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significance of clinical studies with binary outcomes. It is defined as the minimal event
status modifications that can alter the statistical significance (or non-significance), and
helps clinicians evaluate the reliability of the studies' conclusions. Many factors may
affect the fragility index, including the treatment groups in which event status is
modified, the statistical methods used for testing for the association between
treatments and outcomes, and the pre-specified significance level. In addition to
assessing the fragility of individual studies, the fragility index was recently extended to
both conventional pairwise meta-analyses and network meta-analyses of multiple
treatment comparisons. It is not straightforward for clinicians to calculate these
measures and visualize the results. We have developed an R package ``fragility'' to
offer user-friendly functions for such purposes. This article provides an overview of
methods for assessing and visualizing fragility of individual studies as well as pairwise
and network meta-analyses, introduces the usage of the ``fragility'' package, and
illustrates the implementations with several worked examples.
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Abstract

With the growing concerns about research reproducibility and replicability, the
assessment of scientific results’ fragility (or robustness) has been of increasing interest.
Fragility index was proposed to quantify the robustness of statistical significance of
clinical studies with binary outcomes. It is defined as the minimal event status
modifications that can alter the statistical significance (or non-significance), and helps
clinicians evaluate the reliability of the studies’ conclusions. Many factors may affect
the fragility index, including the treatment groups in which event status is modified, the
statistical methods used for testing for the association between treatments and
outcomes, and the pre-specified significance level. In addition to assessing the fragility
of individual studies, the fragility index was recently extended to both conventional
pairwise meta-analyses and network meta-analyses of multiple treatment comparisons.
It is not straightforward for clinicians to calculate these measures and visualize the
results. We have developed an R package “fragility” to offer user-friendly functions for
such purposes. This article provides an overview of methods for assessing and
visualizing fragility of individual studies as well as pairwise and network meta-analyses,
introduces the usage of the “fragility” package, and illustrates the implementations with
several worked examples.

Introduction 1

Research reproducibility and replicability have been major concerns in many areas of 2

scientific research [1–6]. Such issues may be largely owing to the misuse of p values [7,8], 3

which are often misinterpreted as a measure of treatment effects in clinical studies [9,10]. 4

Consequently, studies with smaller p values (i.e., statistically more significant effects) are 5

more likely published; such phenomenon is often referred to as publication and selective 6

reporting bias or small-study effects [11–18]. This may distort clinical conclusions 7

toward an artificially favorable direction and thus greatly treat the reliability of their 8

evidence. Due to these concerns, communities across many scientific fields have recently 9

called for more careful interpretations of p values and statistical significance [19–22]. In 10

an effect to reduce publication bias, it has been a common practice to pre-register 11

clinical trials or publish their protocols before obtaining the final results [23]. 12

To supplement the use of p values and 95% confidence intervals (CIs) for assessing 13

treatment effects in clinical studies with binary outcomes, Walsh et al. [24] proposed the 14

fragility index (FI) to quantify their fragility (or robustness). The FI is defined as the 15
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minimal event status modifications that can alter a study result’s statistical significance. 16

For example, if an originally significant treatment effect estimate becomes 17

non-significant by modifying only a single patient’s event status (e.g., from no disease to 18

disease), then the clinical study’s conclusion may be highly fragile. In this case, 19

clinicians may need to carefully borrow real-world evidence to assess the likelihood of 20

that patient developing the disease and appraise the reliability of the evidence about 21

treatment effects from this study. Similar concepts have also been considered in the 22

earlier literature [25,26]; with the growing concerns about research reproducibility and 23

replicability, the FI regains much attention in recent years. It has been applied to assess 24

fragility of randomized controlled trials in many clinical areas, such as anticancer 25

medicine, critical care, and surgery medicine [27–32]. 26

The concerns of research reproducibility and replicability also arise in systematic 27

reviews and meta-analyses (MAs). The publications of MAs have been rapidly 28

increasing in the past few decades, because they offer a powerful tool for synthesizing 29

and contrasting existing findings and producing more precise effect estimates [33,34]. 30

However, sometimes different MAs focusing on the same topic can have inconsistent 31

conclusions [35–37]. Similar to pre-registering clinical trials, pre-registered prospective 32

MAs have been recommended [38,39]. Recently, the FI was extended to assess fragility 33

of conventional pairwise MAs as well as network meta-analyses (NMAs) of multiple 34

treatment comparisons [40,41]. The FI of an MA is defined similarly as in a clinical 35

trial; however, its estimation is more complicated, because the modifications of event 36

status may occur in different studies within the MA. Therefore, it is computationally 37

challenging for applied scientists to calculate and interpret the FI of an MA. 38

It may not be sufficient to rely completely on the numerical value of the FI derived 39

at a specific significance level (e.g., commonly used 0.05) for properly interpreting the 40

fragility. For example, the FI may be highly associated with the p value under certain 41

settings [42]; in such cases, the FI may not provide much more information in addition 42

to the p value. Nevertheless, the correlation between the FI and p value is generally 43

expected, because the FI is derived based on p value (or CI); however, as long as the 44

correlation coefficient is not nearly 1, the FI can still serve as a useful supplement. Its 45

interpretation of “the number of events modified for altering significance” is intuitive for 46

clinicians. This is similar to the common practice of reporting point estimates of 47

treatment effects, their standard errors (SEs), p values, and CIs; each of them provides 48

important information for assessing treatment comparisons, although they are associated 49

with each other. Moreover, no widely-accepted guidelines are available to evaluate the 50

extents of fragility based on the FI value [43]. Experts’ opinion (e.g., about clinical 51

importance) may be incorporated when assessing the fragility [44, 45]. For example, it is 52

likely that a non-event may be changed to be an event for common diseases, but it is 53

less likely for rare diseases. In addition, the FI may not be very suitable for analyses of 54

time-to-event data, in which the timing of events, rather than the occurrence of events, 55

is of primary interest [46–48]. In summary, as a relatively new measure, more 56

comprehensive evaluations, including visualizations of the whole process that alters the 57

significance, should be taken into account when interpreting the FI in clinical practice. 58

To the best of our knowledge, very limited software packages are available for 59

assessing the fragility of clinical results, and no package has been developed yet for 60

visualizing the fragility. An online calculator 61

(https://clincalc.com/Stats/FragilityIndex.aspx) offers a simple tool to 62

calculate the FI of individual studies; users only need to input the event counts and 63

sample sizes in the two treatment groups in a clinical study. However, it does not 64

provide options for specifying statistical significance level, statistical method used for 65

deriving the significance, etc.; the significance level is fixed at 0.05, and Fisher’s exact 66

test is the only option to derive the FI. An R package “fragilityindex” [49] is also 67

October 9, 2021 2/38

https://clincalc.com/Stats/FragilityIndex.aspx
Cross-Out

Inserted Text
26]. With

Cross-Out

Inserted Text
has regained

Cross-Out

Inserted Text
I would say "several", not "many". This is the first time I have heard of the FI, for example. How widespread is it's use?

Cross-Out

Inserted Text
Publication

Cross-Out

Inserted Text
. In

Cross-Out

Inserted Text
between the FI and the p-value is not close to 1 (or -1?) How would a perfect negative correlation affect the calculation of the FI?

Cross-Out

Inserted Text
one another

Cross-Out

Inserted Text
extent

Cross-Out

Cross-Out
is



available to calculate the FI of individual studies; it additionally extends the FI to 68

logistic regression analyses and survival data analyses. Nevertheless, it only permits 69

users to specify the significance level; many other important factors (such as treatment 70

groups in which event status is modified) that may impact the FI cannot be changed. 71

Atal et al. [40] provide a web interface to calculate the FI of a pairwise MA 72

(https://clinicalepidemio.fr/fragility_ma/); the Stata module “metafrag” [50] 73

can be also used for this purpose. 74

We recently developed an R package “fragility” [51] that provides many additional 75

options for assessing and visualizing the fragility of individual trials, pairwise MAs, and 76

NMAs. This article gives an overview of these options and introduces the usage of the 77

“fragility” package in detail with several worked examples. The remaining content is 78

organized as follows. First, we review methods for assessing the fragility under various 79

clinical settings. Second, we introduce the structures of different types of datasets and 80

the usage of various functions provided by the “fragility” package. Third, we present 81

several worked examples and display their results to illustrate the usage of these 82

functions. Finally, we provide a brief discussion about future improvements. 83

Materials and methods 84

Assessing and visualizing fragility 85

Fragility of an individual clinical study 86

Suppose that a clinical study compares two treatments, denoted by 0 and 1, with a 87

binary outcome. The results are typically reported in a 2×2 table (Table 1). Let n0 and 88

n1 be the sample sizes in treatment groups 0 and 1, respectively, and e0 and e1 be the 89

event counts. These counts are non-negative integers, and e0 ≤ n0 and e1 ≤ n1. 90

Table 1. Illustration of a 2×2 table and event status modifications.

Treatment Event Non-event Sample size
2×2 table of the original study:
Group 0 e0 n0 − e0 n0
Group 1 e1 n1 − e1 n1
2×2 table with event status modifications:
Group 0 e0 + f0 n0 − e0 − f0 n0
Group 1 e1 + f1 n1 − e1 − f1 n1

By modifying some events’ status, the FI can evaluate its impact on the study result. 91

The uncertainties in event status are common in practice; for example, if the follow-up 92

periods for some participants are not sufficient, their disease outcomes may occur after 93

the end of study. [24] originally proposed to assess the fragility of a study by modifying 94

event status only in a single treatment group; such a group is chosen as the one with the 95

fewest events. Nevertheless, this restriction may not guarantee that the modifications of 96

event status for altering statistical significance or non-significance are minimal. In 97

general, we may consider event status modifications in both treatment groups as in 98

Table 1. Specifically, let f0 and f1 be the numbers of non-events changed to events in 99

groups 0 and 1, respectively. They may take any integer values between −ek and 100

nk − ek (k = 0, 1). Negative values of f0 or f1 indicate decreasing event counts in the 101

corresponding group, while positive values indicate increasing event counts; setting f0 or 102

f1 to 0 implies no event status modification. 103

Many statistical methods can be used to assess the association between a treatment 104

and an outcome in a 2 × 2 table [52]. Fisher’s exact test is commonly used for this 105

purpose; its p value is calculated based on a hypergeometric distribution under the null 106
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hypothesis. This test is particularly useful for small sample sizes, because many 107

alternative methods use large-sample asymptotic properties and may not perform well 108

for small sample sizes. The chi-squared test is another popular method, and its p value 109

is based on the asymptotic chi-squared distribution under the null hypothesis; thus, this 110

test generally requires sufficiently large sample sizes. 111

Clinicians also frequently use certain measures to quantify treatment effects for
binary outcomes, e.g., the odds ratio (OR), relative risk (RR), and risk difference (RD);
p values may be produced based on these effect sizes. Without loss of generality, these
effect sizes are calculated for the comparison of group 1 vs. group 0 throughout this
article. The OR and RR are conventionally analyzed on a logarithmic scale for better
approximation to the normal distribution. Specifically, the log OR is estimated as

y(f0, f1) = log
(e1 + f1)/(n1 − e1 − f1)

(e0 + f0)/(n0 − e0 − f0)

with SE

s(f0, f1) =

(
1

e0 + f0
+

1

n0 − e0 − f0
+

1

e1 + f1
+

1

n1 − e1 − f1

)1/2

,

the log RR is estimated as

y(f0, f1) = log
(e1 + f1)/n1
(e0 + f0)/n0

with SE

s(f0, f1) =

(
1

e0 + f0
+

1

e1 + f1
− 1

n0
− 1

n1

)1/2

,

and the RD is estimated as

y(f0, f1) =
e1 + f1
n1

− e0 + f0
n0

with SE

s(f0, f1) =

[
(e0 + f0)(n0 − e0 − f0)

n30
+

(e1 + f1)(n1 − e1 − f1)

n31

]1/2
.

