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1 The seizure prediction ecosystem

In here, we present the seizure prediction ecosystem (the obtained network) with full
detail, which describes the relations between actors. Actors (x) and relations (x-y) are
named with numbers and grouped in colours to provide a better understanding. We will
explain these relations throughout this section while deepening parts that require more
detail. In the end, we provide guidelines to help authors design their research. There is
also available an interactive version as Supplementary Material which allows a free
exploration and may be more intuitive.

Real life and Pre-Surgical Monitoring

We begin with the real life of an epileptic patient (1). Years after diagnosed with
Drug-Resistant Epilepsy (DRE), a patient is referred to an epilepsy centre to undergo
pre-surgical monitoring (5). The latter evaluates brain electrical activity (4) to localize
the epileptic focus. If easily localized, removing the epileptic region is a possible
solution [1, 2]. To perform this evaluation, one must perform signal acquisition (2),
being the EEG the most commonly used signal (2–4). To acquire and study this data,
we require patient consent (16→3) and an ethical justification (3). In this case, there is
a strong motivation. Please note that this is a simplification of the pre-surgical
monitoring process. We provide a more detailed explanation in the next subsection.

Despite pre-surgical monitoring is not as frequent as desired, happening for less than
1% of DRE patients, most studies are performed using pre-surgical monitoring data.
Therefore, this data may not represent real life (2→5): the patient is in a controlled
environment [3, 4]; the patient body may take time to adapt to the acquisition material
(as initial data may need to be discarded) [5]; clinicians suppress medication to increase
seizure occurrence frequency; and the short period, tipically, a couple of weeks of clinic
admission and signal recording [6, 7] may mask the influence (1- -5) of day-to-day
confounding factors (6- -4), such as stress, circadian and ultradian rhythms.

Most databases comprise pre-surgical monitoring recordings, which correspond to
retrospective data (7) that authors can indefinitely use in academic studies (8). To
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collect prospective data during a clinical trial in a real life scenario (2→14), it is also
necessary to find sufficiently strong and ethical motivation, which we will discuss later.
Briefly, prospective studies require a significantly higher patient complacency, involve
longer time periods, demand additional resources, and include higher risks for the
patient. Prospective data then becomes retrospective (14- -7) [3, 4].

Pre-surgical monitoring details

Pre-surgical monitoring has the goal of successfully localize and the delineate the
extension of the epileptogenic zone, ideally followed by a surgery to remove it. Towards
this, clinicians begin patient analysis with a multimodal approach: long-term EEG and
video recording, structural MRI, and neuropsychological evaluation. With this
information, patients undergo resective surgery if: i) different approaches present
coherent findings, ii) there is a well-defined epileptic region, and iii) there is a
reasonable risk-benefit ratio.

When this process fails to identify and/or delinate the epileptic region, other signals
can be acquired, such as magnetic source imaging (MSI), functional MRI, SPECT, PET.
With these, clinicians verify if there is a chance of generating a testable hypothesis
regarding the epileptogenic zone. In a positive case, the patient will undergo intracranial
EEG acquisition, cortical stimulation, and mapping. If the epileptognenc zone can then
be localized and be resected, the patient will undergo surgery. Otherwise, antiepileptic
drugs, ketogenic diet, or neurostimulation are the possible current solutions [8].

In the literature, one can find different studies using data acquired during
pre-surgical monitoring collected uing both scalp EEG and intracranial EEG
(iEEG) [1, 9]. Thus, when comparing EEG seizure prediction among different types of
EEG, it is relevant to understand and consider the situation that lead to the iEEG
acquisition.

One must not forget that a patient is referred to a level 3 or 4 epilepsy centre [10] to
do pre-surgical monitoring only after being diagnosed as drug-resistant, which can take
many years after diagnosis, often too late to prevent irreversible damage cause by
seizures. In fact, in the USA, fewer than 1% of DRE patients are examined by a
multidisciplinary epilepsy team [2].

Brain Dynamics

Brain dynamics (4) play a fundamental role in predicting seizures. Ictogenesis is known
for leading to a hyperexcitability state that increases brain synchronization (see Figure
1). Thus, the EEG (4.1.1) is the most used signal. It can be acquired using scalp or
intracranial (iEEG) electrodes, each one addressing different assumptions on brain
dynamics and therefore being more compatible with specific applications [1, 11].

Scalp EEG obtains electrical activity from all surface regions, which is more suitable
for handling the network theory (4.2.1): the latter proposes that seizures may arise from
abnormal activity that results from a large-scale functional network and spans across
lobes and hemispheres [1]. Still, scalp EEG requires significant patient complacency as
they cause stigma and discomfort. One can also expect frequent signal artefacts and
noise. Its intervention application could be a warning system to reduce seizure
consequences, which may be the most affordable option and, therefore, the one that
requires fewer resources [11]. Although iEEG has a higher signal-to-noise ratio and can
be used to develop closed-loop intervention systems, patients may suffer from
haemorrhage, device movement or infection, among others [12]. Authors commonly
focus on brain activity belonging to a given region, generally the epileptic focus (4.2.2).
In fact, authors assume it is possible to predict seizures by only inspecting the
epileptogenic area. Furthermore, the SeizeIT2 clinical trial [13] also explores EEG
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behind-the-ear that brings higher patient comfort, and Debener et al. [14] developed an
EEG-ear array which demonstrated feasibility for long-term recordings. Other recent
approaches, as Minder developed by Epiminder and UNEEG, also try to capture EEG
dynamics in given regions. However, these are invasive and thus, side effects may be
more severe.

