Supplemental Data

Tomato Brown Rugose Fruit Virus Resistance Generated by Quadruple Knockout of Homologs of *TOBAMOVIRUS MULTIPLICATION1* in Tomato

Masayuki Ishikawa¹, Tetsuya Yoshida¹, Momoko Matsuyama¹, Yusuke Kouzai², Akihito Kano³, Kazuhiro Ishibashi¹

¹ Crop Disease Research Group and ²Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8602, Japan

³ Plant Breeding and Experiment Station, Takii and Company, Limited, Konan, Shiga 520-3231, Japan

70070																															
SITOM	11a	1	:-M	GR	ÆT	AVI	DPS	ST.	AA	VA	AY	RL	HE.	AI	SW	WD.	EV	NE	SP	IW	QD	R-	IF	YVI	LAI	LY	GV	VSZ	AV	ALV	58
SITOM	11b	1	:MV	KS:	ISF	LLI	EFA	KD	YD	DG	TP	RV	RP	İFI	DW	FN.	AM	ME	VS	DY	EK	QA	IF	YSI	LSA	AY	AL	VSI	TV	ALV	60
SITOM	11c	1	:-M	ARI	LPL	GS:	SPI	DI.	AG				-P	VTI	NW	WD.	HVI	NE	SV	QW	QD	G-	IF	YSI	LCA	SY	GL	VS	AV	ALI	51
SITOM	11d	1	:-M	GR	AEM	WV(GPS	EK	VA	W	AY	HL	ND	AII	NW	WD	DV	NR	SL	DW	QN	R-	IF	HVI	LAV	LY	GV	VAV	TV.	ALV	58
				•			•								*	•••	•	•••	•	•	•		**	. '	k	*	•	*.	*	**.	
SITOM	11a	59	:QL	IR	IQM	RVI	PEY	GW	ΤT	QK	VE	HF	LN	FL	VN	GV.	RS	LV	FV	FR	RD	VQ	KL	NP	EII	QH	IL	LDI	1P	SLA	118
SITOM	11b	61	:QL	IR:	IQL	RL:	SGI	GW	ΤT	QK	VE	HL	MN	FV	VC	GL	RA	IL	FG	FY	SS	VF	NL	RSI	KAI	EM	ML	LDI	LP	GLL	120
SITOM	11c	52	:QL	IR:	IDL	RVI	PEY	GW	ΤT	QK	VE	HL	MN	FV	VN	GV.	RA	IV	FG	FH	KH	VF	LL	HYE	KVI	TL	AI	LDI	LP	GLL	111
SITOM	11d	59	:QL	IR	IQM	RVI	PEY	GW	ΤT	QK	VE	HF	LN	FF	VN	GV.	RS	LV	FT	FR	RD	VQ	KL	HP	EIV	7QH	IM	LDI	1P	SLA	118
			* *	* * :	۰.	*.		* *	* *	**	**	k	*	*	*.	*.	*	•	*	*		*	*					**	*	*	
SITOM	41a	119	:FF	TTI	FAL	LVI	LFW	IAE	IY	YQ	AR	AV	ST	DA	LR	PS	FF	TI	NG	vv	YA	IQ	II	LWI	LII	WW	KP	VP	٦L.	VIL	178
SITOM	41b	121	:FF	ST	YTL	LVI	LFW	AE	IF	HQ	AR	NL	PI	DK	LR	PA	YY	AV	NA	vv	YF	IQ	IC	IW:	IFI	GV	GP	ASI	AA	VET	180
SITOM	11c	112	:FF	STI	FTL	LVI	LFW	IAE	IY	HO	AR	SL	PT	DK	LR	IS	YI	AI	ND.	AI	YF	IQ	AC	IW	VYI	WI	ND	NS:	IVI	EFI	171
SITOM	41d	119	:FF	TT	YAL	LVI	LFW	AE	IY	YO	AR	AV	ST	DG	LR	PS	FF	TI	NG	vv	YA	IO	II	LWJ	LIM	1WW	KP	IR	JL.	FIL	178
			* *	*	*	**	* * *	**	*.	*	* *		•	*	* *			•	*		*	**	•	*		•					
SITOM	41a	179	:SK	AFI	FAG	VSI	LFA	AL	GF	LL	YG	GR	LF.	LM	LR	RF	PVI	ES	RG	RQ	KK	LQ	EV	GY	VTI	IC	FS	CFI	LI	RCI	238
SITOM	11b	181	:AK	LFI	FAV	ISI	FTA	AL	GF	VM	IYG	GR	LF	AM	LR	RF	PI	ES	RG	RQ	KK	LH	EV	GEN	VTG	FIC	CI	CFI	411	RCV	240
SITOM	11c	172	:GK	IF	AV	VS	VIA	AL	GF	LL	YG	GR	LF	LM	LR	RF	PI	ES	KG	RR	KK	LH	EV	GST	VTA	IC	FT	CFI	LI	RCF	231
SITOM	11d	179	:SK	MF	FAG	VSI	LFA	AL	GF	LL	YG	GR	LF	LM	LQ	RF	PV	ES	RG	RR	KK	LQ	EV	GY	TT	IC	FS	CFI	LI	RCV	238
			*	*	.*	.*	Å	**	* *		* *	* *	**	.*	*.	**	*	* *	.*	*	* *	*	* *	<i>k</i> :	**	**	•	**	*	* *	
SITOM	11a	239	:MM	CFI	NAF	DK	AAE	DLD	VL	YH	PM	LN	FV	YY:	LL	VE	IL	PS	SL	VL	FI	LR	KL	PPI	KRG	JIT	QY	HP	IR		295
SITOM	1lb	241	:MV	AVS	SAF	NGI	NAL	VD	VI	DH	PV.	LI	LF	YY	vv	VE	IL	PS	VL	VL	FI	LR	KL	PPF	KRV	/SE	QY	HP	QI		297
SITOM	11c	232	:vv	VL.	SAF	DSI	DAS	LD	VL	DH	PV.	LN	LI	YY.	LL	VE	IL	PS	AL	VL	YI	LR	KL	PPF	KRV	7SA	QY	HP	IS		288
SITOM	11d	239	:MM	CFI	NAF	DK	AAL	LD	VL	YH	PI	LN	LI	YY	LL	VE	IL	PS	SL	VL	FI	LR	KL	PPF	KRG	IT	QY	HP:	TH		295
					**		*	*	*	*	*	*		**		**	**	* *	*	**	*	**	**	* * 1	* *		**	**	ĸ		