In the presence of zero counts, a continuity correction (often 0.5) needs to be applied to 112

all data cells in the 2×2 table for producing these estimates [53]. 113

Consequently, a certain set of event status modifications f0 and f1 leads to a p value 114

based on each of the above five methods for assessing the association between the 115

treatment and outcome, denoted by p(f0, f1). The p value of the original study with no 116

event status modification is p(0, 0) with f0 = f1 = 0. For the chi-squared test, OR, RR, 117

and RD, their p values may not be accurate when some data cells are small, because 118

they all use large-sample asymptotic null distributions to calculate p values. The 119

estimated log OR, log RR, and RD are assumed to approximately follow the normal 120

distribution, so their p values are calculated as p(f0, f1) = 2Φ
(
− |y(f0,f1)|s(f0,f1)

)
(two-sided) 121

or p(f0, f1) = Φ
(
− |y(f0,f1)|s(f0,f1)

)
(one-sided), where Φ(·) denotes the cumulative 122

distribution function of the standard normal distribution. The OR, RR, and RD can 123

indicate the direction of treatment effects, so the alternative hypothesis may be two- or 124

one-sided. However, Fisher’s exact test and the chi-squared test evaluate the association 125

with no specific direction, so their p values are two-sided. 126

For each method, the p values p(f0, f1) based on all considered event status 127

modifications can be visualized as a matrix of points; each point represents a p value, 128
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with the x- and y-axes representing its corresponding event status modifications, and its 129

color distinguishes the magnitude of the p value [54]. When event status modifications 130

are restricted to a single treatment group, the p values p(f0, 0) or p(0, f1) can be 131

presented against f0 or f1 in a scatterplot for visualizing the change of p values as event 132

status modifications vary. These plots will be illustrated in our worked examples later. 133

Assume the statistical significance level is pre-specified at α. Formally, if the original
study result is statistically significant with p(0, 0) < α, then the FI is defined as

FI = min
p(f0,f1)≥α

{|f0|+ |f1|} ;

if the original study result is non-significant with p(0, 0) ≥ α, then the FI is

FI = min
p(f0,f1)<α

{|f0|+ |f1|} .

A smaller value of FI indicates a more fragile result. The above minimization problems
are subject to −ek ≤ fk ≤ nk − ek (k = 0, 1). These ranges could be adjusted to
accommodate with clinicians’ needs. For example, if it is more likely that some events
are not observed, then one may restrict the ranges to be non-negative for yielding more
events. One may also restrict event status modifications to a single group as in Walsh et
al. [24]. When the modifications are restricted to group 0, the resulting FI is

FI0 =

{
minp(f0,0)≥α |f0| if p(0, 0) < α;

minp(f0,0)<α |f0| if p(0, 0) ≥ α.

Similarly, when the modifications are restricted to group 1, the resulting FI is

FI1 =

{
minp(0,f1)≥α |f1| if p(0, 0) < α;

minp(0,f1)<α |f1| if p(0, 0) ≥ α.

Clearly, 1 ≤ FI ≤ min{FI0,FI1}. It is possible that the significance or non-significance 134

cannot be altered based on given ranges of event status modifications; in such cases, we 135

define FI as not available (NA). This may happen when sample sizes are small, as they 136

only permit a narrow range of modifications. 137

Moreover, although the significance level is conventionally set at α = 0.05, this choice 138

is arguably arbitrary and the resulting false positive rate may be considered high in 139

some fields of science. Many researchers propose to lower this standard to α = 0.005 for 140

improving research reproducibility and replicability [55,56]. As the FI is derived based 141

on a specific significance level, it should be always reported alongside the associated 142

level. Instead of relying on the FI at a single significance level, clinicians might also be 143

interested in the trend of the FI as the significance level varies (e.g., from 0.005 to 0.05), 144

which can be visualized in a scatterplot [54]. Theoretically, the FI is a function of the 145

significance level, denoted by FI(α). This is a step function because the FI must take 146

positive integer values. Suppose the FI is evaluated from α = αL (say, 0.005) to α = αU 147

(say, 0.05). We may consider the average of the area under the function to quantify the 148

overall fragility among the range of significance levels [αL, αU]. The idea is similar to the 149

area under the receiver operating characteristic curve (AUC) used in diagnostic decision 150

making. The average FI is FIavg = 1
αU−αL

∫ αU

αL
FI(α) dα. In practice, this quantity can 151

be approximated by the average of FIs at B (say, 100) equally-spaced values between αL 152

and αU, denoted by αb for b = 1, 2, . . . , B with α1 = αL and αB = αU. Because 153∫ αU

αL
FI(α) dα ≈ αU−αL

B

∑B
b=1 FI(αb) for a sufficient large B, the average FI is 154

FIavg ≈ B−1
∑B
b=1 FI(αb), i.e., the arithmetic mean of the values of FI(αb). 155

Multiple clinical studies may be conducted on the same topic; they compare the same 156

treatment groups and investigate the same outcome. Clinicians may want to compare 157
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the fragility across the multiple studies. As the FI of an individual study depends on 158

the sample size, it might not be sensible to directly compare the FIs of the multiple 159

studies. Alternatively, one may use the relative measure, fragility quotient (FQ), to 160

compare the multiple studies’ fragility [57]. Specifically, FQ = FI
n0+n1

× 100%; that is, it 161

represents the minimal percentage change of event status among all participants that 162

can alter the significance (or non-significance), and it ranges within 0%–100%. 163

Fragility of a meta-analysis 164

An MA aims at synthesizing and contrasting findings from multiple independent studies 165

on the same topic. Consider an MA with a binary outcome that contains N studies; 166

each study compares the same two treatment groups (denoted by 0 and 1), and reports 167

its 2×2 table with event counts ei0 and ei1 and sample sizes ni0 and ni1 in the two 168

groups (i = 1, . . . , N). The effect measure can be the (log) OR, (log) RR, or RD. Let yi 169

and si be the estimated effect size and its SE, respectively, in study i. The continuity 170

correction is applied to studies with zero data cells. The estimated effect sizes are 171

conventionally assumed to approximately follow the normal distributions yi ∼ N(θi, s
2
i ) 172

within studies, where θi denotes the underlying true effect size of study i. 173

Here, the within-study SEs si are assumed to be fixed, known values. Alternative 174

exact methods (without the approximation to the normal distributions) are available via 175

generalized linear mixed models or Bayesian hierarchical models; they can avoid the 176

continuity correction in the presence of zero data cells and may have better performance 177

than the conventional method for sparse data [58–62]. However, to assess the fragility of 178

the MA, this article focuses on the conventional method instead of the alternatives, 179

because many iterations may be needed to derive the FI, and it may be computationally 180

demanding to repeat the exact methods for many times. Also, as most MA applications 181

have used the conventional method so far, the FI derived from this method may better 182

reflect the current practice. 183

The underlying true effect sizes are further assumed to follow the normal distribution 184

θi ∼ N(θ, τ2), where τ2 is the between-study variance owing to heterogeneity. A special 185

case is that τ2 = 0, which implies θi = θ for all studies; this case is referred to as the 186

fixed-effect or common-effect setting, and θ represents the common effect size shared by 187

all studies. On the other hand, τ2 > 0 yields the random-effects setting, where θ is 188

interpreted as the overall effect size across studies. In both settings, θ is of primary 189

interest, and the MA aims at estimating this parameter and its CI. One may refer to 190

Borenstein et al. [63], Riley et al. [64], and many other articles for extensive discussions 191

about the interpretation and selection of the fixed-effect and random-effects settings. 192

The between-study variance τ2 plays a critical role in the random-effects MA
because it greatly impacts the CI of the treatment effect estimate and thus the
statistical significance. It can be estimated via several approaches. The
DerSimonian–Laird (DL) estimator by [65] is the most popular one; nevertheless,
several better alternatives, e.g., the restricted maximum likelihood (REML) estimator,
have been shown to perform better in general [66,67]. Let τ̂2 be the estimated
between-study variance; under the fixed-effect setting, set τ̂2 = 0. Each study in the
MA is assigned with a weight wi = 1/(s2i + τ̂2). The overall effect size is estimated as

θ̂ =

∑N
i=1 wiyi∑N
i=1 wi

.

It approximately follows the normal distribution, and its (1− α)× 100% CI is
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conventionally constructed as

θ̂ ± z1−α/2 ×

(
N∑
i=1

wi

)−1/2
,

where z1−α/2 denotes the 1− α/2 quantile of the standard normal distribution.
Alternatively, [68] and [69] refined the CI by accounting for the variation in τ̂2. The
Hartung–Knapp–Sidik–Jonkman (HKSJ) method constructs the CI as

θ̂ ± tN−1,1−α/2 ×

{∑N
i=1 wi(yi − θ̂)2

(N − 1)
∑N
i=1 wi

}1/2

,

where tN−1,1−α/2 denotes the 1− α/2 quantile of the t distribution with N − 1 degrees 193

of freedom. It has been shown to have a better coverage probability than the CI based 194

on the normal distribution, especially when the number of studies N is small [70]. 195

To assess the fragility of an MA, an ideal approach is to exhaustively enumerate all 196

possible event status modifications step by step; however, this procedure may be 197

impractical from the computational perspective if many steps are needed to alter the 198

significance or non-significance. Suppose that the overall effect size is significant and is 199

above the null value. At each step of modifying event status, we may need to consider 200

decreasing one event count in group 1 or increasing one event count in group 0 in a 201

single study; thus, assuming that the event counts have not achieved the bounds (i.e., 0 202

or sample size), there are 2N possible cases for this step. Such iterations will terminate 203

only after the significance is altered, so we need to perform up to (2N)FI MAs during 204

this process. This is not practical in many real-world applications; for example, even for 205

a relatively small MA with N = 10 studies, if the FI is 5, then this exhaustive search 206

needs to perform over 3 million different MAs with modified event status. 207

Instead of enumerating all possible event status modifications, Atal et al. [40] 208

proposed a heuristic iterative process based on the CI of the overall effect size estimate 209

to derive the FI. Specifically, suppose that the original MA yields a significant overall 210

effect size estimate, and it is larger than the null value. We initiate the iterative process 211

from the original MA (step 0). In order to move the CI toward the null value, event 212

status is modified to decrease event counts (down to 0) in group 1 or increase those in 213

group 0 (up to the corresponding sample size). At each step, one event is changed to 214

non-event in group 1 or one non-event is changed to event in group 0 in a certain study; 215

separate MAs are performed based on the data with each of the above modifications to 216

produce the CIs of the overall effect size estimate. The modification that leads to the 217

smallest lower bound of the CI (i.e., the one closest to the null value if the CI still does 218

not cover it) is selected as the optimal one for facilitating the process of altering the 219

significance. Based on the optimal modifications identified in the previous steps, the 220

iterations continue until the CI covers the null value. Because each step contains up to 221

2N modifications, the above algorithm only needs to perform up to 2N × FI MAs to 222

derive the FI, making the process computationally feasible. This number is much 223

smaller than (2N)FI in the exhaustive search, especially when N or the FI value is large. 224

On the other hand, suppose that the original MA has a non-significant overall effect 225

size estimate. Unlike the case of a significant overall effect size estimate where the CI is 226

moved toward only one specific direction, now the CI covers the null value, and we may 227

move it toward either the left or right direction for achieving significance. For each 228

direction, a separate FI can be derived via an algorithm similar to the one described 229

above; the final FI is the minimum value of these two FIs. 230

In cases that significance or non-significance cannot be altered, the FI is defined as 231

NA. The FQ can be similarly calculated for the MA; it is the FI divided by the total 232
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sample size across all studies. To visualize the process of the iterative algorithm for 233

deriving the FI, one may present the changes of event counts in the two treatment 234

groups along with the studies involved in the corresponding modifications against the 235

iterations; we will provide worked examples to illustrate the visualizations. 236

Fragility of a network meta-analysis 237

NMA is an extension of the conventional pairwise MA that compares only a pair of 238

treatments at one time; it aims at comparing multiple treatments simultaneously by 239

synthesizing both direct and indirect evidence about treatment comparisons [71,72]. 240

