Imago I 1 52g	https://imagei.mih.com	N/A
	https://magej.mn.gov	N/A
rywol 2.2.0	Imps://pymol.org	
	https://www.241.istaal	
CaseViewer 2.2	nups://www.3dnistech.c	IN/A
	VIII	1

Table S2.	Target	sequences	of	shRNAs.
-----------	--------	-----------	----	---------

shRNA	Sequences (5' to 3')
hZDHHC2-	CCGGGTATGAGCAATCCTGCATTAACTCGAGTTAATGCAGGATTGCTCATACTT
sh-F	TTTTG
hZDHHC2-	AATTCAAAAAAGTATGAGCAATCCTGCATTAACTCGAGTTAATGCAGGATTGCT
sh-R	CATAC
hZDHHC3-	CCGGCCAGAAGTACTTCGTCCTGTTCTCGAGAACAGGACGAAGTACTTCTGGTT
sh-F	TTTTG
hZDHHC3-	AATTCAAAAAACCAGAAGTACTTCGTCCTGTTCTCGAGAACAGGACGAAGTACT
sh-R	TCTGG
hZDHHC4-	CCGGGGAGGTGCTCTACTTGTGATTTCTCGAGAAATCACAAGTAGAGCACCTCTT
sh-F	
hZDHHC4-	AATTCAAAAAGAGGTGCTCTACTTGTGATTTCTCGAGAAATCACAAGTAGAGCA
sn-K	
nZDHHC5-	
bZDHHC5	
sh-R	САТСС
hZDHHC6-	CCGGGGTTTACGATACTGGTTATATCTCGAGATATAACCAGTATCGTAAACCTT
sh-F	TTTG
hZDHHC6-	AATT¢AAAAAGGTTTACGATACTGGTTATATCTCGAGATATAACCAGTATCGTAA
sh-R	ACC
hZDHHC7-	CCGGACTGCCCGTGGGTGAACAATTCTCGAGAATTGTTCACCCACGGGCAGTTT
sh-F	TTTG
hZDHHC7-	AATTCAAAAAACTGCCCGTGGGTGAACAATTCTCGAGAATTGTTCACCCACGGG
sh-R	CAGT
hZDHHC8-	CCGGCACCTGCCATGTACAAGTTTACTCGAGTAAACTTGTACATGGCAGGTGTT
sh-F	
nZDHHC8-	AATTCAAAAAACAUUTGUUATGTAUAAGTTTAUTUGAGTAAAUTTGTAUATGGUA
SII-K	<u> </u>
sh-F	TTTTC
hZDHHC9-	AATTCAAAAAAGAGGAACTACCGCTACTTCTACTCGAGTAGAAGTAGCGGTAGT
sh-R	тсстс
hZDHHC12	CCGGATGGACCCTGGCTACGTGAATCTCGAGATTCACGTAGCCAGGGTCCATTT
-sh-F	TTTG
hZDHHC12	AATTCAAAAAATGGACCCTGGCTACGTGAATCTCGAGATTCACGTAGCCAGGGT
-sh-R	CCAT
hZDHHC13	CCGGCTCATGTTATCAGCTCACAAACTCGAGTTTGTGAGCTGATAACATGAGTT
-sh-F	TTTTG
hZDHHC13	AATTCAAAAAACTCATGTTATCAGCTCACAAACTCGAGTTTGTGAGCTGATAACA
-sn-K	
nZDHHC16	
-511-1 b7DHHC16	
-sh-R	CTTTC
hZDHHC17	CCGGGCAGGGAATACCACAGTCATTCTCGAGAATGACTGTGGTATTCCCTGCTT
-sh-F	TTTTG
hZDHHC17	AATT¢AAAAAGCAGGGAATACCACAGTCATTCTCGAGAATGACTGTGGTATTC
-sh-R	CCTGC
hZDHHC18	CCGGGTTTATTCTCTCCCTCTCATTCTCGAGAATGAGAGGGAGAGAATAAACTT
-sh-F	TTTTG

hZDHHC18	AATTCAAAAAAGTTTATTCTCTCCCTCTCATTCTCGAGAATGAGAGGGGAGAGAAT
-sh-R	AAAC
hZDHHC20	CCGGGAAGTGGCTCAAATCAACCTTCTCGAGAAGGTTGATTTGAGCCACTTCTT
-sh-F	TTTTG
hZDHHC20	AATTCAAAAAAGAAGTGGCTCAAATCAACCTTCTCGAGAAGGTTGATTTGAGCC
-sh-R	ACTTC
mZDHHC1	CCGGCCTGACAACTAACGAAGATATCTCGAGATATCTTCGTTAGTTGTCAGGTT
8-sh-F	TTTG
mZDHHC1	
8-sh-R	