Other sources of information (4.1.2) can be used to explore changes in brain
dynamics (e.g., MRI) and also alterations in other non-neurological physiological
parameters occurring during pre-ictal interval [4]. For example, the cardiovascular
dynamics regulated by the autonomous nervous system can be captured by the
electrocardiogram and has been proven to carry complementary information for seizure
prediction. Hence the growing belief that the analysis of multimodal data may provide
improved results [4]. In fact, multiple confirmations that the same dynamics may be
present at different scales and biosignals (4.3) might enhance explainability and
therefore, increase trust (19→13), as mentioned in the following sections.

Moreover, the large clinical heterogeneity associated with epilepsy (4.4) also
promotes current research directed at deepening understanding of this disease. There
are several types of epilepsy syndromes, characterised by different types of epilepsy.
Clinicians distinguish epilepsy types according to the types of seizures, clinical history,
EEG data and imaging features. Furthermore, several co-morbidities may arise, such as
intellectual and psychiatric dysfunction [15]. Seizure generating mechanisms are specific
for each patient and each type of seizure [3, 4, 9], even though the source of spiking
activity, for example, still remains unclear [1]. Additionally, it has been suggested that
brain hyperexcitability induces a time dependency on seizures that leads to the
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occurrence of clusters of seizures (4.5) [3, 4]. This aspect turns the ictogenesis process
more complex and difficult to understand [16].

Academic Studies

Academic studies attempt to discover relevant brain dynamics by, under some
requirements, finding optimal signal processing strategies, predictive characteristics
(further referred to as features), and accurate models (8- -4). The majority uses
retrospective data because of its availability. In such cases, findings should be
interpreted as a proof-of-concept to demonstrate that some methodologies may be more
suitable, even though they still need to be tested in a real context [4]. To understand
academic studies, we also need to inspect Figure 2 for more details. Inevitably, we make
several assumptions (see ”Assumptions” section in this document for more information)
when we design a new study. These may result from the used mathematical models,
available data and other limitations, or even reflect the researcher knowledge concerning
brain dynamics (8- -4).

Authors attempt to predict seizures by assuming the existence of the pre-ictal period.
The latter is the transition between the normal brain state (inter-ictal period) and a
seizure (ictal period). We can define the pre-ictal period in two different ways (8.1).
One approach assumes it as a point of no return (8.1.1), leading necessarily to a
seizure [1]. Another method is to envision it as a period of brain susceptibility (8.1.2)
where a hyperexcitable state may not lead to a seizure [3, 5]. These hypothesis influence
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significantly the experimental design, as it may be more difficult to have a ground truth
or, in other words, a correct labelling on brain hyperexcitability when no seizure
occurred. Thus, despite limiting the understanding of brain dynamics, the point of no
return is commonly used in academic studies.

Studies have requirements (9), which constitute established assumptions among
peers on data representativity of either real life or a trustful proof-of-concept. By
fulfilling these requirements, authors assume the best possible simulation of a real
context. The testing data requirements are: long term recordings (9.1), continuous data,
without manually removing any segments due to noise or artifacts (9.2), minimum
number of seizures to allow for training and testing of the models (9.3), rigorous patient
selection criteria (9.4) where no patient was discarded based on performance, and
models tested in unseen data (9.5) [1, 4, 18].

It is relevant to note the existence of two types of studies (8.2): characterisation
(8.2.1) and prediction (8.2.2) [1]. In the first, authors try to find predictive models
and/or predictive features that capture a clear distinct behaviour between a normal
brain state and the pre-ictal period. However, the prediction potential of these should
be further evaluated by integrating this information in a seizure prediction methodology
(8.2.1→8.2.2) and observing the obtained performance. Prediction studies are the ones
that simulate a real life scenario and are designed to deliver timely interventions (8- -15).
Therefore, these are the most reported in the literature and are the ones we focus here.

When considering a seizure intervention, system design parameters (10) have a
significant role [1, 17]. An alarm must be interpreted considering a Seizure Occurrence
Period (SOP, 10.1), where a seizure is expected to occur, and a Seizure Prediction
Horizon (SPH, 10.2), that guarantees time for an intervention. Furthermore,
methodologies have converged for patient-specific algorithms (10.3) as authors have
proven the existence of individual epileptic biomarkers. This influences study
requirements (9- -10), as patient-specific strategies require a higher minimum recording
duration (10.3→9.1) and a higher minimum number of seizures per patient (10.3→9.3).
Finally, authors also must state the used seizure independence concept [3] or in other
words, the minimum period necessary to assume that seizures have no relation (10.4).
Due to brain excitability, consecutive seizures may occur in a short period. These create
a cluster where the first seizure is the leading (and independent) one. It influences the
number of independent seizures per patient (10.4→9.3) and also limits the amount of
data that can be used. Note that there is no definition/rule to consider a seizure as
independent, which represents another difficulty regarding brain dynamics (4).
Additionally, it is worth noting that, authors in prediction studies with pre-surgical
monitoring data, tend to use shorter periods of time [9] for defining seizure
independence comparing to a real life scenario [16].

