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Supplementary Text 
 
S1. Theoretical methods. 
Advanced theoretical modeling and simulation of the photoionization dynamics of the glycine 
molecule triggered by the x-ray pump and probe laser pulses is performed here, from first-
principles, within the framework of the cutting-edge time-dependent B-spline restricted correlation 
space (RCS) – algebraic diagrammatic construction (ADC) ab initio methods (24-26). Both 
interactions of the neutral glycine molecule and its cation with the pump and probe x-ray 
femtosecond pulses, respectively, are described from first-principles. The simulations of 
photoionization during the pump and probe steps are carried out, within the frozen-nuclei 
approximation, at the equilibrium geometry of the Gly I conformer. We also analyze the effect of 
the geometry-spread of the ground state nuclear wavefunction on the survival of the quantum 
electronic coherences in the 10a’ and 9a’ ionized bands (see Section S3). 
S1.1. First ionization of the neutral species by the x-ray pump pulse. 
Within B-spline RCS-ADC, the single-electron orbitals are expanded in a multicenter B-spline 
basis set (24, 28), designed to accurately describe both bound and ionized states of the neutral 
molecule. The resulting Hilbert space of Hartree-Fock (HF) virtual orbitals (ϕ𝑎𝑎), is subsequently 
partitioned into two orthonormal subspaces: the restricted correlation space (RCS) (χα), designed 
to accurately describe the localized short-range correlation of the system, and its orthonormal 
complement, the ionization space (IS) �ψμ�, which describes the long-range part of the 
photoelectron wavefunction and complements the RCS in order to represent the electronic 
wavefunction over the entire spatial region (24). Here and in what follows, the α,β, … and 
μ, ν, … indices refer to the virtual space (unoccupied) RCS and IS orbitals, respectively, whereas 
i, j, k, … , indicate the occupied HF molecular orbitals.  
Within the time-dependent (TD) B-spline RCS-ADC(n) approach to molecular photoionization 
dynamics (25, 26), the 3D time-dependent Schrödinger equation (TDSE) for an N-electron 
polyatomic molecule interacting with an ultrashort laser pulse  

𝑖𝑖 ℏ 
∂ ∣ Ψ𝑁𝑁(𝑡𝑡) ⟩

∂𝑡𝑡
   =  𝐻𝐻�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁  (𝑡𝑡)   ∣ Ψ𝑁𝑁 (𝑡𝑡) ⟩                                     (1) 

is solved by expanding the TD many-electron wavefunction in the basis of the ground and excited 
RCS-ADC(n) states (25, 26) 

             ∣ Ψ𝑁𝑁(𝑡𝑡) ⟩  =   ∑ 𝑐𝑐𝑃𝑃,μ(𝑡𝑡)𝑃𝑃,μ  𝑎𝑎�μ
† ∣ Φ𝑃𝑃

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩  

 +� 𝑐𝑐𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)
𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅

∣ Ψ�𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁 ⟩[𝑛𝑛]   +  𝑐𝑐0(𝑡𝑡)   ∣ Ψ0𝑅𝑅𝑅𝑅𝑅𝑅⟩[𝑛𝑛].              (2) 

Here ∣ Ψ0𝑅𝑅𝑅𝑅𝑅𝑅⟩[𝑛𝑛] is the n-th order RCS correlated ground state, and ∣ Ψ�𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁 ⟩[𝑛𝑛] indicates the excited 

intermediate states of the nth-order ADC(n) scheme, built using the single-particle RCS basis. The 
ansatz of Eq. (2) includes a full description of electron correlation effects, such as shake-up 
processes, breakdown of the molecular orbital (MO) picture and inter-channel couplings in the 
continuum, which can play an essential role both during the ionization event and the post-
ionization charge dynamics.  