Suppose a trial compares treatments A and C and another trial compares B and C; 241

these two trials provide indirect evidence for A vs. B via the common comparator C. 242

NMA has been increasingly used in recent years, because many treatments may be 243

available for a specific disease outcome. It is particularly useful when some treatments 244

of interest (e.g., new drugs) have been seldom compared directly but many trials have 245

compared them with some common treatments (e.g., placebo). It may produce more 246

precise treatment effect estimates than separate pairwise MAs and provide a coherent 247

treatment ranking for decision making [73–76]. 248

Various methods have been developed to perform NMA under both the frequentist 249

and Bayesian frameworks [77–86]. To assess the fragility of an NMA, similar iterative 250

procedures for a pairwise MA can be used [41]. We focus on the frequentist method by 251

Rücker [78] to produce the CIs of treatment comparisons in the NMA. Although in 252

theory any method can be used to derive the FI, the Bayesian methods could be very 253

time-consuming even for analyzing a single NMA, so it may not be practical to 254

iteratively apply them to many NMAs with modified event status. 255

Specifically, unlike the case of a pairwise MA that involves a single treatment 256

comparison, the NMA contains multiple comparisons, each yielding a separate effect size 257

estimate. Let K be the number of treatments in the NMA; a total of K(K − 1)/2 258

comparisons are estimated. Therefore, the FI is not defined for the whole NMA as in 259

individual studies or pairwise MAs; it is defined for each treatment comparison. 260

Consequently, for a specific pair of treatments, say A and B, we consider event status 261

modifications based on the significance of their comparison B vs. A. Modifying any 262

event status, even for those not in groups A and B, may change the results of all 263

treatment comparisons; thus, in theory, the event status modifications are possible for 264

each study’s each treatment group. However, this would dramatically increase the 265

computation time. Also, it is intuitive to modify event status directly in groups A and 266

B, and such modifications are expected to have a larger impact on the estimated effect 267

size of B vs. A and can alter the its significance or non-significance faster. Therefore, 268

during each iteration for deriving the FI for B vs. A, we only consider event status 269

modifications in these two groups. For example, if the effect size of B vs. A is 270

significantly larger than the null value in the original NMA, then in each iteration, we 271

consider decreasing event counts in group B or increasing those in group A in certain 272

studies until the significance is altered. 273

Similar to assessing the fragility of an individual study and a pairwise MA, the FI is 274

defined as NA if the significance or non-significance cannot be altered. The process of 275

deriving the FI can be also visualized for each treatment comparison similarly for the 276

pairwise MA. The relative measure FQ can be calculated as the FI divided by the 277

sample size, but it may have two versions in the NMA. It seems straightforward to use 278

the total sample size nNMA across all studies and all treatment groups in the whole 279

NMA as the denominator for calculating the FQ. However, the FQ derived in this way 280

has an upper bound nAB

nNMA
× 100%, where nAB denotes the sample size in groups A and 281

B across all studies, because the algorithm only modifies event status in the associated 282

two treatments for a specific comparison. This upper bound differs for different pairs of 283
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treatments, implying a methodological limitation. Alternatively, for the comparison B 284

vs. A, we may calculate the FQ as the FI divided by nAB, so that this FQ still ranges 285

within 0%–100% and could be fairly compared across treatment pairs. 286

Using the R package fragility 287

The R package “fragility” imports functions from “metafor” [87] for performing pairwise 288

MAs and “netmeta” [88] for performing NMAs. We first introduce example datasets 289

included in “fragility” to demonstrate the data structures, and then provide details 290

about the functions for assessing and visualizing fragility. 291

Example datasets 292

The package “fragility” provides four datasets, dat.ad, dat.ns, dat.copd, and dat.sc. 293

They all consist of multiple clinical studies, and are used for different illustrative 294

purposes. 295

The dataset dat.ad contains 347 randomized controlled trials of antidepressant 296

drugs with a binary acceptability (dropout due to any cause) outcome; these trials were 297

systematically collected by Cipriani et al. [89]. This dataset is used to illustrate the 298

usage of functions for assessing and visualizing the fragility of individual studies. We 299

display the first six trials as follows: 300

> data("dat.ad") 301

> head(dat.ad) 302

e0 n0 e1 n1 303

1 7 107 12 105 304

2 17 118 18 120 305

3 30 252 49 263 306

4 25 109 19 109 307

5 35 167 35 168 308

6 17 137 26 140 309

Each row presents the data of a trial. The columns e0, n0, e1, and n1 present event 310

counts and sample sizes in group 0 and those in group 1, respectively. Of note, we use 311

this dataset as an example of (multiple) individual studies, although Cipriani et al. [89] 312

originally performed an NMA based on this dataset. The two treatments 313

(antidepressant drugs or placebo) compared in each study may be different. This 314

dataset does not include multi-arm trials originally collected by Cipriani et al. [89]. 315

The dataset dat.ns contains a collection of 564 pairwise MAs on nutrition support 316

retrieved from Feinberg et al. [90]. Each MA may compare different treatments and 317

have different binary outcomes. This dataset is used to illustrate the usage of functions 318

for assessing and visualizing the fragility of pairwise MAs. Its first six rows are: 319

> data("dat.ns") 320

> head(dat.ns) 321

ma.id e0 n0 e1 n1 322

1 1 3 24 4 20 323

2 1 2 10 1 9 324

3 1 2 28 0 22 325

4 1 31 265 46 260 326

5 1 6 32 4 28 327

6 1 4 35 5 39 328

Each row represents a specific study in a specific MA. The first column ma.id indexes 329

the MAs, ranging from 1 to 564; the output above is from the first six studies in the 330
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first MA. The remaining four columns e0, n0, e1, and n1 have the same interpretations 331

as in the dataset dat.ad of individual studies. Some MAs may have overlapping studies, 332

and some may be divided into several subgroups. 333

Finally, the datasets dat.copd and dat.sc are used to illustrate the usage of 334

functions for assessing and visualizing the fragility of NMAs. The dataset dat.copd is 335

extracted from Woods et al. [91]; it gives a simple NMA with 3 studies comparing 4 336

treatments on chronic obstructive pulmonary disease. As this dataset is small, the 337

assessment of its fragility does not take much time, and thus it serves as a toy example. 338

The full dataset is: 339

> data("dat.copd") 340

> dat.copd 341

sid tid e n 342

1 1 3 1 229 343

2 1 1 1 227 344

3 2 2 4 374 345

4 2 3 3 372 346

5 2 4 2 358 347

6 2 1 7 361 348

7 3 3 1 554 349

8 3 1 2 270 350

The data structure of the NMA is different from those of individual studies and pairwise 351

MAs introduced above. Specifically, each row represents the data from a specific 352

treatment group in a specific study. The columns sid and tid give the indexes of 353

studies and treatments, respectively, and e and n give the corresponding event counts 354

and sample sizes. The four treatments in this dataset are indexed as 1) placebo; 2) 355

fluticasone; 3) salmeterol; and 4) salmeterol fluticasone combination. As shown in the 356

output above, studies 1 and 3 are two-armed, while study 2 is four-armed. In addition 357

to this simple dataset, the package “fragility” also includes a larger NMA dataset of 358

smoking cessation, dat.sc. Its first six rows are displayed as follows: 359

> data("dat.sc") 360

> head(dat.sc) 361

sid tid e n 362

1 1 1 9 140 363

2 1 3 23 140 364

3 1 4 10 138 365

4 2 2 11 78 366

5 2 3 12 85 367

6 2 4 29 170 368

This dataset is retrieved from Lu and Ades [92] that used formal methods to perform 369

the NMA, while it was originally reported in Hasselblad [93]. It has the same data 370

structure as in dat.copd. The NMA contains 24 studies comparing 4 treatments: 1) no 371

contact; 2) self-help; 3) individual counseling; and 4) group counseling. The binary 372

outcome is successful smoking cessation. The first two studies are three-armed as shown 373

in the output above, and the remaining 22 studies are two-armed. 374

Assessing fragility 375

Three functions, frag.study(), frag.study.alpha(), and frag.studies(), are 376

available in the package “fragility” to assess the fragility of individual studies. The 377

function frag.study() assesses the fragility of a single study; frag.study.alpha() 378
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assesses an individual study’s fragility at different significance levels; and 379

frag.studies() assesses the fragility of multiple individual studies. 380

The arguments of the function frag.study() include: 381

frag.study(e0, n0, e1, n1, data, all = FALSE, methods, 382

modify0 = "both", modify1 = "both", alpha = 0.05, 383

alternative = "two.sided", OR = 1, RR = 1, RD = 0, 384

allcase = TRUE) 385

where e0, n0, e1, and n1 specify event counts and sample sizes in groups 0 and 1. The 386

argument data is optional for specifying the dataset; if specified, the previous four 387

arguments should be the corresponding column names in data. The logical argument 388

all indicates whether all possible event status modifications will be considered for 389

assessing the study’s fragility. If users only need the numerical value of FI or FQ and 390

the corresponding event status modifications that alter the significance or 391

non-significance, then all = FALSE (the default) is sufficient to produce these results 392

via an iterative algorithm (i.e., starting from modifying one event’s status, until the 393

significance or non-significance is altered). The output of this function is of class 394

"frag.study". If all = TRUE, this function generates p values corresponding to all 395

possible event status modifications, so that users are able to visualize the extents of 396

significance based on these p values. In this case, the output is of both classes 397

"frag.study" and "frag.study.all". The visualization can be easily performed using 398

the function plot() via the S3 method for class "frag.study.all" (detailed later). If 399

the study has large sample sizes (n0 and n1) in both treatment groups and there may 400

be many possible event status modifications, all is recommended to be set to FALSE 401

because R may run out of memory; for example, a study with 1000 samples in each 402

group may lead to up to one million possible event status modifications. 403

Moreover, the argument methods specifies the statistical method(s) used to calculate 404

p values and thus determine the significance or non-significance. Five aforementioned 405

methods are available, i.e., Fisher’s exact test ("Fisher"), the chi-squared test 406

("chisq"), OR ("OR"), RR ("RR"), and RD ("RD"). This argument could include a 407

single method (by specifying a single character string) or multiple methods (by 408

specifying a vector of character strings); its default includes all five possible methods. 409

The two arguments modify0 and modify1 imply how event status is modified in 410

groups 0 and 1, respectively; each argument could be one of "increase" (increasing 411

event counts), "decrease" (decreasing event counts), "both" (the default, modifying 412

event status in both directions), and "none" (no modification). In practice, the 413

modifications in the two groups may be determined based on clinicians’ opinion. The 414

significance level is given by the argument alpha with the default 0.05. The argument 415

alternative specifies whether one-sided ("one.sided") or two-sided ("two.sided") 416

p values are produced when using the OR, RR, and/or RD. The p values are always 417

two-sided for Fisher’s exact test and the chi-squared test (even if alternative = 418

"one.sided") because they test for the association with no specific direction. One may 419

specify the values of the OR, RR, and RD under the null hypothesis (if the argument 420

methods includes some of them) using the arguments OR, RR, and RD. Finally, the 421

logical argument allcase indicates whether users would like to obtain all cases of 422

minimal event status modifications for altering significance or non-significance. The 423

default is TRUE, and users may change it to FALSE for saving some computation time if 424

they only need the numerical value of the FI or FQ. 425

The function frag.study.alpha() efficiently assesses an individual study’s fragility 426

at different significance levels, and produces the average FI and FQ across these levels. 427

Its arguments include: 428

frag.study.alpha(e0, n0, e1, n1, data, methods, 429

October 9, 2021 11/38

Cross-Out

Inserted Text
The

Cross-Out

Inserted Text
dictate



modify0 = "both", modify1 = "both", 430

alpha.from = 0.005, alpha.to = 0.05, alpha.breaks = 100, 431

alternative = "two.sided", OR = 1, RR = 1, RD = 0) 432

All arguments except the second line are the same with their counterparts in 433

frag.study(); the second line specifies the range of possible significance levels, which 434

may be particularly useful if clinicians have different opinions about defining statistical 435

significance [55,56]. Specifically, alpha.from, alpha.to, and alpha.breaks specify the 436

smallest and largest values of the significance levels to be considered, and the number of 437

levels, respectively. The candidate significance levels are equally spaced within the range. 438