Model Design

Figure 3 shows detail concerning the design of mathematical prediction models. Seizure
prediction entails the analysis of time-series, which is typically initiated by segmenting
into sliding windows. Thus, a seizure prediction model (11) might be able to distinguish
brain states (inter-ictal or pre-ictal) throughout time. This model is a mathematical
approach (11.1), which uses strategies from different domains, such as computational
modelling (11.1.1), control theory (11.1.2), and the most common, machine learning
(11.1.3), among others [1, 4, 9, 18].

Before training a model, authors may pre-process (11.2) the signals to remove noise
while maintaining the frequencies of interest and then, they extract predictive features
(11.3) [9, 18]. These two steps may be optional as more complex mathematical models
have the theoretical potential to handle raw signals. A model, especially a machine
learning one, can be distinguished by its abstraction level (20). Briefly, higher
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Fig 3. Details on the relations between actors concerning model design. Non-major
actors are inside boxes.

abstraction methods may intrinsically perform signal pre-processing (20- -11.2) and
feature extraction (20- -11.3). Another relevant factor is computational complexity (18),
where higher abstraction levels usually require higher processing power for algorithm
developing (18- -20). This can be an arising problem for real applications (17→18), as
low computational requirements may be necessary [3, 4].

Although not mentioned directly, by choosing a given preprocessing method, feature,
and model, we may be undertaking several assumptions on a physiological signal.
Therefore, when constructing a pipeline, we challenge authors to inspect them. Here is a
list of questions one can ask: inside the chosen window length, can the, is the signal
considered stationary, does it have noise, is it the result of linear interactions? Are the
assumed brain dynamics simple or complex? Do they involve interactions? Although
these may not change the experimental design, they can improve discussion and
consequent comparison (see in this document the ”Assumptions” section).

Performance

Performance is one of the most discussed aspects in seizure prediction studies (see
Figure 4). A promising methodology is naturally associated with model performance,
which increases trust in the correspondent study (12→13). Sensitivity (12.1)
corresponds to the ratio of correctly predicted seizures. Specificity (12.2) quantifies the
number of false positives and is commonly obtained by counting the number of false
alarms per hour (FPR/h) [1, 17,18]. Statistical validation (12.3) [4, 19,20] has the goal
of understanding if performance is above chance level as there is a trade-off between
sensitivity and specificity (12.1- -12.2). In other words, this validation makes it possible
to understand if the model’s performance is the result of the identification of random
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phenomena in the biosignals rather than seizure-related patterns. This aspect becomes
more relevant considering that seizure predition is a rare-event problem with
considerable imbalance between inter-ictal and pre-ictal intervals.

Some researchers suggest presenting an overall performance by computing the area
under the receiver operating characteristic curve (relating false positive rate and true
positive rate) [4,17]. However, the results can be interpreted according to the envisioned
clinical application, specifically by considering intervention consequences for patients
(16→12.2). For instance, when considering the use of a warning system during
pre-surgical monitoring, a maximum value of 0.15 FPR/h [1, 17] has been considered as
the upper limit of false alarms that cause bearable/tolerable levels of stress and anxiety.

Studies comparison (12.4) enables to find methodologies that perform acceptably in
different datasets and contexts, while handling publication bias (12.4.1). This may
occur when using retrospective data while trying several methodologies. When authors
only report the best results and do not interpret failures as advances, their studies show
overestimated performances or, in other words, overfitting to data [4, 9].

Proper comparison of studies requires more than comparing similar metrics. Authors
are strongly recommended to use statistical validation to prove that the developed
models overcome a random predictor in terms of performance [1]. Nevertheless, it would
be appropriate to compare results with a gold standard methodology applied in the
same conditions [4].

Trust and Explainability

After proper studies comparison, one can ask what a good performance is, or even
inquire about the minimum performance that justifies the design of a clinical trial. We
believe that a proper methodology is the one which we trust. In literature, trust seems
to be represented by studies reporting high performance (12→13) and complying with
consensual study requirements (9- -13). By analysing data from longer recordings
and/or higher number of patient, trust increases as the testing data is more likely to
represent real life conditions [4].

Although a given methodology, eventually, makes incorrect decisions, we can still
trust it if one can explain its decisions (19→13). A great scepticism concerning machine
learning and high-level abstraction models may be due to the difficulty in delivering
explanations about models’ decisions [21]. Although authors and/or clinicians are more
willing to trust black-box models when they make correct decisions, wrong ones lead to
mistrust because there is no human-comprehensible explanation [3].

Trust should be a matter of concern when one designs a study. High-level
abstraction models may have the potential to handle complex dynamics but require

March 7, 2022 7/27



higher the abstraction level,
more difficult it may be its 
explanation

an explanation quality 

can be evaluated in 

levels
strategies

range

Trust

13

Performance

12

Explanation

19
Abstraction 

Level

20

Model Design
11

Brain 
Dynamics

4

Academic 
Studies

8

System Design
Parameters

10

Requirements

9

Local

19.3.1

Global

19.3.2Proxy Level

19.1.3

Human Level

19.1.2

Application 
Level

19.1.1

Explainability 
Evaluation and 

Measures

19.1

Intrinsically 
Interpretable 

Model

19.2.1

Model Agnostic 
Methods

19.2.3
Example Based

Explanations

19.2.4

Feature 
Statistics

19.2.2

explanations must be 

given according to 

brain dynamics, and 

can also increase its 

knowledge

Fig 5. Details on the relations between actors concerning trust and explainability.
Non-major actors are inside boxes.

strong efforts towards providing explanations (19- -20). Current clinical knowledge on
physiology should be the source of explanations as well as the basis for new findings (19-
-4). As an explanation is an exchange of beliefs [22], its acceptance may differ among
patients, clinicians, and data scientists. To better understand trust and explainability,
we need to inspect Figure 5.