 
 

 

Within the extended second-order ADC(2)x scheme for many-electron excitation used in this 
work, the excited (N)-electron intermediate states span the configuration space consisting of one-
hole – one-particle (1h1p)  �∣ Ψ�𝛼𝛼𝛼𝛼𝑁𝑁 ⟩[𝑛𝑛]� and two-hole – two-particle (2h2p) �∣ Ψ�𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑁𝑁 ⟩[𝑛𝑛]� excitation 
classes built on top of the RCS correlated ground state (24). The first term on the right-hand side 
of Eq. (2) describes the IS configuration states of B-spline RCS-ADC, which take the form of 
ionization-channel-specific product-states and reads ∣ Ψ𝜇𝜇,𝑃𝑃

𝑁𝑁 ⟩ = 𝑎𝑎�𝜇𝜇
† ∣ Φ𝑃𝑃

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩, where 𝑎𝑎�μ
† is the 

creation operator of an electron in the IS molecular orbital ψμ(𝑟𝑟), and ∣ Φ𝑃𝑃
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩ denotes the 

RCS-ADC ionic eigenstates. In this work, the latter have been calculated using the ADC(2,2) (27) 
method for (N-1)-electron systems. 

Thus, the ∣ Φ𝑃𝑃
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩ are obtained by diagonalizing the ionic Hamiltonian calculated at the 

ADC(2,2) level of theory and using the single-particle RCS basis set 

𝐻𝐻�𝐴𝐴𝐴𝐴𝑅𝑅(2,2)
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅  ∣ Φ𝑃𝑃

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩ = 𝐼𝐼𝑃𝑃
𝑃𝑃  ∣ Φ𝑃𝑃

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩ ,                                            (3) 

where the ionization energy is given by 𝐼𝐼𝑃𝑃
𝑃𝑃  =   𝐸𝐸𝑃𝑃𝑁𝑁−1 − 𝐸𝐸0𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐸𝐸0𝑅𝑅𝑅𝑅𝑅𝑅 is the energy of the RCS 

ground state. Within the RCS-ADC(2,2) scheme, the contributions to electron correlation of one-
hole (1h) and two-hole – one-particle (2h1p) configurations, is taken into account in a better-
balanced way compared to both ADC(2)x and ADC(3) methods (27), making the approach more 
appropriate for spectral region with strong MO picture breakdown. The ionic states are expanded 
into 1h, 2h1p and 3h2p configurations derived from the correlated RCS ground state of the neutral 
molecule 

∣ Φ𝑃𝑃
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩ = ∑ 𝑉𝑉𝛼𝛼,𝑃𝑃+𝛼𝛼 ∣ Φ�𝛼𝛼𝑁𝑁−1⟩  +  ∑ 𝑉𝑉𝛼𝛼𝛼𝛼𝛼𝛼,𝑃𝑃

+
𝛼𝛼𝛼𝛼𝛼𝛼 ∣ Φ�𝛼𝛼𝛼𝛼𝛼𝛼𝑁𝑁−1⟩  +  ∑ 𝑉𝑉𝛼𝛼𝛼𝛼𝛼𝛼,𝑃𝑃

+
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 ∣ Φ�𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑁𝑁−1 ⟩.     (4) 

The total time-dependent Hamiltonian of Eq. (1) reads  

𝐻𝐻�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁 (𝑡𝑡) = 𝐻𝐻�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁 + 𝐷𝐷�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − i𝑊𝑊� ,                                   (5) 

where a complex absorbing potential (CAP) of the form 𝑊𝑊� = η(𝑟𝑟 − 𝑟𝑟𝑅𝑅𝐴𝐴𝑃𝑃)2 (𝑟𝑟 ≥ 𝑟𝑟𝑅𝑅𝐴𝐴𝑃𝑃) is used to 
eliminate wave packet reflections from the boundaries of the B-spline radial grid. The laser-
molecule interaction driven by the x-ray pump electric field �𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)� is described within the 
dipole approximation in the length form, and 𝐻𝐻�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁  and 𝐷𝐷�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁  are the representation of the 
shifted field-free Hamiltonian 𝐻𝐻�� = 𝐻𝐻� − 𝐸𝐸0𝑅𝑅𝑅𝑅𝑅𝑅 and the dipole operator 𝐷𝐷�, respectively, in the space 
of RCS-ADC intermediate states (see Eq. (2)). These matrices contain as sub-blocks the 
conventional ADC matrices computed within the RCS-based excitation space, and are further 
augmented with the blocks corresponding to the product-states, which describe ionization and 
interaction in the continuum (24-26). All the blocks of the 𝐻𝐻�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁  matrix are evaluated at the 
ADC(2)x level of theory, with the only exception of the Hamiltonian terms describing the energy 
of the (N-1)-electron ionic states, evaluated at the ADC(2,2) level of theory.  
The time propagation of the unknown coefficients of the neutral many-electron wavefunction 
Eq. (2) is performed by means of the Arnoldi/Lanczos algorithm (25, 26). During the simulation 
of the pump step, we have included into the expansion of the many-electron wavefunction only 
the open ionization channels with energy up to the double ionization threshold (DIP) and 
characterized by an (ionization) spectral intensity value (see ref. (24, 25)) greater than 1%. These 
states will be denoted in the following as ∣ Φ𝑛𝑛,Pump−ionized