This function produces an object of classes "frag.alpha" and "frag.study.alpha". 439

The FIs or FQs assessed at different significance levels can be visualized as a step-like 440

function using plot() via the S3 method for class "frag.alpha" (detailed later). 441

The function frag.studies() permits users to input multiple studies for assessing 442

their fragility. It is particularly useful if users would like to conduct an overall 443

assessment among a collection of studies (e.g., trials belonging to some similar 444

specialties) and investigate the distribution of their fragility measures [31,32]. Its 445

arguments are similar to those of frag.study(); they are displayed as follows: 446

frag.studies(e0, n0, e1, n1, data, methods, 447

modify0 = "both", modify1 = "both", alpha = 0.05, 448

alternative = "two.sided", OR = 1, RR = 1, RD = 0) 449

All arguments have the same usage as in frag.study(), except that e0, n0, e1, and n1 450

specify vectors of event counts and sample sizes from the multiple studies, instead of 451

single numerical values. The function output is of classes "frag.multi" and 452

"frag.studies"; users can apply plot() to the output for generating a bar plot or 453

histogram to visualize the overall distribution of the multiple studies’ FIs or FQs via the 454

S3 method for class "frag.multi". 455

Similar to the three functions above for assessing individual studies’ fragility, 456

“fragility” offers frag.ma(), frag.ma.alpha(), and frag.mas() for assessing the 457

fragility of pairwise MAs. The package imports the function rma.uni() from 458

“metafor” [87] to perform pairwise MAs and obtain the effect size estimates (including 459

CIs), which further determine the FIs or FQs. Users may refer to [94] for many 460

additional arguments that can be used to customize the MAs. 461

The major function frag.ma() for assessing a pairwise MA’s fragility has the 462

following arguments: 463

frag.ma(e0, n0, e1, n1, data, measure = "OR", alpha = 0.05, 464

mod.dir = "both", OR = 1, RR = 1, RD = 0, method = "DL", test = "z", 465

...) 466

where e0, n0, e1, and n1 specify the event counts and sample sizes of each study in the 467

MA, and the optional argument data can specify the MA dataset. One of the three 468

effect measures, OR, RR, and RD, may be specified for measure, and the arguments OR, 469

RR, and RD give the corresponding null values. The argument alpha specifies the 470

significance level; it corresponds to the confidence level (1 − alpha)×100% of CIs. The 471

argument mod.dir indicates the direction of the CI change due to event status 472

modifications when the original MA’s CI covers the null value (i.e., the case of 473

non-significance altered to significance). It is not used if the original MA has a 474

significant estimate. Users may specify "left" (moving the CI to the left side of the 475

null value), "right" (moving the CI to the right side), "one" (based on the direction of 476

the original point estimate of overall effect size), or "both" (both directions) for 477

mod.dir. The default option "both" is expected to find the minimal event status 478
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modifications for altering the non-significance, but it may require more computation 479

time than the other three options. 480

Moreover, method and test are two important arguments for performing the MA; 481

they are passed to rma.uni() in “metafor.” The method specifies the MA method, 482

including the commonly used fixed-effect model ("FE"), DL method ("DL"), maximum 483

likelihood method ("ML"), REML method ("REML"), and many others. Of note, the DL 484

method is very popular, but it has been found to be inferior to the REML method [67], 485

so “metafor” uses the REML method as the default. However, the estimation process 486

may not converge when implementing the REML method, e.g., for some MAs with few 487

studies. As many MAs with different event status modifications need to be performed 488

to derive the fragility measure, the REML method might lead to computation errors 489

during this process. Therefore, frag.ma() uses the DL method as the default, which is 490

based on the method of moments and thus generally does not lead to computational 491

errors. Users should also carefully note that the argument method in frag.ma() differs 492

from methods in frag.study(); the latter specifies the method(s) for producing 493

p values of individual studies. Moreover, the argument test in frag.ma() indicates 494

how CIs of MAs are derived; four options are available, i.e., "z", "t", "knha" (the 495

HKSJ method), and "adhoc". The first option indicates Wald-type CIs based on the 496

standard normal distribution (the default), while the latter three yield CIs based on the 497

t distribution. Users may refer to the manual of “metafor” for more details [87]. Most 498

existing MAs use Wald-type CIs based on the standard normal distribution, but 499

recently the HKSJ method is recommended because it generally leads to better coverage 500

probabilities [70]. Finally, many additional arguments from “metafor” can be specified 501

for frag.ma(). For example, the arguments add and drop00 may be used for handling 502

studies with zero event counts (i.e., the value of continuity correction and whether 503

double-zero-event studies are removed from the MA). The function frag.ma() returns 504

an object of class "frag.ma"; users can apply plot() to the output via the S3 method 505

for this class to visualize the iterative process of event status modifications for deriving 506

the fragility measure of the MA. 507

The function frag.ma.alpha() assesses the fragility of an MA at multiple 508

significance levels. Its relationship with frag.ma() is similar to that between 509

frag.study() and frag.study.alpha(). Its arguments are the same with frag.ma(), 510

except that users can specify a range of significance levels using the arguments 511

alpha.from, alpha.to, and alpha.breaks. The function returns an object of classes 512

"frag.alpha" and "frag.ma.alpha"; like the output of frag.study.alpha(), it can 513

be visualized using plot() via the S3 method for "frag.alpha". 514

The function frag.mas() assesses the fragility of multiple MAs; its relationship with 515

frag.ma() is similar to that between frag.study() and frag.studies(). It returns 516

an object of classes "frag.mas" and "frag.multi", and users can visualize the fragility 517

measures among the multiple MAs using plot() via the S3 method for "frag.multi". 518

Its arguments slightly differ from frag.ma(): 519

frag.mas(e0, n0, e1, n1, ma.id, data, measure = "OR", alpha = 0.05, 520

mod.dir = "both", OR = 1, RR = 1, RD = 0, method = "DL", test = "z", 521

...) 522

The major difference is about the arguments e0, n0, e1, n1, and ma.id for inputting 523

data. Users may refer to the structure of the example dataset dat.ns introduced 524

previously. Specifically, ma.id is a vector for indexing the multiple MAs, and e0, n0, e1, 525

and n1 specify the event counts and sample sizes of each study in each MA. Like 526

frag.ma(), users may specify additional arguments from “metafor” for frag.mas(), as 527

well as frag.ma.alpha(), to customize the implementation of MAs. 528

In addition, “fragility” provides two functions frag.nma() and frag.nma.alpha() 529

for assessing the fragility of NMAs. These are designed for the similar purposes to 530
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frag.ma() and frag.ma.alpha(); that is, frag.nma() deals with an NMA at a specific 531

significance level, while frag.nma.alpha() assesses the fragility at multiple significance 532

levels. However, these two functions’ arguments may involve more specifications than 533

their counterparts for pairwise MAs, owning to the more complicated structure of 534

NMAs. The functions pairwise() and netmeta() imported from “netmeta” [88] are 535

used to implement NMAs. Of note, “fragility” does not provide a function for 536

simultaneously assessing the fragility of multiple NMAs like frag.studies() and 537

frag.mas(), because a single NMA can be viewed as a comprehensive collection of 538

many pairwise MAs for comparisons of all available treatments. Usually only a few 539

NMAs are available on certain common topics. In such cases, users may apply 540

frag.nma() to each NMA separately for assessing their overall fragility. 541

The arguments of frag.nma() are as follows: 542

frag.nma(sid, tid, e, n, data, measure = "OR", random = TRUE, 543

alpha = 0.05, mod.dir = "both", tid1.f, tid2.f, 544

OR = 1, RR = 1, RD = 0, 545

incr, allincr, addincr, allstudies, ...) 546

where sid, tid, e, and n specify study IDs, treatment IDs, their corresponding event 547

counts and sample sizes. One may also specify the dataset for the optional argument 548

data. We recommend using the natural numbers (starting from 1) to index the studies 549

and treatments; otherwise, the functions imported from “netmeta” may give warnings 550

that treatments are re-sorted according to a certain order. Moreover, the arguments 551

measure, alpha, mod.dir, OR, RR, and RD have the same usage as in frag.ma() for 552

pairwise MAs. The logical argument random indicates whether the NMA is performed 553

under the fixed-effects setting (FALSE) or random-effects setting (TRUE, the default). 554

The two arguments tid1.f and tid2.f specify the treatment comparison(s) of interest 555

for the assessment of fragility; the default is that the fragility is assessed for all 556

treatment comparisons. For example, if tid1.f = 1 and tid2.f = 2, then the function 557

only assesses the fragility of 1 vs. 2; if tid1.f = c(2, 3) and tid2.f = c(1, 2), 558

then it assesses the fragility of 2 vs. 1 and 3 vs. 2. The four arguments incr, allincr, 559

addincr, and allstudies are used for handling zero event counts; they are passed to 560

pairwise() in “netmeta.” Users may additionally specify arguments from netmeta() 561

to customize the implementation of the NMAs; see its manual for more details [88]. The 562

output of frag.nma() is of class "frag.nma". It can be visualized using plot() via the 563

S3 method for class "frag.nma" to show the iterative process of event status 564

modifications for deriving the fragility measure of a specific treatment comparison. 565

The function frag.nma.alpha() assesses the fragility of an NMA at multiple 566

significance levels, similar to frag.study.alpha() and frag.ma.alpha(). Most 567

arguments are the same with frag.nma(), except the arguments alpha.from, 568

alpha.to, and alpha.breaks for specifying the range of candidate significance levels. 569

Because it may be time-consuming to perform many NMAs for deriving the fragility 570

measures, we recommend users to specify a relatively small number of significance levels 571

to alpha.breaks, especially for large NMAs. The output of frag.nma.alpha() is of 572

classes "frag.alpha" and "frag.nma.alpha"; again, users can use plot() via the S3 573

method for "frag.alpha" to visualize the relationship between fragility measures and 574

significance levels for a specific treatment comparison. 575

Table 2 summarizes the functions and their output classes for each data type. The 576

object produced by each function is a list containing different elements about the input 577

data, relevant estimates, and their fragility measures. It is automatically printed by 578

print() via the S3 method for its corresponding class(es). The printed messages are 579

informative summaries about the data, analyses, and assessment of the fragility. If users 580

would like to obtain more comprehensive information, they can extract elements from 581
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Table 2. Summary of major functions (followed by parentheses) and their output
classes (within quotation marks) in the package “fragility” for assessing the fragility of
different data types.