В

	SITOM1b	SITOM1c	SITOM1d
SITOM1a	55% (153/277)	63% (171/269)	86% (255/295)
SITOM1b		64% (175/273)	53% (148/277)
SITOM1c			62% (169/269)
	1		(105/20

Supplemental Figure S1. Comparison of amino acid sequences of SITOM1 proteins. A. Alignment of amino acid sequences of SITOM1 proteins. Sequences were aligned using the Multiple Sequence Comparison by Log-Expectation algorithm provided in the GENETYX ver. 12 software. Amino acid residues identical among the four and three proteins are marked by asterisks and dots, respectively.

B. Identity of amino acid residues between SITOM1 proteins. Identity of amino acid residues (%) was calculated using the fastp program provided in the GENETYX ver. 12 software. The number of identical amino acid residues per the length of aligned regions are shown in parentheses.

Α

Supplemental Figure S2. Expression of *TOM1* homologs in wt, *Sltom1* quadruple-, and triple-mutant tomato plants.

RNAs extracted from leaves from each genotype were analyzed by RNA sequencing. Total RNA was extracted from young true leaves of tomato (19 days after imbibition) with RNAiso Plus (TaKaRa). Library preparation and RNA-seq analysis were carried out by BGI GENOMICS. Briefly, $poly(A)^+$ RNA was purified by oligo dT selection. The poly(A)⁺ RNA was fragmented and first-strand cDNA was synthesized using random N6 oligo DNA as primers, followed by a second-strand cDNA synthesis with dUTP. The synthesized cDNA was subjected to end-repair and then was 3' adenylated. Adaptors were ligated to the ends of these 3' adenylated cDNA fragments, and the dUTP-marked second-strand cDNA was selectively degraded by Uracil-DNA-Glycosylase. Resultant single-stranded cDNA was used to prepare DNA nanoball (Drmanac et al. 2009. Science. 327: 78–81.) and sequenced using the DNBSEQ platform (paired end, sequence length: 150). Clean reads were obtained using the filtering software SOAPnuke (Chen et al. 2018. Gigascience 7: 1-6.), mapped to the reference genome (Species: Solanum lycopersicum 4081; Reference Genome Version: GCF 000188115.4 SL3.0) using the Hierarchical Indexing for Spliced Alignment of Transcripts (HISAT) software (Kim et al. 2015. Nature Methods 12: 357-360.), and aligned to the reference genes using the Bowtie2 software (Langmead et al. 2012. Nature Methods 9: 357-359). Means \pm SEM of the numbers of fragments per kilobase of exon per million reads mapped (FPKM) from three independent plants are indicated. Small letters indicate the genes disrupted. WT: wild-type.

Supplemental Figure S3. ToBRFV CP accumulation in wt, *Sltom1* single-, double-, triple-, and quadruple-mutant and $Tm-2^2$ plants.