Explainability evaluation (19.1) is required. We can evaluate an explanation on
three levels: application (19.1.1) where it must satisfy an expert (e.g. a clinician and a
data scientist); human (19.1.2) where it must explain the decision to a person with no
field knowledge (e.g. a patient); and proxy (19.1.3) by establishing concrete criteria (e.g.
the depth of a decision tree). The proxy level is the one requiring fewer resources.
Nevertheless, it should be used with great care when a model has not proved its quality
in delivering explanations, both in application and human levels [21,23].

There are several strategies [21, 24] to retrieve an explanation which can be grouped
in: i) intrinsically interpretable models (19.2.1) with a reduced set of features (such as
decision trees, generalised linear models, k-NN, among others); ii) feature statistics
(19.2.2) summary and visualization; iii) agnostic methods (19.2.3), which work on top of
developed models [25–31]; and iv) example-based (19.2.4) by representing determined
samples and showing the model decision [32–36]. The explanation range is also a topic
of concern. It is local (19.3.1) when only explains a given decision for a sample and
respective neighbourhood [21]. If it explains all samples, it is global (19.3.2).

Note that we did not consider a possible relation between patient and trust (16→13),
as it concerns solely the algorithm design. Additionally, we also did not mention any
connection between patient and explanation (16→19) directly, despite considering that
a patient has the right for an adequate explanation concerning the device decisions. In
fact, such rights are covered on article 22 from 2018 General Data Protection
Regulation (GDPR) [23,32,37]. We believe that explanation and trust concern field
experts, such as data scientists and clinicians. Nevertheless, patient comfort, trust and a
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proper explanation are fundamental. Therefore, we implicitly included these on the
relation from patient to the ethics committee (16→3), represented by the act of
volunteering. When a patient volunteers, he/she demonstrates trust in researchers and
clinicians, having these already shown commitment to his/her well-being and ensured an
adequate explanation.

Prospective Data and Applications

A methodology can be clinically approved (3→2 and 2→14) after years of research when
it becomes trustworthy to experts, and patients are willing to volunteer. Studies are
trustworthy when they report high performance and good explainability while fulfilling
all data requirements. We can inspect details concerning prospective applications with
Figure 6.

Ideally, studies using retrospective data envision and open the way to the enrollment
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in potential prospective scenarios (8- -15) [1, 11]. It is also possible to undergo a clinical
trial without using any seizure intervention, as it happens with the ongoing SeizeIT2
clinical trial (NCT04284072) and the ongoing Epiminder clinical trial
(ACTRN12619001587190) to develop Minder. These studies may not achieve the goal of
disarming a seizure yet, but they provide valuable data for authors, which may be seen
as a good compromise between patient safety and research progress. Furthermore, from
a non-prediction perspective, these studies can also improve the standard of care for
epilepsy sufferers.

A prospective application has an intervention mechanism (15.1), which could be
integrated in a closed-loop system, as is the case of vagus nerve stimulation (15.1.1) [38],
responsive cortical stimulation as with the RNS®system (15.1.2) [12], or deep brain
stimulation (15.1.3) [39]. The last was recently approved by the FDA [40] and
encompasses two ongoing trials (NCT03900468, NCT02076698). An alternative could be
a warning system (15.1.4) designed to minimise seizure consequences [1, 11] and/or
taking seizure rescue medication, as benzodiazepines (15.1.5) [41–43]. Selecting an
adequate intervention strategy is a complex task and must account for patient
complacency and consequences (16→15).

It is interesting to reflect on the ideal scenario [1]. The development of a constant
and effective intervention (15.2), such as chronic or scheduled stimulation from
implantable devices, without any side effects (stress and anxiety, long exposure to
medication) and device-related problems (infection, intracranial haemorrhage, tissue
reaction, skin erosion, lead migration, among others) would change the paradigm.
Academic prediction studies would just focus on increasing knowledge on brain
dynamics (15.2→8) as there was no need to investigate another prospective application.
Given the amount of today’s limitations, this may be utopic. However, we find it
relevant to stress the purpose of seizure prediction research.

Naturally, device manufacturers must obey to industry standards and regulations
(17→15) related to hardware safety aspects (15.2), such as recharging and low-energy
consumption (15.2.1), heating (15.2.2), placement and removal (15.2.3), and
maintenance (15.2.4). Others that are equally important concern an affordable price
(15.3) and permanent client support (15.4). Consequently, the design of the models
should consider the use of fast processing methods allowing its integration in small
devices (17.1) [4, 11]. It is important to mention that considerable advances have been
made in these devices, which is the case of IBM’s neuromorphic TrueNorth chip [44]
that already allows for deployment of deep learning models.