Function and output class under each scenario
Data type Single significance level Multiple significance levels Single significance level

and single dataset and single dataset and multiple datasets
Individual frag.study(); frag.study.alpha(); frag.studies();
study "frag.study" and "frag.alpha" and "frag.multi" and

"frag.study.all" (if all = TRUE) "frag.study.alpha" "frag.studies"

Pairwise frag.ma() frag.ma.alpha() frag.ma()

meta-analysis "frag.ma" "frag.alpha" and "frag.multi" and
"frag.ma.alpha" "frag.mas"

Network frag.nma() frag.nma.alpha() Not applicable
meta-analysis "frag.nma" "frag.alpha" and

"frag.nma.alpha"

the output list; the elements’ names in the list can be found by applying the function 582

names(). 583

Visualizing fragility 584

The package “fragility” offers functions for visualizing the fragility of individual studies, 585

pairwise and NMAs; they are called by plot() via the S3 method for certain classes. 586

To visualize the fragility of an individual study, users need to specify all = TRUE in 587

frag.study() so that all possible event status modifications are considered. The 588

produced object belongs to class "frag.study.all"; for this object, the arguments of 589

the visualization function are as follows: 590

plot(x, method, modify0, modify1, trun, xlab, ylab, xlim, ylim, 591

cex.pts, cex.legend.pval, cex.legend.title, 592

col.ori, col.ori.hl, col.f.hl, col.sig, 593

lty.ori, lwd.ori, pch, pch.ori, pch.ori.hl, pch.f, pch.f.hl, pch.trun, 594

adjust.legend, adjust.seg, legend.pvals, ...) 595

where x is the output of frag.study() with all = TRUE. Users may only specify a 596

single statistical method used to calculate the p value for the argument method when 597

visualizing the fragility at one time; it must be an element of x$methods, i.e., the 598

argument methods specified for frag.study(). If method is not specified, then the first 599

method in x$methods is used. The arguments modify0 and modify1 specify logical 600

values indicating whether event status is modified in groups 0 and 1, respectively, for 601

the visualization. When both modify0 and modify1 are TRUE, the generated plot 602

presents p values (with different colors representing their magnitudes) based on all 603

possible event status modifications; the modifications in group 0 and 1 are presented on 604

the x and y axes, respectively. A legend is displayed to correspond different colors to 605

p value magnitudes. When only one of modify0 and modify1 is TRUE, a scatter plot is 606

generated. It presents p values (on a base-10 logarithmic scale) on the y axis against 607

modifications in group 0 (if modify0 = TRUE) or group 1 (if modify1 = TRUE) on the 608

x axis. The default of modify0 and modify1 is TRUE if the range of modifications in the 609

corresponding treatment group, which is stored in the object x (i.e., x$f0.range or 610

x$f1.range), is not 0; otherwise, the default is FALSE. 611

The remaining arguments can improve the plot’s display. The argument trun 612

specifies the truncation of p values (on a base-10 logarithmic scale); p values smaller 613

than the threshold (i.e., 10^-trun) are truncated. This helps avoid wide plot ranges 614

caused by extremely small p values. The arguments xlab, ylab, xlim, and ylim have 615

the same usage as in the default plot function plot.default(). The arguments 616
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starting with cex, col, lty, lwd, and pch are used for specifying the sizes, colors, line 617

types, line widths, and point shapes of certain plot features; see details in the manual of 618

“fragility.” The last three arguments adjust the display of the legend when both modify0 619

and modify1 are TRUE. Users may specify additional arguments from plot.default() 620

to adjust many other graphical parameters. 621

To visualize the fragility of a pairwise MA, users may apply plot() via the S3 622

method for class "frag.ma" to the object x produced by frag.ma() as follows: 623

plot(x, xlab, ylab, xlim, ylim, ybreaks = NULL, study.marker = TRUE, 624

cex.marker, offset.marker, col.line, lwd, 625

legend, x.legend, y.legend, cex.legend, ...) 626

This generates a plot showing the iterative process of event status modifications, where 627

the x axis presents the iterations, and the y axis gives the group-specific total event 628

counts. As the total event counts of the two treatment groups may differ greatly, users 629

may specify a range (a vector of two numerical values) for the argument ybreaks to 630

break the y axis for better visualization. The default of this argument is NULL (i.e., not 631

breaking the y axis). The specified range should be between the total event counts of 632

the two groups. The axis break is implemented by importing axis.break() from 633

“plotrix” [95]. The argument study.marker specifies a logical value indicating whether 634

study labels involved in modifications are presented. When it is TRUE (the default), an 635

asterisk represents that the corresponding study with an event status modification 636

remains the same as in the previous iteration. The study labels can be adjusted by the 637

arguments cex.marker (text size) and offset.marker (distance from lines). The 638

remaining arguments are mainly used to specify certain graphical parameters; again, 639

additional arguments from plot.default() can be specified for customizing the plot. 640

A legend is automatically presented to identify the two treatment groups; it can be 641

modified by the last three arguments, which are passed to legend() in “graphics.” The 642

default is to place the legend on the right side with x.legend = "right" and 643

y.legend = NULL; in cases that the default legend box overlaps with the lines of the 644

event status modification process, users may specify other coordinates or keywords to 645

change the legend location. 646

The visualization function for an NMA is similar to the function above for a pairwise 647

MA. Specifically, the arguments of plot() via the S3 method for class "frag.nma" 648

include: 649

plot(x, tid1, tid2, xlab, ylab, xlim, ylim, ybreaks = NULL, 650

study.marker = TRUE, cex.marker, offset.marker, col.line, lwd, 651

legend, x.legend, y.legend, cex.legend, ...) 652

where x is the output from frag.nma(). Most arguments are the same with those for 653

class "frag.ma" of a pairwise MA. The major difference is about the arguments tid1 654

and tid2, which specify the two treatments of the comparison of interest (i.e., tid1 vs. 655

tid2). Only one comparison can be specified by tid1 and tid2 at one time for 656

visualization. If these two arguments are not specified, the first comparison stored in 657

x$tid.f is used. 658

In addition to the three functions above for a single dataset, “fragility” provides two 659

functions for visualizing the relationship between fragility measures and significance 660

levels and for generating overall distributions of fragility measures among multiple 661

datasets. Specifically, for an object x of class "frag.alpha" produced by 662

frag.study.alpha(), frag.ma.alpha(), or frag.nma.alpha(), one may visualize it 663

using plot() via the S3 method for this class with the following arguments: 664

plot(x, method, fragility = "FI", percentage = TRUE, 665

xlab, ylab, xlim, ylim, cex.pts, col.line, col.pval, col.sig, 666
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lty.pval, lwd, lwd.pval, pch, pch.inf, tid1, tid2, FQ.nma = FALSE, 667

...) 668

In the generated plot, the x axis presents the significance levels, and the y axis presents 669

the corresponding fragility measures. The argument method is only used when x is also 670

of class "frag.study.alpha" produced by frag.study.alpha(); if not specified, the 671

first method stored in x$methods will be used. Recall that only one effect measure can 672

be specified when using frag.ma.alpha() and frag.nma.alpha(), so users do not 673

need to specify this argument if x is produced by these two functions. The argument 674

fragility is either "FI" (the default) or "FQ", indicating which fragility measure is 675

visualized. When plotting FQs (fragility = "FQ"), the argument percentage 676

determines whether presenting them in percentage (TRUE, the default) or not (FALSE). If 677

x is of class "frag.nma.alpha" produced by frag.nma.alpha() for an NMA, users 678

may use the arguments tid1 and tid2 to specify the treatment comparison of interest 679

for visualization. The first comparison stored in x$tid is used if they are not specified. 680

As mentioned earlier, two possible types of FQ may be used for an NMA; the logical 681

argument FQ.nma determines the type to be plotted. If it is FALSE (the default), the FQ 682

is derived with respect to the total sample size of the corresponding treatment 683

comparison; if TRUE, the FQ is based on the total sample size among the whole NMA. 684

For an object of class "frag.multi", the visualization function is: 685

plot(x, method, dir = "both", fragility = "FI", percentage = TRUE, 686

max.f = NULL, bar, names.arg, space = 0, breaks, freq, reverse = FALSE, 687

xlab, ylab, main = NULL, cex.marker, col.border, col.sig, 688

trun.marker = TRUE, ...) 689

where x is the output from frag.studies() and frag.mas(). This function generates 690

a bar plot or histogram (depending on the specified arguments) to show the overall 691

distribution of fragility measures among the multiple datasets of individual studies or 692

pairwise MAs. In the bar plot, the x axis presents the values of FIs, and the y axis 693

presents the corresponding frequencies (counts). In the histogram, the x axis presents 694

the intervals of FIs or FQs, and the y axis presents the corresponding frequencies or 695

densities. The argument method is only used when x is also of class "frag.studies" 696

produced by the frag.studies() function; it specifies the method for calculating 697

p values of individual studies. The argument dir specifies the type of fragility measures 698

with a certain direction of significance change to be visualized. The fragility measures of 699

all datasets can be classified into two types, i.e., significance altered to non-significance 700

("sig2nonsig") and non-significance altered to significance ("nonsig2sig"). The 701

argument dir can be one of "sig2nonsig", "nonsig2sig", and "both" (both 702

directions, the default). If dir = "both", users can use the logical argument reverse 703

to change how the two types of fragility measures are displayed (i.e., at the bottom or 704

top) in the plot. The arguments fragility and percentage specify the fragility 705

measures (FIs or FQs) to be plotted and whether FQs are presented in percentage. 706

Some datasets may have extreme values of their fragility measures; users may use the 707

argument max.f to indicate the maximum value to be presented in the plot, so that 708

fragility measures larger than this threshold will be truncated. The default is NULL, i.e., 709

no truncation. The logical argument bar specifies whether a bar plot (TRUE) or 710

histogram (FALSE) is generated. The bar plot is only available for FIs (fragility = 711

"FI"), which take positive integers; the default is bar = TRUE in this case; for FQs 712

(fragility = "FQ"), bar is always FALSE. The arguments names.arg and space are 713

only used in the bar plot; they specify names to be plotted below each bar and the 714

amount of space between bars, which are passed to barplot() in “graphics.” Moreover, 715

the logical argument trun.marker specifies whether a text, which gives information 716

about the truncation, is displayed at the place of the truncated fragility measures in the 717
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histogram (bar = FALSE). The arguments breaks and freq are only used in the 718

histogram; they specify the breaks on the x axis and whether the y axis presents 719

frequencies (freq = TRUE) or densities (freq = FALSE), which are passed to hist() in 720

“graphics.” Finally, the remaining arguments are used to set many other graphical 721

parameters, and users can specify additional arguments from barplot() (when bar = 722

TRUE) or hist() (when bar = FALSE) to customize the plot. 723

Results 724

This section presents worked examples to illustrate the usage of the various functions in 725

“fragility.” These examples are based on the datasets introduced earlier; users may first 726

load them before implementing the following code. We focus on illustrating the usage of 727

several major arguments for each function with detailed interpretations; users may refer 728

to the manual of “fragility” for more examples that specify many other arguments for 729

various purposes. The results were obtained using R (version 4.0.2) with “fragility” 730

(version 1.1). 731

Example of an individual clinical study 732

Recall that the dataset dat.ad consists of 347 trials; each row presents the data of one 733

trial. We first apply the function frag.study() to assess the fragility of trial 13; the 734

code and output are: 735

> out.trial13 <- frag.study(e0 = e0, n0 = n0, e1 = e1, n1 = n1, data = dat.ad[13,]) 736

> out.trial13 737

___________________________________ 738

Original data: 739

event no event 740

group 0 16 149 741

group 1 36 131 742

Range of event modification in group 0: 743

up to 16 events modified to be non-events; 744

up to 149 non-events modified to be events 745

Range of event modification in group 1: 746

up to 36 events modified to be non-events; 747

up to 131 non-events modified to be events 748

___________________________________ 749

Significance level = 0.05 750

Null hypothesis: OR = 1, RR = 1, RD = 0 751

p-value (two-sided): 752

0.004 based on Fisher’s exact test 753

0.005 based on chi-squared test 754

0.004 based on odds ratio 755

0.004 based on relative risk 756

0.003 based on risk difference 757

___________________________________ 758

Fragility index (FI) and fragility quotient (FQ): 759

Based on Fisher’s exact test, FI = 6 (FQ = 1.8%) 760

for significance altered to non-significance, 761

achieved by inversing status of 762

6 non-events in group 0; or 763

4 non-events in group 0 and 2 events in group 1; or 764

5 non-events in group 0 and 1 event in group 1 765

Based on chi-squared test, FI = 6 (FQ = 1.8%) 766

for significance altered to non-significance, 767

achieved by inversing status of 768

6 non-events in group 0; or 769

2 non-events in group 0 and 4 events in group 1; or 770

3 non-events in group 0 and 3 events in group 1; or 771

4 non-events in group 0 and 2 events in group 1; or 772

5 non-events in group 0 and 1 event in group 1 773
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Based on odds ratio, FI = 6 (FQ = 1.8%) 774

for significance altered to non-significance, 775

achieved by inversing status of 776

6 non-events in group 0 777

Based on relative risk, FI = 6 (FQ = 1.8%) 778

for significance altered to non-significance, 779

achieved by inversing status of 780

6 non-events in group 0 781

Based on risk difference, FI = 7 (FQ = 2.1%) 782

for significance altered to non-significance, 783

achieved by inversing status of 784

7 non-events in group 0; or 785

3 non-events in group 0 and 4 events in group 1; or 786

4 non-events in group 0 and 3 events in group 1; or 787

5 non-events in group 0 and 2 events in group 1; or 788

6 non-events in group 0 and 1 event in group 1 789

The produced object out.trial13 is of class "frag.study", and the informative 790

output is displayed via the print method for this class. The output consists of three 791

parts. The first part gives the information about the original 2×2 table and the ranges 792

of event status modifications in both groups are presented. The second part displays the 793

information about the significance, including the pre-specified significance level, null 794

value(s) (if using the OR, RR, and/or RD), and the p value(s) with the associated 795

method(s). The third part contains the major information about the fragility, including 796

the FI and FQ based on each method considered, the direction of significance change, 797

and the corresponding minimal event status modification(s) for altering significance or 798

non-significance. 799

In this example, all arguments besides those receiving data input are set to the 800

default, so all five methods, i.e., Fisher’s exact test, the chi-squared test, OR, RR, and 801