A. Whole Coomassie blue-stained gel images used to make Figure 2A. For details, refer to the legend to Figure 2A.

B. ToBRFV CP accumulation in another set of experiment. In Sltom1 single-, double-, and triple mutants, CP accumulation in inoculated cotyledons at 7 dpi was analyzed. In Sltom1 quadruple mutant, CP accumulation in uninoculated first true leaves of cotyledon-inoculated *Sltom1* quadruple-mutant plants at 28 dpi was analyzed (the gel marked with '28 dpi'. CP accumulation was analyzed and presented as in panel A. C. Detection of ToBRFV CP by immunoblotting. For each Sltom1 genotype (indicated above the blots; also see the legend to Figure 2A), equal volumes of the 4 protein samples appeared in panel B of this figure were mixed and CP accumulation was examined by SDS-PAGE (NuPAGE; Invitrogen, 12%) and immunoblotting using anti-ToBRFV antibody (AS1236, DSMZ). Samples prepared in parallel from non-inoculated plants were analyzed for comparison and are indicated by asterisks. Samples from ToBRFV-infected plants that were diluted 10-fold or 100-fold were simultaneously analyzed (marked with '10x' and '100x', respectively). From comparison of CP signal intensity, CP accumulation in Sltom labc and Sltom lacd triple mutant plants was roughly estimated to be 10% and 1% of that in wild-type plants, respectively at 7 dpi. In Sltom labcd quadruple mutant plants, CP was not detected also by immunoblotting (< 1% of CP accumulation in wild-type plants) at 28 dpi. M: DynaMarker Protein MultiColor (BioDynamics Laboratory Inc.). Positions of ToBRFV CP bands are indicated by 'CP'. Numbers represent approximate molecular masses of the marker proteins in kDa.

Supplemental Figure S4. ToMV CP accumulation in wt, *Sltom1* single-, double-, triple-, and quadruple-mutant plants.

A. ToMV CP accumulation in inoculated cotyledons at 7 dpi. A part of the rightmost 12 lanes of the second row was used to make Figure 3A. CP accumulation was examined and presented as described in Figure 2A legend. Each lane corresponds to an individual plant. Samples prepared in parallel from non-inoculated plants were analyzed for comparison and are indicated by asterisks. M: Protein Marker Precision Plus Protein Dual Color Standards (Bio-Rad).

B. ToMV CP accumulation in uninoculated first true leaves at 21 dpi. Arrows indicate that the gel samples were prepared from the same plants. CP accumulation was analyzed and presented as in panel A. Numbers represent approximate molecular masses of the marker proteins in kDa.

Supplemental Figure S5. TMV, YoMV, TAV, and PVX CP accumulation in wt and *Sltom1* quadruple-mutant plants. Whole Coomassie blue-stained gel images used to make Figure 3 are shown. For details, refer to the legend to Figure 3.

Supplemental Figure S6. Emergence of ToBRFV mutants in tomato *Sltom1acd* triplemutant plants.

A. ToBRFV coat protein (CP) accumulation in wild-type (wt) and *Sltom1acd* triplemutant (*acd*) plants. Upper uninoculated leaves of cotyledon-inoculated plants were harvested at 18 dpi, and CP accumulation was examined and presented as described in Figure 2A legend. Each lane represents an individual plant. A sample from a noninoculated plant grown in parallel is shown for comparison (asterisk). *Sltom1acd* plants corresponding to the numbered lanes accumulated the CP. M: Protein Marker Precision Plus Protein Dual Color Standards (Bio-Rad).

B. Upper uninoculated leaves of *Sltom1acd* triple-mutant plants to which ToBRFV virions propagated in wild-type (original) or *Sltom1acd* triple-mutant plants (#20-4, #41-5 and #42-4; see text) were inoculated. Photographs were taken at 22 dpi. Scale bars represent 5 cm.

Supplemental Figure S7. CP accumulation of ToBRFV mutants in *Sltom1acd* triplemutant and *Sltom1* quadruple-mutant plants. Whole Coomassie blue-stained gel images used to make Figure 4B are shown. For details, refer to the legend to Figure 4B.

target gene	orientation	sequence
SlTOM1a & d	forward	ATTGTTGTGAAGAATGCAAGACT
SlTOM1a & d	reverse	AAACAGTCTTGCATTCTTCACAA
<i>SlTOM1b</i>	forward	ATTGTCAAAGATGGGGGCGAACTCG
<i>SlTOM1b</i>	reverse	AAACCGAGTTCGCCCCATCTTTGA
<i>SlTOM1c</i>	forward	ATTGCCGATTGACATCGCCGGTC
<i>SlTOM1c</i>	reverse	AAACGACCGGCGATGTCAATCGG

Supplemental Table 1. DNA oligonucleotides used to construct the sgRNA sequence-containing entry clones.