In fact, the price may be fundamental to the industry. Electrostimulation by
implanting iEEG electrodes is currently considered the most promising strategy, as both
RNS®system and Neurovista’s system used iEEG [1,3–5]. However, these may demand
higher human and monetary resources than pre-surgical scalp EEG monitoring, which is
already inaccessible to a large part of DRE patients. In the USA, for example, fewer
than 1% of DRE patients are examined by a multidisciplinary epilepsy team. Besides,
several only have access to level 3 or 4 epilepsy centres many years after onset, often too
late to prevent irreversible damage caused by seizures [2, 10]. Thus, by focusing
immediate efforts on low-cost and accessible warning systems followed by rescue
medication intake, we may reach considerably more DRE patients.

The 2018 General Data Protection Regulation (GDPR) [37] (17.2) and the 2021
European Union Medical Device Regulation (EU MDR)) [45] (17.3), for European
citizens and European economic space, are also an important aspect. Article 22 presents
the first steps towards legislation on algorithm explainability for high-risk decisions
based on personal data (17→19). Thus, standards and regulations orientate authors
towards the patient safety (16→17).
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2 Assumptions

Assumptions are a crucial part of any study for any scientific field. We often need to
make assumptions about the world. Depending on the question we are asking, we may
use a different perspective and therefore, different assumptions. In established areas, as
the seizure prediction field authors may consider several assumptions that are not stated
directly or even addressed properly in the discussion section. These assumptions may
subconsciously be considered as part of public domain, particularly among peers. For
non-experienced researchers, this may be a critical aspect.

Although we need to make assumptions to solve a problem, we should periodically
review them. Table S1 presents what we considered to be the major assumptions often
adopted by authors. These concern the used data, signal acquisition, problem definition,
types of studies, requirements, system parameters, and model design. Note that this list
might not be complete as other topics can be missing, e.g., assuming a post-ictal period
(a brain refractory period) or defining a period of adaptation of the brain to the seizure
prediction device hardware.

Finally, an author must pay attention to all the assumptions made to verify if there
are inconsistencies. For example, with an intracranial EEG, electrostimulation is usually
the envisioned intervention. Thus, as the RNS system performs discharges up to 5000
ms, SOP periods must be short. If an author uses scalp EEG instead, a warning system
is the envisioned intervention. Thus, SPH periods must be significant to allow an
intervention or medication intake followed by time to take effect.

There are assumptions concerning the used mathematical tools that must be
accounted for, as well. These can be related to pre-processing, feature extraction,
and/or model training. For example, when simply using a deep convolutional neural
network, authors assume that the algorithm can automatically train a robust model
while learning discriminative features and dealing with noise.

Another example, regarding feature selection: by using filtering methods (such as
the absolute value of Pearson correlation), researchers assume that features have
independent discriminative power and therefore, they choose the features with the
highest discriminative power. With a regularization method (such as the LASSO
regression), the best group of features is chosen, instead of the individual best. With a
regularization method, authors also account for the interaction between features, by
choosing the group with highest discriminative power (these may not have a high
individual discriminative power). Thus, biologically speaking, regularization methods
assume the possibility of existing more complex interactions in the brain when
compared to filtering methods.
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Approach Assumption
Data

Using pre-surgical monitoring data
Pre-surgical monitoring data is either representative of real-life
or constitutes a good proof-of-concept of it.

Signal Acquisition

Scalp EEG
Seizure generation mechanisms may occur in any place of the
brain. Supports the network theory. A warning device is
envisioned.

Intracranial iEEG
Seizure generation mechanisms can be detected by inspecting
only a given region, usually the epileptogenic focus. An
invasive application, such as electrostimulation, is envisioned.

Other EEG method
The used method is more suited for a real application (as patient
comfort) while ensuring effective performance.

Other physiological signals
The used method is more suited to a real application (providing
more comfort to the patient) while capturing non-neurological
seizure related dynamics. For example, the ECG signal.

Problem definition

Pre-ictal period
There is a point of no return in the brain after a seizure
will always occur.

Using seizure susceptibility
There is a brain susceptibility period where hyperexcitability
and synchronization are probable. It may not lead to a seizure.

Fixed pre-ictal period All seizures are generated in an equal window of time.
Study types

Characterization
A good performance represents a proof-of-concept for
potential use in a prediction study.

Prediction
A good performance constitutes a proof-of-concept for
potential use in a clinical application.

Study Requirements
Long-term continuous recordings,
and testing in unseen data

These conditions represent a good proof-of-concept of a real
application scenario.

Number of Seizures
The number of seizures is enough to represent real-life or to
constitute a good proof-of-concept.

System Parameters
Patient-specific models Seizure generation mechanisms vary among patients.
Not using patient-specific models Seizure generation mechanisms are similar among patients.
Specific models for each stage
of circadian and or multidian rhythms

Circadian and or multidian rhythms influence seizure
generation mechanisms.

Using the same model for all stages
of circadian and or multidian rhythms

Circadian and or multidian rhythms do not influence seizure
generation mechanisms.

Specific models for specific epilepsy
syndromes, epilepsy types, medication,
and so forth

The selected factors influence seizure generation mechanisms.

Using the same model for all epilepsy
syndromes, epilepsy types, medication,
and so forth

The selected factors do not influence seizure generation
mechanisms.

SOP and SPH
Seizure generation mechanisms occur necessarily within the
period determined from SOP+SPH to SPH, before seizure onset.

SOP
The used seizure occurrence period has an adequate duration
to make an intervention effective.

SPH
The used seizure prediction horizon allows time enough to
render the envisioned intervention possible.