RD, are considered. All methods indicate significant results in the original dataset at 802

the level 0.05, so the directions of their FIs are significance altered to non-significance. 803

All methods except the RD have FIs of 6, while the RD has the FI of 7. The FI may be 804

derived by multiple minimal event status modifications for some methods. As the 805

produced object out.trial13 is a list, users can apply names() to obtain the names of 806

all list elements, and thus retrieve the results of interest; they may refer to the manual 807

of “fragility” for details about each element. For example, the FIs of all five methods 808

can be retrieved as follows: 809

> out.trial13$FI 810

Fisher chisq OR RR RD 811

6 6 6 6 7 812

To visualize the fragility of trial 13, users need to specify all = TRUE in the 813

frag.study() function: 814

> out.trial13.all <- frag.study(e0 = e0, n0 = n0, e1 = e1, n1 = n1, 815

data = dat.ad[13,], all = TRUE) 816

The produced output is also of class "frag.study.all"; it can be visualized as follows: 817

> plot(out.trial13.all, method = "Fisher", cex.pts = 0.3, 818

main = "FI = 6, significance altered to non-significance", 819

font.main = 1, cex.main = 0.9) 820

> plot(out.trial13.all, method = "Fisher", modify1 = FALSE, 821

main = "FI = 6, significance altered to non-significance", 822

font.main = 1, cex.main = 0.9) 823

> plot(out.trial13.all, method = "Fisher", modify0 = FALSE, 824

main = "FI = 7, significance altered to non-significance", 825

font.main = 1, cex.main = 0.9) 826

Here, Fisher’s exact test is used to calculate p values. Figs 1a–1c present the generated 827

plots. 828

The first line in the code above visualizes the fragility of trial 13 by modifying event 829

status in both treatment groups; the argument cex.pts specifies the size of points in 830
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α = 0.001

Fig 1. Visualizations of trial 13 in the dataset dat.ad.

Fig 1a. Each point represents a p value based on certain event status modifications 831

given by the x axis (group 0) and the y axis (group 1). By default, the significance level 832

is 0.05; the p values lower than this level (significant results) are presented in red, and 833

those above this level (non-significant results) are in green. The legend on the right side 834

indicates the magnitudes of p values; the color opacity of a p value changes linearly 835

according to the negative base-10 logarithm of the p value. Because trun is set to 10 by 836

default, p values lower than 10−10 are truncated. The non-significant results are 837

generally around a diagonal line, where the event status is modified so that the even 838

counts in the two groups are close, leading to large p values. On the other hand, for 839

points away from the diagonal line, the difference between the modified event counts in 840

the two groups becomes larger, so the corresponding p values are smaller. In addition, 841

the vertical and horizontal dashed lines indicate no modifications in groups 0 and 1, 842

respectively; they cross at a square point, corresponding to the p value of the original 843

data. This p value is located in the red area, implying a significant result; therefore, to 844

assess the fragility of this trial, we aim at modifying event status so that the original 845

p value is moved to the green area of non-significant results. The three triangle points 846
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in the green area indicate three cases of minimal event status modifications that can 847

alter the significance to non-significance. They represent 1) changing 6 non-events in 848

group 0 to events; 2) changing 5 non-events in group 0 to events and 1 event to 849

non-event in group 1; and 3) changing 4 non-events in group 0 to events and 2 events to 850

non-events in group 1. These match the output of out.trial13 displayed previously. 851

All three cases indicate FI = 6. 852

The second line sets modify1 = FALSE to visualize the fragility by restricting the 853

modifications to group 0 (Fig 1b). As event status is only modified in group 0, this plot 854

presents the negative base-10 logarithm of p values against the corresponding 855

modifications. The p values in this plot correspond to those on the horizontal dashed 856

line at 0 in Fig 1a. The red area at the top indicates significant results, and the green 857

area at the bottom indicates non-significant results. Again, the p values lower than 858

10−10 are truncated; the truncated p values are presented as plus signs. The vertical 859

dashed line at 0 implies the original p value (presented as a square point), which is 860

within the red area of significant results. The triangle point represents the minimal 861

event status modification in group 0 for altering the significance to non-significance; it 862

also implies that the FI is 6 when restricting the modifications to group 0 (by changing 863

6 non-events to events). The numerical value of this FI can be also obtained from the 864

output of frag.study() with its argument all = TRUE, i.e., out.trial13.all$FI0. 865

Similarly, the third line sets modify0 = FALSE; it visualizes the fragility by 866

restricting the modifications to group 1 (Fig 1c). The FI is 7 with this restriction (by 867

changing 7 events to non-events). The numerical value of this FI can be obtained from 868

out.trial13.all$FI1. 869

If users would like to reduce the type I error rate by lowering the significance level α 870

to 0.001, they may simply specify this level for the argument 871

> out.trial13.all.2 <- frag.study(e0 = e0, n0 = n0, e1 = e1, n1 = n1, 872

data = dat.ad[13,], all = TRUE, alpha = 0.001) 873

> plot(out.trial13.all.2, method = "Fisher", cex.pts = 0.3, 874

main = "FI = 3, non-significance altered to significance", 875

font.main = 1, cex.main = 0.9) 876

Fig 1d shows the generated plot. Compared with Fig 1a at α = 0.05, the original result 877

is no longer significant, and the original p value is now within the green area. As the 878

significance level decreases, the green area of non-significant results becomes wider. The 879

original p value is close to the border of the green area, implying that this result might 880

be fragile; indeed, the FI becomes 3, and its direction is the non-significance altered to 881

significance. This can be achieved by 1) changing 3 events to non-events in group 0; 2) 2 882

events to non-events in group 0 and 1 non-event to event in group 1; or 3) 1 event to 883

non-event in group 0 and 2 non-events to events in group 1. 884

Example of a pairwise meta-analysis 885

We use the dataset dat.ns to illustrate the assessment of the fragility of pairwise MAs. 886

Recall that this dataset contains 564 pairwise MAs on nutrition support. We apply the 887

function frag.ma() to the first MA that investigates the overall all-cause mortality: 888

> out.ma1 <- frag.ma(e0, n0, e1, n1, data = dat.ns[dat.ns$ma.id == 1,]) 889

> out.ma1 890

Original meta-analysis contains 891

99 studies; 892

885 total events and 10,153 total sample sizes in group 0; 893

831 total events and 10,407 total sample sizes in group 1 894

Significance level = 0.05 895

The effect size is OR (on a logarithmic scale) 896

The null value of is 0 897

The estimated overall effect size is 898

-0.074 with CI (-0.178, 0.030) and p-value 0.165 899
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Fragility index (FI) = 14 and fragility quotient (FQ) = 0.1% 900

for non-significance altered to significance 901

All arguments besides those receiving data input are set to the default; that is, the 902

effect measure is the OR with the null value at 1, the significance level is 0.05, the 903

meta-analysis is performed via the DL method, and the CI of the overall effect size is 904

derived based on the normal distribution. The OR is analyzed on a logarithmic scale; 905

the null value of the log OR is 0. The informative output gives a summary of the 906

original data, the evaluation of significance, and the assessment of the fragility. In this 907

example, the CI of the overall log OR of the original data covers 0, indicating a 908

non-significant effect of nutrition support on all-cause mortality. The FI is 14 for 909

altering the non-significance to significance, and the FQ is 0.1%. Due to space limit, the 910

output does not provide the complete results. The produced object out.ma1 is a list 911

that contains many results produced during the iterative process of deriving the FI, 912

including the study and treatment group that are involved in each event status 913

modification, the estimated overall effect size with its CI in each iteration, as well as the 914

data with modified event status in the final iteration where the non-significance is just 915

altered. Users may apply names() to obtain the names of all elements of the produced 916

object. 917

The package “fragility” does not provide functions to produce classic plots for the 918

pairwise MA, such as the forest plot and funnel plot, because many existing popular 919

packages including “metafor” [87] and “meta” [96] have included these features. 920

Nevertheless, the process of deriving the FI can be visualized as follows: 921

> plot(out.ma1, ybreaks = c(840, 880), font.main = 1, cex.main = 0.9, 922

main = "FI = 14, non-significance altered to significance") 923

Fig 2 presents the produced plot, which presents the total event counts in the two 924

treatment groups during the iterations. It contains two lines that depict the process, 925

where the blue and red lines represent groups 0 and 1, respectively. As the argument 926

ybreaks is specified as c(840, 880), the plot omits this range on the y axis for better 927

visualization. The numbers around the blue line indicate the studies that are involved in 928

the event status modifications during the iterations. Each asterisk indicates that a 929

study remains unchanged as in the previous iteration; that is, the first asterisk 930

represents study 43 and the second represents study 45. No event status is modified in 931

group 1 for deriving the FI in this example. 932

FI = 14, non−significance altered to significance
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Fig 2. Event status modifications in the first pairwise meta-analysis in the dataset
dat.ns.
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Example of a network meta-analysis 933

The function frag.nma() assesses the fragility of an NMA; we apply it to the dataset 934

dat.sc of the NMA on smoking cessation, which contains 24 studies comparing a total 935

of 4 treatments, as follows: 936

> out.nma <- frag.nma(sid, tid, e, n, data = dat.sc) 937

> out.nma 938

Original network meta-analysis (NMA) contains 939

24 studies and 4 treatments 940

Significance level = 0.05 941

The effect size is OR (on a logarithmic scale) 942

The null value of is 0 943

Fragility index (FI): 944

1 2 3 4 945

1 NA 18 32 3 946

2 18 NA 19 12 947

3 32 19 NA 23 948

4 3 12 23 NA 949

Fragility quotient (FQ), based on the associated comparison: 950

1 2 3 4 951

1 NA 0.002045687 0.002189681 0.000385307 952

2 0.002045687 NA 0.002122668 0.005652379 953

3 0.002189681 0.002122668 NA 0.002897455 954

4 0.000385307 0.005652379 0.002897455 NA 955

Fragility quotient (FQ), based on the total sample size in the NMA: 956

1 2 3 4 957

1 NA 0.0010754616 0.001911932 0.0001792436 958

2 0.0010754616 NA 0.001135209 0.0007169744 959

3 0.0019119316 0.0011352094 NA 0.0013742009 960

4 0.0001792436 0.0007169744 0.001374201 NA 961

See the manual for details to retrieve more information. 962

We do not specify the arguments tid1.f and tid2.f, so the fragility of each treatment 963

comparison is assessed. Because many NMAs need to be performed during the iterative 964

algorithm for each comparison, the computation time is around 1 hour; the actual time 965

depends on users’ processor. 966

This NMA contains 4 treatments, so the results of FIs and FQs are presented in 4×4 967

matrices. The informative output only displays some important characteristics of the 968