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩. Doing so guarantees that all the ionic 
states that can be effectively populated in the x-ray pump ionization, and consequently play the 



 
 

 

main role in the ensuing many-electron dynamics taking place in the molecular cation, are 
accounted for (25, 26). The contribution of ionic states with a smaller spectral-intensity value, as 
well as of deeper core-ionization channels, was indeed found to be negligible.  
The pump-triggered coherent electron dynamics is obtained by calculating, in the basis of ionic 
eigenstates ∣ Φ𝑃𝑃,   𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝛼𝛼𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩, the time-dependent reduced ionic density matrix (R-IDM) 
ρ�𝑅𝑅−𝐼𝐼𝐴𝐴𝐼𝐼(𝑡𝑡) of the molecular ion emerging from the femtosecond pump-ionization step. This is 
achieved by tracing out the unobserved photoelectron degree of freedom from the total time-
dependent density matrix of the N-electron system  

ρ�𝑅𝑅−𝐼𝐼𝐴𝐴𝐼𝐼(𝑡𝑡) = T𝑟𝑟𝜇𝜇 [∣ Ψ𝑁𝑁(𝑡𝑡) ⟩⟨ Ψ𝑁𝑁(𝑡𝑡) ∣].                                             (6) 

Doing so, and using the many-electron states of Eq. (2) within the TD RCS-ADC(n) framework, 
yields in the basis of ADC(2,2) ionic eigenstates 

ρ�𝑃𝑃,𝑛𝑛
𝑅𝑅−𝐼𝐼𝐴𝐴𝐼𝐼(𝑡𝑡) = �𝑐𝑐𝑃𝑃μ(𝑡𝑡)�𝑐𝑐𝑛𝑛μ(𝑡𝑡)�

∗

μ

+ 2𝑒𝑒𝛼𝛼�𝐼𝐼𝑛𝑛
𝑝𝑝−𝐼𝐼𝑚𝑚

𝑝𝑝 �𝑡𝑡 � �𝑤𝑤ν,μ𝑐𝑐𝑃𝑃μ(𝑡𝑡′)[𝑐𝑐𝑛𝑛ν(𝑡𝑡′)]∗𝑒𝑒−𝛼𝛼�𝐼𝐼𝑛𝑛
𝑝𝑝−𝐼𝐼𝑚𝑚

𝑝𝑝 �𝑡𝑡′𝑑𝑑𝑡𝑡′
μ,ν

𝑡𝑡

−∞
,                                 (7) 

where the latter term corrects for the loss of norm introduced by the CAP (24), 𝐼𝐼𝑃𝑃
𝑃𝑃  is the ionization 

potential of the ionic state m and 𝑤𝑤ν,μ is the CAP matrix element between photoelectron IS orbitals 
μ and ν. From now on we shall omit the R-IDM superscript and denote the reduced ionic density 
matrix as ρ𝑃𝑃,𝑛𝑛. 