Model Design

Pre-Processing
The acquired signals have artefacts and noise that can be
removed with pre-processing.

Feature Extraction
It is possible to extract more robust measures of signal
dynamics that characterize a pre-seizure state.

Mathematical model training
It is possible to develop a mathematical model that
discriminates a normal brain state and a pre-seizure one.

Table 1. Major assumptions on seizure prediction studies. Others are also possible,
especially the ones concerning mathematical operations.
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3 Questions about the seizure prediction future

Explanations and trust

Explanations help to detect data bias while increasing robustness of the seizure
prediction models. They are important to improve patient safety. They also help to
mitigate scepticism regarding machine learning methodologies. Based on this, the
following questions appeared, which must be handled among data scientists and
clinicians:

1. Which are the concerns on explainability when designing seizure prediction models
to prospective testing? Are clinicians sceptic about how the models work? Or are
they afraid to compromise patient’s safety? Do clinicians and data scientists have
different needs concerning human-comprehensible explanations or are these equal?

2. When compromising patient safety is the only main problem with non-human
interpretable systems, do data scientists need to work on delivering deep
explanations on the ictogenesis process? Or can they opt to improve some other
parts of their methodology, e.g., increasing model robustness against data bias
and noise?

Explanations and clinical approval

The need for explanations may justify that all clinically approved studies, such as the
phase IV Neuropace RNS system (NCT00572195) and the phase I NeuroVista Seizure
Advisory System (NCT01043406), use algorithms with features that are clinically
intuitive [3].

These two clinical trials demonstrate that, despite all the literature efforts put in
developing complex models and consequent increase in performance, it may be necessary
a fully explainable model to provide trust. Secondly, the Seizure Advisory System
clinical trial demonstrates the possibility of using models that are not necessarily
intrinsically interpretable, as long as they produce human-comprehensible explanations,
while ensuring patient safety, handling data bias detection, and dealing with model
robustness. Based on this, the following questions arose, which must be handled
between data scientists and clinicians:

4. If those new approaches have a satisfactory performance on the application and
human levels, can they be used?

5. Do we need a human-comprehensible explanation at every moment the algorithm
is being used in real-time? Or do we need it only at certain moments, as with
raised alarms and incorrect decisions? This may handle the fact that we, data
scientists, tend to trust on model decisions when they are correct and only tend to
inspect errors. In fact, when we train a machine learning model, we do it by
minimizing errors of misclassified samples.

6. Can counterfactual explanations be interesting? Counterfactual explanations are
very human-friendly and used widely by humans in daily life, because they can
answer to a ”why” question. This question can be formulated [21] as: what is the
smallest change to the features that would change the prediction from alarm to
no-alarm?

7. The used features in these studies [5,12] (line-length, bandpass, and energy-related
measures) are clinically intuitive and many others have been widely used in the
literature, such as decorrelation time, Hjorth parameters, spectral relative power,
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wavelet decomposition, auto-correlation measures, auto-regressive modelling
coefficients, and entropy. Which ones could also be used in a clinical trial?

8. These studies have used, as input in the decision models, features that are
clinically intuitive. With the proper guarantee of model robustness, data bias
detection, and patient safety, could Deep Learning approaches, with raw data as
input, be used in clinical trials to automatically perform feature extraction? In a
positive scenario, would authors’ methods need to explain which features were
extracted by the Deep Learning model, or could an explanation simply consist in
showing the relevant data points for a given decision?

Patients and real-applications

In the only (to the best of our knowledge) survey [46] on DRE patients concerning
seizure prediction devices, patients expressed their preference for an invasive solution.
Acceptable performance concerned high values, with an SOP of 10 minutes, which, by
inspecting literature, is currently not achievable, to the best of our knowledge. This
study was mostly a fixed questionnaire with few open questions on these parameters
(SOP, SPH, and minimum performance) and preferences. For example, what would be
an acceptable SOP duration? The options were: 10 minutes, 30 minutes, 1 hour, 3
hours, or more than 3 hours. The possibility of biasing answers is significant, which
must be stressed. These led us to several questions, which must be handled among data
scientists, clinicians, and patients:

8. Could we obtain a different patient point of view, with the same subjects if we
undergo a different approach, such as open questions only followed by a grounded
theory analysis?

9. Despite their preferences, do patients have financial resources to acquire a seizure
intervention device? Can the study be biased towards people with significant
money resources? Do patients know the success rate of such applications? Are
they truly aware of all possible consequences and problems (infections,
haemorrhage) with implantable invasive systems, and its chance of happening?
Moreover, the latter may lead to even higher monetary and psychological costs.

10. Concerning scalp EEG, few patients are willing to use long term acquisition
systems. Should researchers make efforts in other formats of EEG scalp aquisition,
as the two-electrode system from SeizeIT2 [13] or the ear-EEG array [14]? Or
should they focus in other signals, despite having a lower theoretical potential, as
the electroencephalogram (ECG)? For instance, smartwatches are more
comfortable and can record an one-channel ECG. Are these strong reasons to
promote the enrolling in long-term clinical trials using these devices, instead?
They certainly allow more comfort and mitigate stigma, but its prediction
performance might be not as good.