NMA and results about fragility. As in the previous examples, more detailed results 969

(e.g., directions of the altered significance or non-significance, studies and treatment 970

groups involved in event status modifications) can be retrieved from the elements of the 971

produced object out.nma, whose names can be obtained via applying names(). In this 972

example, the FI is as small as 3 for the comparison 4 vs. 1 (a relatively fragile 973

comparison), and is as large as 32 for 3 vs. 1 (a less fragile comparison). 974

The visualization of the process of deriving the FI in an NMA is similar to that in a 975

pairwise MA. The major difference is that the visualization in the NMA needs to be 976

implemented for each treatment comparison separately. We apply plot() to the 977

produced object out.nma that is of class "frag.nma": 978

> plot(out.nma, tid1 = 2, tid2 = 1, ybreaks = c(170, 595), 979

x.legend = "topright", font.main = 1, cex.main = 0.9, 980

main = "FI = 18, non-significance altered to significance") 981

> plot(out.nma, tid1 = 3, tid2 = 1, ybreaks = c(635, 1200), 982

x.legend = "bottomright", font.main = 1, cex.main = 0.9, 983

main = "FI = 32, significance altered to non-significance") 984

> plot(out.nma, tid1 = 4, tid2 = 1, ybreaks = c(105, 600), 985

font.main = 1, cex.main = 0.9, 986

main = "FI = 3, significance altered to non-significance") 987

> plot(out.nma, tid1 = 3, tid2 = 2, ybreaks = c(160, 1205), 988

font.main = 1, cex.main = 0.9, 989

main = "FI = 19, non-significance altered to significance") 990

> plot(out.nma, tid1 = 4, tid2 = 2, ybreaks = c(110, 140), 991

x.legend = "topright", font.main = 1, cex.main = 0.9, 992
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main = "FI = 12, non-significance altered to significance") 993

> plot(out.nma, tid1 = 4, tid2 = 3, ybreaks = c(130, 1205), 994

x.legend = "bottomright", font.main = 1, cex.main = 0.9, 995

main = "FI = 23, non-significance altered to significance") 996

Fig 3 presents the produced plots. The argument ybreaks is specified differently for 997

each comparison because the ranges of the involved total event counts differ. Again, an 998

asterisk represents that a study with modified event status remains unchanged as in the 999

previous iteration. These plots indicate event status is generally modified in a few 1000

studies to alter the significance or non-significance. For example, to derive the FI of the 1001

comparison 2 vs. 1 in Fig 3a, only studies 2, 16, and 22 among the 24 studies are 1002

involved in event status modifications. 1003

The function frag.nma() can be similarly applied to the dataset dat.copd. This 1004

dataset serves as a toy example; its fragility can be assessed much faster due to its small 1005

size. Its results are not presented in this article. If an NMA contains many treatments, 1006

the assessment of its fragility may take a long time. In this case, users are recommended 1007

to only assess the fragility of certain treatment comparisons of primary interest by 1008

specifying tid1.f and tid2.f. Moreover, “fragility” does not provide functions to 1009

visualize the NMA, such as the treatment network plot and treatment rank plot, 1010

because many existing packages including “gemtc” [97], “netmeta” [88], and 1011

“pcnetmeta” [98] have included these features. 1012

Example of assessing fragility at multiple significance levels 1013

The previous examples present the assessment and visualization of the fragility of 1014

individual studies, pairwise MAs, and NMAs at a specific significance level. As there 1015

are ongoing debates on the choice of statistical significance level [55,56], users might 1016

want to assess the fragility at multiple significance levels. They may apply the functions 1017

frag.study.alpha(), frag.ma.alpha(), and frag.nma.alpha() to individual 1018

studies, pairwise MAs, and NMAs, respectively, for such purposes. Their usage is 1019

similar to their counterparts frag.study(), frag.ma(), and frag.nma(). The 1020

produced objects are all of class "frag.alpha", which can be visualized using plot() 1021

via the S3 method for this class. We focus on an example of an individual study; the 1022

code can be similarly applied to pairwise MAs and NMAs. 1023

We continue to use trial 13 in the dataset dat.ad for illustrating 1024

frag.study.alpha(): 1025

> out.trial13.alpha <- frag.study.alpha(e0, n0, e1, n1, data = dat.ad[13,]) 1026

> out.trial13.alpha 1027

___________________________________ 1028

Original data: 1029

event no event 1030

group 0 16 149 1031

group 1 36 131 1032

Range of event modification in group 0: 1033

up to 16 events modified to be non-events; 1034

up to 149 non-events modified to be events 1035

Range of event modification in group 1: 1036

up to 36 events modified to be non-events; 1037

up to 131 non-events modified to be events 1038

___________________________________ 1039

Significance level varies from 0.005 to 0.05 1040

Null hypothesis: OR = 1, RR = 1, RD = 0 1041

p-value (two-sided): 1042

0.004 based on Fisher’s exact test 1043

0.005 based on chi-squared test 1044

0.004 based on odds ratio 1045

0.004 based on relative risk 1046

0.003 based on risk difference 1047
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Fig 3. Event status modifications in the network meta-analysis dataset dat.sc.

___________________________________ 1048

Fragility index (FI) and fragility quotient (FQ): 1049

Based on Fisher’s exact test, 1050

Average FI = 4.23 (min = 1, max = 6); 1051

Average FQ = 1.3% (min = 0.3%, max = 1.8%) 1052

Based on chi-squared test, 1053

Average FI = 3.88 (min = 1, max = 6); 1054
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Average FQ = 1.2% (min = 0.3%, max = 1.8%) 1055

Based on odds ratio, 1056

Average FI = 4.56 (min = 1, max = 6); 1057

Average FQ = 1.4% (min = 0.3%, max = 1.8%) 1058

Based on relative risk, 1059

Average FI = 4.43 (min = 1, max = 6); 1060

Average FQ = 1.3% (min = 0.3%, max = 1.8%) 1061

Based on risk difference, 1062

Average FI = 4.88 (min = 2, max = 7); 1063

Average FQ = 1.5% (min = 0.6%, max = 2.1%) 1064

The default options are used to specify the range of significance levels, i.e., 100 1065

equally-spaced values between 0.005 and 0.05. The p values are derived based on all five 1066

methods, i.e., Fisher’s exact test, the chi-squared test, OR, RR, and RD. Like the 1067

output produced by frag.study(), the informative output displays summaries in three 1068

parts, which are about original data, significance tests, and fragility. Compared with 1069

the output produced by frag.study(), the major difference is in the last part about 1070

fragility; the output of frag.study.alpha() gives the average fragility measures in the 1071

range of specified significance levels. The produced object out.trial13.alpha is a list, 1072

and users can retrieve more detailed information, such as the FI and FQ at each 1073

significance level, from this list. 1074
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Fig 4. Visualizations of trial 13 in the dat.ad dataset at multiple significance levels
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The results can be visualized via plot() as follows: 1075

> plot(out.trial13.alpha) 1076

> plot(out.trial13.alpha, fragility = "FQ") 1077

In the first line, the fragility measure is the FI by default; in the second line, the fragility 1078

measure is the FQ. Figs 4a and 4b present the generated plots. As the argument 1079

method is not specified, the plots are based on the default option, i.e., Fisher’s exact 1080

test. Because the FQ is the FI divided by the total sample size in the study, which is a 1081

constant, the two plots have the same shape; they only differ with respect to the scale 1082

on the y axis. Because the FIs must be integers, the plots appear to be step functions. 1083

All points in the plots are in red, indicating that the original results are significant at all 1084

levels, and the FIs and FQs represent that the significance is altered to non-significance. 1085

As the significance level increases from 0.005 to 0.05, the FI increases from 1 to 6. These 1086

correspond to the previous output of out.trial13.alpha, and the average FI is 4.23. 1087

Users may specify additional arguments; for example, we change the code to: 1088

> out.trial13.alpha.2 <- frag.study.alpha(e0, n0, e1, n1, data = dat.ad[13,], 1089

alpha.from = 0.001, alpha.to = 0.1, alpha.breaks = 500) 1090

> plot(out.trial13.alpha.2) 1091

> plot(out.trial13.alpha.2, log = "x") 1092

The significance levels range from 0.001 to 0.1; 500 equally-spaced values are chosen 1093

within this range; the results are visualized in Fig 4c. Other arguments from 1094

plot.default() can be imported; here, we specify log = "x" to present the 1095

significance levels on a logarithmic scale as in Fig 4d. From the previous output of 1096

out.trial13.alpha, the p value of the original data based on Fisher’s exact test is 1097

0.004, so the result is significant if the significance level is above 0.004 but is 1098

non-significant if the level is below 0.004. The vertical dashed line in Fig 4c indicates 1099

the original p value; the FIs on its left side (points in green) represent the 1100

non-significance altered to significance, and those on its right side (points in red) 1101

represent the significance altered to non-significance. As the significance level increases 1102

from 0.001 to 0.1, the FI first decreases from 3 to 1 and then increases from 1 to 8. 1103

Example of assessing fragility of multiple datasets 1104

As multiple clinical studies or pairwise MAs (e.g., with different disease outcomes) may 1105

be available on certain common topics, clinicians may be interested in the overall 1106

distributions of the fragility measures of these studies or pairwise MAs. The functions 1107

frag.studies() and frag.mas() can be used for such purposes. Such a function is not 1108

provided for NMAs in “fragility,” because usually only a few NMAs are available on 1109

common topics. The usage of frag.studies() and frag.mas() is similar to that of 1110

frag.study() and frag.ma(), respectively. The produced objects of both functions 1111

are of class "frag.multi"; they can be visualized using plot() via the S3 method for 1112

this class. 1113

Specifically, we can assess the fragility of all trials contained in the dataset dat.ad 1114