qPCR Primers	Sequences (5' to 3')
GAPDH-F	ATGACATCAAGAAGGTGGTG
GAPDH-R	CATACCAGGAAATGAGCTTG
ZDHHC18-F	ACCGGCCTCTTCTTCGTCT
ZDHHC18-R	AACTGCCTGTGTTGTCGATCT
cGAS-F	AAGAAGGCCTGCGCATTCAA
cGAS-R	CCGCCATGTTTCTTCTTGGAAA
IFN-β-F	CATTACCTGAAGGCCAAGGA
IFN-β-R	CAATTGTCCAGTCCCAGAGG
CXCL10-F	TGGCATTCAAGGAGTACCTC
CXCL10-R	TTGTAGCAATGATCTCAACACG
HSV-1 UL30-F	CATCACCGACCCGGAGAGGGAC
HSV-1 UL30-R	GGGCCAGGCGCTTGTTGGTGTA
mActin-F	TGACGTTGACATCCGTAAAGACC
mActin-R	AAGGGTGTAAAACGCAGCTCA
mZD18-F	TCAACGGGCAGACAGTGAAAC
mZD18-R	GAAGCGGTAGTTCCGTCTCC
mCgas-F	ACCGGACAAGCTAAAGAAGGTGCT
mCgas-R	GCAGCAGGCGTTCCACAACTTTAT
mIfn-β-F	ATGGTGGTCCGAGCAGAGAT
mIfn-β-R	CCACCACTCATTCTGAGGCA
mIfn-a4-F	ACCCACAGCCCAGAGAGTGACC
mIfn-a4-R	AGGCCCTCTTGTTCCCGAGGT
mIl6-F	GAGGATACCACTCCCAACAGACC
mIl6-R	AAGTGCATCATCGTTGTTCATACA
mCxcl10-F	GCCGTCATTTTCTGCCTCA
mCxcl10-R	CGTCCTTGCGAGAGGGATC
mCcl5-F	GACACCACTCCCTGCTGCTT
mCcl5-R	ACACTTGGCGGTTCCTTCG
ZDHHC2-F	AACACTGGCGAACAAGTTGTG
ZDHHC2-R	AGATGGGAAGATCCTTGGCTG
ZDHHC3-F	CCACTTCCGAAACATTGAGCG
ZDHHC3-R	CCACAGCCGTCACGGATAAA
ZDHHC4-F	TGATGGGTCTTGTTCTTATCTGC
ZDHHC4-R	AGGTGTGGTTTCTCGTATGGAA
ZDHHC5-F	CACCTGCCGCTTTTACCGT
ZDHHC5-R	CGGCGACCAATACAGTTATTCAC
ZDHHC6-F	ATGGGTACGTTCTGTTCGGTT
ZDHHC6-R	AAGGGCCAATACCACAACACA
ZDHHC7-F	CTGACCGGGTCTGGTTCATC

 Table S3. Primers for Quantitative PCR.

ZDHHC7-R	CATGACGAAAGTCACCACGAA
ZDHHC8-F	CTGTTCCCGTCTACAATGGCA
ZDHHC8-R	GACCTGGATACCTCGCACAT
ZDHHC9-F	CCCAGGCAGGAACACCTTTT
ZDHHC9-R	CCGAGGAATCACTCCAGGG
ZDHHC12-F	GTGCTGACCTGGGGGAATCAC
ZDHHC12-R	CTGCACATTCACGTAGCCA
ZDHHC13-F	ACCCCACTCTTATTGATGGAGA
ZDHHC13-R	TGTCTGCCCATTTACATCTGTC
ZDHHC16-F	ACTCCGGGGTCTAGTACAGC
ZDHHC16-R	CCAGCGGATCACGTTGTCT
ZDHHC17-F	TGAACCTCTTGGACGGAAAAC
ZDHHC17-R	TGCTTCCACCAATTCTCGACA
ZDHHC20-F	TTCGTGGTCGTCTGGTCCTA
ZDHHC20-R	AGGTAAACAACGGTCTTTCCATT