11. Patients claim to accept, as minimum performance and SOP duration, values that
are not achievable, at least yet, in literature [1, 3, 4] (10 minutes of SOP, minimum
sensitivity of 90%, and very low FPR/h, simultaneously [46]). If they knew more
about current research, could they change their minds? Regarding an invasive
solution with electrostimulation, is it relevant to have a low false alarm rate if
electrical stimuli may not represent great harm? Note that in this case, we are
excluding additional problems of device heating or energy consumption.

12. Should authors investigate the maximum false alarm rate that a patient can hold,
without large physical and/or psychological consequences (due do too much
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electroelectroestimulation or medication intake) concerning all intervention
systems? Is there another alternative to evaluate specificity quality?

The only commercial intervention device: The RNS system

The RNS system reduces seizure frequency over time. Nevertheless, patients still suffer
seizures. Thus, the following question appeared, addressed to clinicians and data
scientists:

13. Why do patients continue to have seizures? When a patient suffers a seizure, are
these devices acting too late, during points of no return, or are they not detecting
any pre-ictal activity at all? Efforts have already been made towards a proper
system evaluation [47]. Would these electroestimulation systems benefit from
using more robust algorithms to predict these sooner or are there seizures that
brain electroestimulation can not disarm?
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4 Social network iteration and refinement details

Figures 7-11 concern major iterations of the social network construction. Figure 11
concerns the complex network obtained before refinement and encapsulation. Please
note that we also have changed some actors name and we renumbered them, during the
refinement stage.

During network discussion, we also decided to add more details to some parts, as the
explanation case. We added the evaluation levels, explanation range, and explanation
strategies, found in Interpretable Machine Learning book [21] and in related articles [23].
Technological requirements and commercialization were also more detailed. We included
i) hardware aspects, such as recharging, heating, placement and removal, maintenance,
price, client support, fast processing, that can be found in Ramgopal et al. [11], and ii)
information regarding GDPR’s article 22 that can be found by analyzing Doshi Velez et
al. [23] and Goodman et al. [37]. The GDPR is a clear case where we successfully
inspected related articles within the initial ones [21], until reaching saturation. We also
decided to highlight possible seizure interventions, found on several initial
papers [3,4,11]. For the case of seizure interventions that deliver anti-epileptic drugs, we
got input from the clinician that is also authoring this study regarding rescue medication
such as diazepam. He advised us to search for epilepsy seizure rescue medication and
also stressed the importance of epilepsy clinical heterogeneity, which we considered as
well. Clusters of seizures (4.5) did not appear in the iteration models as it was included
in the system requirements only. This was a codification limitation of our work which
was successfully corrected by discussing the network among all authors of this study.
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Fig 8. Social network iteration after analyzing Freestone et al. 2017 [3] and related
articles.
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Fig 9. Social network iteration after analyzing Kuhlmann et al. 2018 [4] and related
articles.
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Fig 10. Social network iteration after analyzing Ramgopal et al. 2014 [11] and related
articles.
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Fig 11. Social network iteration after analyzing Interpretable Machine Learning
book [21] and related articles. Technical aspects on explainability evaluation and range
are not present simply due to the figure size.
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5 Paper route

We present here how all the social network literature was selected. In Table S2 we show
the references derived from the initial literature. In Table S3 we show the papers
selected due to the social network discussion with our team. We used Google Scholar as
search engine for literature.

Authors Topic How it was selected
Mormann et al. 2007 [1] Critic vision on seizure prediction Initial literature
Freestone et al. 2017 [3] Critic vision on seizure prediction Initial literature
Kuhlman et al. 2018 [4] Critic vision on seizure prediction Initial literature

Molnar C. 2019 [21] ML Interpretability Initial literature
Schulze-Bonhage et al. 2010 [46] Patients vision on devices Initial literature

Ramgopal et al. 2014 [11] Survey on devices Initial literature
Winterhalder et a. 2003 [17] Academic studies Mormann et al. 2007

Schelter et al. 2006 [19] Academic studies Mormann et al. 2007
Andrzejak et al. 2003 [20] Academic studies Mormann et al. 2007

Cook et al. 2013 [5] Neurovista Clinica Trial Freestone et al. 2017
Sun et al. 2014 [12] The RNS System Freestone et al. 2017

Gadhoumi et al. 2016 [18] A review of methods Freestone et al. 2017
Nurse et al. 2016 [44] Real-life processing chip Freestone et al. 2017
Karoly et al. 2017 [6] Concept drifts Kuhlmann et al. 2018
Baud et al. 2018 [7] Concept drifts Kuhlmann et al. 2018

Doshi-Velez et al. 2017 [23] Explainability evaluation Molnar C. 2019
Lombrozo et al. 2006 [22] Explainability/Trust Molnar C. 2019
Ribeiro et al. 2016 [28] Explainability Molnar C. 2019

Lage et al. 2019 [24] Explainability Molnar C. 2019
Friedman et al. 2001 [25] Explainability Molnar C. 2019
Goldstein et al. 2015 [26] Explainability Molnar C. 2019

Apley et al. 2020 [27] Explainability Molnar C. 2019
Ribeiro et al. 2018 [29] Explainability Molnar C. 2019

Sundararajan et al. 2020 [30] Explainability Molnar C. 2019
Lundberg et al. 2017 [31] Explainability Molnar C. 2019

Back et al. 2020 [33] Explainability Molnar C. 2019
Szegedy et al. 2013 [34] Explainability Molnar C. 2019