as follows: 1115

> out.trials <- frag.studies(e0, n0, e1, n1, data = dat.ad) 1116

> out.trials 1117

The input dataset contains 347 studies 1118

Significance level = 0.05 1119

Null hypothesis: OR = 1, RR = 1, RD = 0 1120

p-value (two-sided) is based on: 1121

Fisher’s exact test 1122

chi-squared test 1123

odds ratio 1124

relative risk 1125

risk difference 1126
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1127

Fragility index (FI) and fragility quotient (FQ): 1128

Based on Fisher’s exact test, 1129

32 studies yield significance with 1130

median FI = 3, range 1-13, IQR 1-6 and 1131

median FQ = 2.1%, range 0.2%-11.1%, IQR 0.7%-4.3%; 1132

315 studies yield non-significance with 1133

median FI = 6, range 1-19, IQR 4-8 and 1134

median FQ = 4.4%, range 0.3%-50.0%, IQR 2.8%-7.2%; 1135

overall, among all studies, 1136

median FI = 6, range 1-19, IQR 3-8 and 1137

median FQ = 4.2%, range 0.2%-50.0%, IQR 2.5%-6.8% 1138

Based on chi-squared test, 1139

29 studies yield significance with 1140

median FI = 2, range 1-13, IQR 1-6 and 1141

median FQ = 1.9%, range 0.1%-8.9%, IQR 1.2%-3.8%; 1142

318 studies yield non-significance with 1143

median FI = 6, range 1-19, IQR 4-9 and 1144

median FQ = 4.6%, range 0.3%-50.0%, IQR 2.9%-7.5% 1145

while 1 study has FI = FQ = NA; 1146

overall, among all studies, 1147

median FI = 6, range 1-19, IQR 4-9 and 1148

median FQ = 4.4%, range 0.1%-50.0%, IQR 2.8%-7.1% 1149

while 1 study has FI = FQ = NA 1150

Based on odds ratio, 1151

38 studies yield significance with 1152

median FI = 2, range 1-14, IQR 1-5 and 1153

median FQ = 2.0%, range 0.3%-11.1%, IQR 0.6%-4.3%; 1154

309 studies yield non-significance with 1155

median FI = 6, range 1-18, IQR 4-8 and 1156

median FQ = 4.2%, range 0.3%-50.0%, IQR 2.7%-7.2% 1157

while 1 study has FI = FQ = NA; 1158

overall, among all studies, 1159

median FI = 6, range 1-18, IQR 3-8 and 1160

median FQ = 4.0%, range 0.3%-50.0%, IQR 2.4%-7.0% 1161

while 1 study has FI = FQ = NA 1162

Based on relative risk, 1163

36 studies yield significance with 1164

median FI = 2, range 1-14, IQR 1-5 and 1165

median FQ = 2.0%, range 0.2%-11.1%, IQR 0.5%-3.8%; 1166

311 studies yield non-significance with 1167

median FI = 6, range 1-19, IQR 4-8 and 1168

median FQ = 4.3%, range 0.3%-36.8%, IQR 2.8%-7.4% 1169

while 2 studies have FI = FQ = NA; 1170

overall, among all studies, 1171

median FI = 6, range 1-19, IQR 4-8 and 1172

median FQ = 4.1%, range 0.2%-36.8%, IQR 2.5%-7.2% 1173

while 2 studies have FI = FQ = NA 1174

Based on risk difference, 1175

42 studies yield significance with 1176

median FI = 3, range 1-14, IQR 1-5 and 1177

median FQ = 2.2%, range 0.3%-16.7%, IQR 0.5%-4.0%; 1178

305 studies yield non-significance with 1179

median FI = 5, range 1-18, IQR 3-8 and 1180

median FQ = 4.1%, range 0.3%-28.6%, IQR 2.5%-6.2%; 1181

overall, among all studies, 1182

median FI = 5, range 1-18, IQR 3-8 and 1183

median FQ = 3.8%, range 0.3%-28.6%, IQR 2.3%-6.1% 1184

By default, all five methods (Fisher’s exact test, the chi-squared test, OR, RR, and RD) 1185

are used to derive the fragility measures. The informative output displays a summary of 1186

the original data, significance tests, and fragility measures (e.g., medians, ranges, and 1187

interquartile ranges [IQRs]). When presenting the fragility measures, the 347 trials are 1188

distinguished into two groups, i.e., those with originally significant results and 1189

non-significant ones. Users can retrieve complete results from the elements of the 1190
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output list out.trials; for example, the FIs of all trials are stored in out.trials$FI. 1191

The fragility measures of all trials can be visualized as follows: 1192

> plot(out.trials, method = "Fisher", cex.name = 0.6) 1193

> plot(out.trials, method = "Fisher", max.f = 16, cex.name = 0.6) 1194

> plot(out.trials, dir = "sig2nonsig", method = "Fisher", cex.name = 0.6) 1195

> plot(out.trials, dir = "nonsig2sig", method = "Fisher", cex.name = 0.6) 1196

> plot(out.trials, method = "Fisher", fragility = "FQ", max.f = 20) 1197

> plot(out.trials, method = "Fisher", fragility = "FQ", max.f = 20, breaks = 20) 1198

Six plots are produced for different illustrative purposes, as shown in Fig 5. They are 1199

based on Fisher’s exact test. In the first four lines, the argument fragility uses the 1200

default option, i.e., "FI", and bar is TRUE by default, so Figs 5a–5d present bar plots of 1201

FIs. The argument cex.name is passed to barplot() for adjusting the text size on the 1202

x axis; if the size is too large, many values may disappear due to space limit. Fig 5a 1203

presents the overall distribution of FIs of all 347 trials. The FIs range from 1 to 19; 1204

many trials have FIs between 1 and 10. The bars in red represent trials with originally 1205

significant results, so their FIs indicate the significance altered to non-significance; the 1206

bars in green represent trials with originally non-significant results, which are altered to 1207

be significant. Most trials originally have non-significant results. The FIs of some trials 1208

have extreme values, which may affect the visualization effect of the overall distribution. 1209

As in the second line of the code above, users can specify max.f to truncate FIs above 1210

the specified value. Fig 5b presents the overall distribution with FIs truncated at 16; all 1211

trials with FIs above 16 are stacked at the rightmost bar. If users want to focus on the 1212

direction of FIs that alter the significance to non-significance or its inverse, dir can be 1213

specified as "sig2nonsig" or "nonsig2sig", leading to the bar plots in Figs 5c and 5d, 1214

respectively. By default, this argument is "both", i.e., both directions are presented as 1215

in Figs 5a and 5b. 1216

Alternatively, users can specify fragility = "FQ" to produce plots for FQs as in 1217

last two lines in the code above. As FQs can take any values within 0%–100%, instead 1218

of only integers like FIs, the histogram rather than the bar plot is produced for FQs. 1219

Fig 5e presents the overall distribution of FQs, truncated at 20%. If breaks is not 1220

specified, the number of breaks in the histogram is automatically determined by hist(). 1221

Users may adjust this argument to change the number of breaks as in Fig 5f. 1222

We also apply frag.ma() to the dataset dat.ns to assess the fragility of multiple 1223

pairwise MAs: 1224

> out.mas <- frag.mas(e0, n0, e1, n1, ma.id, data = dat.ns) 1225

> out.mas 1226

The input dataset contains 564 meta-analyses 1227

Significance level = 0.05 1228

The effect size is OR (on a logarithmic scale) 1229

The null value of is 0 1230

1231

Fragility index (FI) and fragility quotient (FQ): 1232

97 meta-analyses yield significance with 1233

median FI = 11, range 1-167, IQR 5-26 and 1234

median FQ = 0.2%, range 0.0%-1.4%, IQR 0.1%-0.3%; 1235

467 meta-analyses yield non-significance with 1236

median FI = 8, range 1-61, IQR 5-16 and 1237

median FQ = 0.6%, range 0.0%-8.9%, IQR 0.2%-2.4%; 1238

overall, among all meta-analyses, 1239

median FI = 9, range 1-167, IQR 5-17 and 1240

median FQ = 0.5%, range 0.0%-8.9%, IQR 0.2%-1.9% 1241

The effect measure of these MAs is the OR (measure = "OR") by default. The output 1242

is similar to that of out.trials. It displays a summary of the input MAs, information 1243

about significance, and fragility measures. Among the total of 564 pairwise MAs, 97 1244

have significant overall ORs, and their FIs range from 1 to 167; 467 have non-significant 1245

overall ORs with FIs ranging from 1 to 61. 1246
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(f) Histogram of fragility quotients of
all trials with more breaks

Fig 5. Distributions of fragility measures of the clinical trials in the dataset dat.ad.

The produced object out.mas is of class "frag.multi", and can be visualized as 1247

follows: 1248
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Fig 6. Distributions of fragility measures of the pairwise meta-analyses in the dataset
dat.ns.

> plot(out.mas, max.f = 40, cex.name = 0.5) 1249

> plot(out.mas, fragility = "FQ", breaks = 20) 1250

The first line produces the bar plot of FIs of all 564 MAs in Fig 6a, and the second line 1251

produces the histogram of FQs in Fig 6b. As displayed in the output of out.mas, the 1252

FIs may take large values up to 167, so max.f is specified as 40 for truncation. Most 1253

MAs have FIs less than 15 and FQs less than 1%. 1254

Discussion 1255

This article has reviewed methods for assessing and visualizing the fragility of an 1256

individual study, pairwise MA, and NMA with a binary outcome; the package “fragility” 1257

is designed for implementing these methods. We have focused on introducing the usage 1258

of many user-friendly functions provided by this package and illustrating them via 1259

several worked examples. 1260

The FI and FQ are useful tools to assess clinical results’ fragility; many researchers 1261

are becoming interested in these measures due to the growing concerns about research 1262

reproducibility and replicability. Nevertheless, it may be limited to assess the fragility 1263

based entirely on the numerical value of the FI or FQ. Most existing software programs 1264

do not provide much additional information about the FI or FQ besides its numerical 1265

value. The package “fragility” offers a variety of results that may aid the assessment of 1266

fragility. For example, for an individual study, users can specify certain directions of 1267

event status modifications in each treatment group. The package provides information 1268

about different scenarios when the significance or non-significance is altered. It is 1269

crucial to incorporate such detailed information with clinicians’ opinion on a 1270

case-by-case basis; for some rare diseases, it may be more sensible to modify events to 1271

non-events. The package can also produce various plots that show the studies and 1272

treatments involved in event status modifications in the iterative process for computing 1273

the FI or FQ of a pairwise MA or NMA. Such plots may indicate studies or treatments 1274

that are potentially influential in the meta-analytic results; clinicians may carefully 1275

examine the reliability (e.g., methodological quality) of the associated studies. 1276

There are still several limitations of the FI or FQ that cannot be addressed by the 1277

current version of “fragility.” For example, the existing literature lacks a guideline or 1278

October 9, 2021 31/38

Highlight
This is a sentence about user specification in the function call. It should be about the aids in assessment. The graphs are more helpful than the printouts. 



rule of thumb to interpret the magnitude of the FI or FQ (i.e., the extent of fragility). 1279

On the one hand, the interpretation might depend on the clinical setting, e.g., whether 1280

the outcomes of some patients are possibly modified. On the other hand, as a future 1281

work, we plan to systematically collect many clinical studies, pairwise MAs, and NMAs 1282

across different specialties (e.g., from the Cochrane Library), obtain their FIs and FQs, 1283

and derive the empirical distributions for all datasets and those within subgroups of 1284

specific research areas. Such empirical distributions will be incorporated in future 1285

versions of “fragility,” and they will further assist users properly interpret the fragility 1286

of clinical results. 1287

Acknowledgments 1288

This research was supported in part by the U.S. National Institutes of Health/National 1289

Library of Medicine grant R01 LM012982 (LL and HC) and National Institutes of 1290

Health/National Center for Advancing Translational Sciences grant UL1 TR001427 1291

(LL). The content is solely the responsibility of the authors and does not necessarily 1292

represent the official views of the National Institutes of Health. 1293

References

1. Ioannidis JPA, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication
validity of genetic association studies. Nature Genetics. 2001;29(3):306–309.

2. Ioannidis JPA. Why most published research findings are false. PLOS Medicine.
2005;2(8):e124.

3. Richter SH, Garner JP, Würbel H. Environmental standardization: cure or cause
of poor reproducibility in animal experiments? Nature Methods. 2009;6(4):257.

4. Open Science Collaboration. Estimating the reproducibility of psychological
science. Science. 2015;349(6251):aac4716.

5. Baker M. Is there a reproducibility crisis? Nature. 2016;533(7604):452–454.

6. Negrini S, Arienti C, Pollet J, Engkasan JP, Francisco GE, Frontera WR, et al.
Clinical replicability of rehabilitation interventions in randomized controlled trials
reported in main journals is inadequate. Journal of Clinical Epidemiology.
2019;114:108–117.

7. Nuzzo R. Scientific method: Statistical errors. Nature. 2014;506(7487):150–152.

8. Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fickle P value
generates irreproducible results. Nature Methods. 2015;12(3):179–185.

9. Goodman SN. Toward evidence-based medical statistics. 1: the P value fallacy.
Annals of Internal Medicine. 1999;130(12):995–1004.

10. Sterne JAC, Davey Smith G. Sifting the evidence—what’s wrong with
significance tests? BMJ. 2001;322:226–231.

11. Dickersin K. The existence of publication bias and risk factors for its occurrence.
JAMA. 1990;263(10):1385–1389.

12. Sutton AJ, Duval SJ, Tweedie R, Abrams KR, Jones DR. Empirical assessment
of effect of publication bias on meta-analyses. BMJ. 2000;320(7249):1574–1577.

October 9, 2021 32/38



13. Turner EH, Matthews AM, Linardatos E, Tell RA, Rosenthal R. Selective
publication of antidepressant trials and its influence on apparent efficacy. New
England Journal of Medicine. 2008;358(3):252–260.

14. Mathieu S, Boutron I, Moher D, Altman DG, Ravaud P. Comparison of
registered and published primary outcomes in randomized controlled trials.
JAMA. 2009;302(9):977–984.
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