Overcoming Universal Restrictions on Metal Selectivity By Protein Design

Tae Su Choi and F. Akif Tezcan

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0340, USA

	Page
Supplementary Method	2
Supplementary Figures	
Figure 1	4
Figure 2	5
Supplementary Tables	
Table 1	6
Table 2	7
Table 3	8
Table 4	9
Table 5	10

Supplementary Method

Mathematical calculation of metal-free and metal-bound (AB)₂ in competitive conditions with Cu^{II}. Fractions of metal-free and metal-bound (AB)₂ species were calculated using K_d values of 1Cu^{II}-(AB)₂, 2Ni^{II}-(AB)₂, and 2Co^{II}-(AB)₂ as a function of metal concentration. All mathematical models of the (AB)₂ fractions were derived from equations for equilibrium dissociation constants. Fractions of individual (AB)₂ species are represented as

$$F_{2M^{II}} = \frac{[2M^{II} - (AB)_2]}{[(AB)_2]_{tot}} , F_{M^{II}} = \frac{[M^{II} - (AB)_2]}{[(AB)_2]_{tot}} , F_{Cu^{II}} = \frac{[Cu^{II} - (AB)_2]}{[(AB)_2]_{tot}} - (1)$$

where $[(AB)_2]_{tot}$ indicates the total amount of metal-free and metal-bound $(AB)_2$ species and M^{II} indicates Co^{II} or Ni^{II}. Using the definition of K_d , $[(AB)_2]_{tot}$ can be expressed as follows:

$$[(AB)_{2}]_{tot} = [(AB)_{2}] + [Cu^{II} - (AB)_{2}] + [M^{II} - (AB)_{2}] + [2M^{II} - (AB)_{2}] - (2)$$
$$= [(AB)_{2}] + \frac{[(AB)_{2}][Cu^{II}]}{K_{d,Cu^{II}}} + \frac{[(AB)_{2}][M^{II}]}{K_{d1,M^{II}}} + \frac{[(AB)_{2}][M^{II}]^{2}}{K_{d1,M^{II}}K_{d2,M^{II}}} - (3)$$
$$[2M^{II} - (AB)_{2}] = \frac{[(AB)_{2}][M^{II}]^{2}}{K_{d1,M^{II}}K_{d2,M^{II}}} - (4)$$

Incorporating (3) and (4) into (1) yields:

$$: F_{2M^{II}} = \frac{[2M^{II} - AB_2]}{[(AB)_2]_{tot}} = \frac{\frac{[M^{II}]^2}{K_{d1,M^{II}}K_{d2,M^{II}}}}{1 + \frac{[Cu^{II}]}{K_{d,Cu^{II}}} + \frac{[M^{II}]}{K_{d1,M^{II}}} + \frac{[M^{II}]^2}{K_{d1,M^{II}}}} - (5)$$

Fractions of [(AB)₂], [M^{II}-(AB)₂], and [Cu^{II}-(AB)₂] are derived in the same manner.

$$\begin{bmatrix} M^{II} - (AB)_{2} \end{bmatrix} = \frac{[(AB)_{2}][M^{II}]}{K_{d1,M}^{II}} - (6)$$

$$\therefore F_{M^{II}} = \frac{[M^{II} - (AB)_{2}]}{[(AB)_{2}]_{tot}} = \frac{\frac{[M^{II}]}{1 + \frac{[Cu^{II}]}{K_{d,Cu}^{II}} + \frac{[M^{II}]}{K_{d1,M}^{II}} + \frac{[M^{II}]^{2}}{K_{d1,M}^{II}K_{d2,M}^{II}}} - (7)$$

$$\begin{bmatrix} Cu^{II} - (AB)_{2} \end{bmatrix} = \frac{[(AB)_{2}][Cu^{II}]}{K_{d,Cu}^{II}} - (8)$$

$$\therefore F_{Cu^{II}} = \frac{[Cu^{II} - (AB)_{2}]}{[(AB)_{2}]_{tot}} = \frac{\frac{[Cu^{II}]}{1 + \frac{[Cu^{II}]}{K_{d,Cu}^{II}} + \frac{[M^{II}]^{2}}{K_{d1,M}^{II} + \frac{[M^{II}]^{2}}{K_{d1,M}^{II} - K_{d1,M}^{II}}} - (8)$$

$$\therefore F_{(AB)_{2}} = 1 - F_{2M^{II}} - F_{M^{II}} - F_{Cu^{II}} = \frac{1}{1 + \frac{[Cu^{II}]}{K_{d,Cu}^{II}} + \frac{[M^{II}]}{K_{d1,M}^{II} + \frac{[M^{II}]^{2}}{K_{d1,M}^{II} + \frac{[M^{II}]^{2}}{K_{d1,M}^{II} + \frac{K_{d1,M}^{II}}{K_{d1,M}^{II} + \frac{$$

 M^{II} is the concentration of Co^{II} or Ni^{II}. The concentrations of M^{II} and Cu^{II} were considered as buffered species to calculate the fractions of metal-free and metal-bound (AB)₂ species. Since the fractions of $[M^{II}-(AB)_2]$ were negligible in actual calculations using K_d values, they were not included in Fig. 2a. Additionally, because there was no experimental evidence for the formation of heterometallic species (e.g. Cu^{II}+M^{II}-(AB)₂) in ESI-MS (Extended Data Fig. 3d), the fractions of the heterometallic (AB)₂ complexes were excluded in the equilibrium.