Kim et al. 2016 [35] Explainability Molnar C. 2019
Cook et al. 1977 [36] Explainability Molnar C. 2019

Goodman et al. 2017 [37] GDPR Article 22 Doshi-Velez et al. 2017
Wachter et al. 2017 [32] Explainability Doshi-Velez et al. 2017

Table 2. The selected papers from the initial literature selection. As displayed, some of
the papers referenced in these studies were also selected.
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Authors Topic Discussion with
Search Procedure
or Search String

Engel et al. 2016 [2]
Pre-Surgical
Monitoring

Team members Shown by team member

Becker et al. 2020 [13] SeizeIT2 clinical trial Team members Shown by team member
Lewis 2019 Patient/Legislation Team members Shown by team member

Chu et al. 2016 [48] Patient/Legislation Team members Shown by team member

Rathore et al. 2015 [8]
Pre-Surgical
Monitoring

Medical team
”epilepsy presurgical
evaluation flowchart”

Ben-Menachem et al. 2002 [38]
Prospective
Applications

Medical team
”vagus-nerve stimulation

epilepsy”

Boon et al. 2007 [39]
Prospective
Applications

Medical team
”deep brain stimulation

epilepsy”

Foundation Epilepsy [49]
Prospective
Applications

Medical team
”deep brain stimulation

FDA approval”
Scheffer et al. 2017 [15] Brain Dynamics Medical team ”ILAE epilepsy classification”

Jafarpour et al. 2019 [16] Brain Dynamics Medical team
”epilepsy seizure clusters

definition”

Tasker et al. 1998 [41] Emergency medication Medical team
”status epilepticus emergency

treatment”
Gáınza-Lein et al. 2017 [42] Emergency medication Medical team ”rescue medication epilepsy”
Scheepers et al. 2000 [43] Emergency medication Medical team ”seizure rescue medication”
Dreifuss et al. 1998 [50] Emergency medication Medical team ”rectal diazepam gel epilepsy”
Foundation E. 2020 [49] Emergency medication Medical team Searched in Epilepsy.com
Bou Assi et al. 2017 [9] A review of methods Data science team Shown by team member
Debener et al. 2015 [14] Signal acquisition Data science team Shown by team member
Teixeira et al. 2014 [51] Real-life application Data science team Developed by our team
Sisterson et al. 2020 [47] Testing the RNS Data science team ”evaluating the RNS system”

Schirrmeister et al. 2017 [52]
Explainability in
Deep Learning

Data science team Shown by team member

Islam et al. 2020 [53] Signal preprocessing Data science team
”EEG seizure prediction

ambulatory preprocessing”

Beckers et al. 2021 [45]
Prospective
Applications

Reviewers ”EU medical device regulation”

Majety et al. 2021 [54]
Prospective
Applications

Reviewers ”EU medical device regulation”

Table 3. The selected papers from the initial literature selection. As displayed, some of
the papers referenced in these studies were also selected.
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6 Forecasting Extrapolation

Despite this study’s particular emphasis on seizure prediction, we firmly believe that
these guidelines and conclusions can be adapted and, thus, hold for seizure forecasting.
Here, we show some adaptions to the guidelines that one may need to perform when
performing a seizure forecasting study.

• Guideline 1: deciding to perform prediction or forecasting is already undertaking
determined assumptions on brain dynamics, which should be highlighted in every
study.

• Guideline 2: in seizure forecasting, we also need to envision a determined
intervention (warning device, neuromodulation, cortical stimulation, rescue
medication) to understand if the obtained system can be applied to real-life and
how it will affect the patient (physically and mentally).

• Guideline 3: shifting from seizure forecasting to seizure prediction, at the lights of
machine learning and in practical terms, might be a change in labels or to a
regression problem. Even in the theoretical absence of clinically developed
methodologies for forecasting, one can adapt the existing prediction machine
learning methodologies to the appropriate labels.

• Guideline 4: forecasting methodologies also need to focus on explainability to
promote trust among experts.

7 An acceptable performance for a clinical setting

An accepted performance for the clinical setting might depend on the chosen application.
In terms of sensitivity, the minimum justifiable level might be subjective. However,

in the paper that seeks the Drug-Resistant Epilepsy (DRE) Patients’ views on seizure
prediction devices [46], patients claim a minimum of 90% performance for sensitivity. So
that might be a reasonable limit to account for in warning devices.

However, we must not forget the limitations of defining this value for other
applications, such as neurostimulation. Due to the way the RNS® system works, we
cannot measure sensitivity performance. Nevertheless, although it may provoke too
many stimulation interventions, it significantly reduces the seizure rate in many
patients. Thus, it is clinically accepted.

The False Positive Rate per Hour (FPR/h) also depends on the chosen application.
This value must be adapted to the envisioned intervention due to patient complacency.

For warning devices, there is a maximum established FPR/h value of 0.15 [17] in
pre-surgical monitoring that was calculated using their mean seizure rate in those
conditions. We may adapt that FPR/h value to real-life by using the mean seizure
frequency in those conditions.

When a neurostimulation intervention is envisioned, one needs to study the
maximum intervention rate that a patient can hold without causing significant damage.
When envisioning a rescue medication, such as benzodiazepines, one needs to
understand the drugs’ pharmacokinetics, their long-term intake side effects, and the
maximum frequency and maximum dose intake.
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