Supplementary Figure 1 | Uncropped gel images of Figures 4b (brown) and 4c (cyan).

Supplementary Figure 2 | Uncropped gel images of Extended Data Figures 7a (brown) and 7b (cyan).

Structure ^a	Ме	tal	Beamline	Precipitant
2Co ^{II} -(AB) ₂	CoCl ₂	4 mM	UCSD⁵	PEG1500 25%, NaCl 140 mM, pH 6.6 MES 100 mM
2Ni ^{II} -(AB) ₂	NiCl ₂	4 mM	ALS 5.0.2.	PEG1500 25%, pH 8 EPPS 100 mM
1Cu ^{II} -(AB) ₂	CuCl ₂	4 mM	UCSD⁵	PEG1500 25%, CaCl ₂ 200 mM, pH 6 MES 100 mM
Co ^{II} //Cu ^{II} -(AB) ₂	CoCl ₂ //CuCl ₂	4 mM//4mM	SSRL 9-2	PEG1500 25%, NH₄Ac 160 mM, pH 8.4 EPPS 100 mM
Cu ^{II} //Co ^{II} -(AB) ₂	$CuCl_2//CoCl_2$	4 mM//4mM	SSRL 9-2	PEG1500 25%, NaCl 200 mM, pH 8 EPPS 100 mM
Ni ^{II} //Cu ^{II} -(AB) ₂	NiCl ₂ //CuCl ₂	4 mM//4mM	SSRL 9-2	PEG1500 22%, NH₄Ac 160 mM, pH 8 EPPS 100 mM
Cu ^{II} //Ni ^{II} -(AB) ₂	CuCl ₂ //NiCl ₂	4 mM//4mM	SSRL 9-2	PEG1500 25%, NH₄Ac 200 mM, pH 8.4 EPPS 100 mM
1Co ^{II_H100A} (AB) ₂	CoCl ₂	4 mM	SSRL 9-2	PEG1500 25%, MgCl ₂ 200 mM, EPPS 100 mM, pH 8
1Ni ^{II_H100A} (AB) ₂	NiCl ₂	4 mM	SSRL 9-2	PEG1500 25%, MgCl ₂ 200 mM, MOPS 100 mM, pH 7

Supplementary Table 1 | Crystallization conditions for reported PDB structures.

^aDimer concentration was 2 mM. ^bDiffraction data was collected on a Bruker APEX II CCD detector equipped with Cu K_{α} source in UCSD X-ray crystallography facility.

Species	Theoretical m/z	Observed m/z
(AB) ₂	2275.09	2275.09
1Co ^{II} -(AB) ₂	2280.27	2280.27
2Co ^{II} -(AB) ₂	2285.45	2285.45
1Ni ^{II} -(AB) ₂	2280.25	2280.27
2Ni ^{II} -(AB) ₂	2285.40	2285.40
1Cu ^{II} -(AB) ₂	2280.70	2280.63
2Cu ^{II} -(AB) ₂	2286.29	2286.26

Supplementary Table 2 | Theoretical and observed m/z values of (AB)₂ complexes observed in non-competitive conditions.

Supplementary Table 3 | Experimental m/z values of (AB)₂ complexes observed in the competitive conditions with Cu^{II}.

Species	<i>m/z</i> (Co ⁱⁱ //Cu ⁱⁱ)	<i>m/z</i> (Cu [#] //Co [#])	<i>m/z</i> (Ni [#] //Cu [#])	<i>m/z</i> (Cu [#] //Ni [#])
1M ^{II} -(AB) ₂	2280.50	2280.45	-	-
2M ^{II} -(AB) ₂	2285.54	2285.54	2285.45	2285.45
3M ^{II} -(AB) ₂ ^a	-	-	2290.98	2290.98

^a2Ni^{II}+1Cu^{II}-(AB)₂ (Theo *m*/*z* 2290.99)

Species	Theoretical m/z	Observed m/z
H100A(AB) ₂	2263.05	2263.05
1Co ^{II} - ^{H100A} (AB) ₂	2268.22	2268.22
1Ni ^{II} - ^{H100A} (AB) ₂	2268.19	2268.22
1Cu ^{II} - ^{H100A} (AB) ₂	2268.64	2268.63
2Cu ^{II} - ^{H100A} (AB) ₂	2274.24	2274.25
3Cu ^{II} - ^{H100A} (AB) ₂	2279.83	2279.88

Supplementary Table 4 | Theoretical and experimental m/z values of $^{H100A}(AB)_2$ complexes observed in non-competitive conditions.

Supplementary Table 5 | Experimental m/z values of $^{H100A}(AB)_2$ complexes observed in the competitive conditions with Cu^{II}.

Species	<i>m</i> /z (Co ⁱⁱ //Cu ⁱⁱ)	<i>m/z</i> (Cu [#] //Co [#])	<i>m/z</i> (Ni ⁿ //Cu ⁿ)	<i>m/z</i> (Cu ⁿ //Ni ⁿ)
1M ^{II_H100A} (AB) ₂	2268.58	2268.58	2268.37	2268.37
2M ^{II} - ^{H100A} (AB) ₂	2274.02	2274.22	2273.90	2273.90
3M ^{II} - ^{H100A} (AB) ₂ ^a	2279.60	2279.60	2279.44	2279.44