The R-IDM fully describes the mixed ionic state prepared by attosecond molecular ionization: the 
TD population of the different ionic eigenstates is given by the diagonal elements  

𝑝𝑝𝑛𝑛(𝑡𝑡)  =   �ρ𝑛𝑛,𝑛𝑛(𝑡𝑡)�,                                                                (8) 

while the off-diagonal ones ρ𝑃𝑃,𝑛𝑛 are related to the degrees of quantum electronic coherence, 
0 ≤  𝐺𝐺𝑃𝑃,𝑛𝑛 ≤ 1, between any pair of populated ionic channels m and n  

𝐺𝐺𝑃𝑃,𝑛𝑛(𝑡𝑡)  =  
�ρ𝑃𝑃,𝑛𝑛(𝑡𝑡)�

�𝑝𝑝𝑃𝑃(𝑡𝑡) ∗ 𝑝𝑝𝑛𝑛(𝑡𝑡)
 .                                                   (9) 

In addition, the relative phases φ𝑃𝑃,𝑛𝑛 between the partially-coherently populated eigenstates of 
energies 𝐼𝐼𝑃𝑃

𝑃𝑃   and 𝐼𝐼𝑛𝑛
𝑃𝑃 are extracted from the phases of the R-IDM off-diagonal matrix elements and 

read  

φ𝑃𝑃,𝑛𝑛  =  arg �ρ𝑃𝑃,𝑛𝑛(𝑡𝑡) 𝑒𝑒+𝛼𝛼�𝐼𝐼𝑚𝑚
𝑝𝑝 −𝐼𝐼𝑛𝑛

𝑝𝑝�𝑡𝑡� .                                          (10) 

The relative phase matrix is antisymmetric, i.e. 𝜑𝜑𝑃𝑃,𝑛𝑛 = −φ𝑛𝑛,𝑃𝑃, as follows from the hermiticity of 
the density matrix (ρ𝑛𝑛,𝑃𝑃 = ρ𝑃𝑃,𝑛𝑛

∗ ).  

Finally, diagonalization of the ionic density matrix yields the so-called Schmidt decomposition 
(26). The latter represents a powerful tool to analyze the produced mixed state of the cationic 
system, allowing one to express it as a fully-incoherent sum of several (𝑁𝑁𝛼𝛼𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖) fully quantum-
coherent pure states, each of them populated with weight 𝑟𝑟𝑃𝑃 and represented by the projection 
operator 𝑃𝑃�𝑃𝑃: 



 
 

 

ρ�(𝑡𝑡)  =   � 𝑟𝑟𝑃𝑃(𝑡𝑡) 𝑃𝑃�𝑃𝑃(𝑡𝑡)
𝑃𝑃 = 1,   𝑁𝑁𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖

 = � 𝑟𝑟𝑃𝑃(𝑡𝑡)  ∣ Φ𝑃𝑃
𝜌𝜌  (𝑡𝑡) ⟩ ⟨ Φ𝑃𝑃

𝜌𝜌  (𝑡𝑡) ∣ 
𝑃𝑃 = 1,   𝑁𝑁𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖

          (11) 

This operation is called purification of the density matrix.  
S1.2. Second ionization of the cationic species by the x-ray probe pulse. 
In this work, we explicitly simulate the interaction of the pump-ionized system with the probe 
pulse. Doing so allows us to calculate the time-delay dependence of probe-induced electron 
emission from the pump-ionized glycine cation, thus obtaining a realistic description of the 
ultrafast electronic observables measured in the experiment.  
The formal validity of the presented theoretical framework relies on non-overlapping pump and 
probe pulses. The reason for this restriction is that, while the current B-spline RCS-ADC 
implementation can accurately treat many-electron dynamics with one photoelectron in the 
continuum, it cannot yet afford the modeling of two photoelectrons in the continuum at the same 
time. The latter, which would in fact be more appropriate in the case of overlapping pump and 
probe pulses, would also require one to extend the expansion of the many-electron RCS-ADC 
wavefunction (Eq. (2)) by states of the type 𝑎𝑎�𝜇𝜇

†𝑎𝑎�𝜈𝜈
† ∣ Ω𝑃𝑃

𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅⟩, thus posing an extra demand on the 
computation by means of the TD RCS-ADC machinery. However, in practise, this only limits the 
range pump-probe scenarios that can be numerically tackled to the ones corresponding to time-
delays greater than the duration of the x-ray pulses involved τ𝑖𝑖 >  𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃/2, i.e. in this case 
corresponding to delay times of 1.3 fs or longer.  
The time-dependent description of the cation-probe interaction is performed by solving the time-
dependent von Neumann equations (26) for the characterized reduced ionic density matrix 
(Eq. (7)) interacting with the probe laser field  

𝑑𝑑
𝑑𝑑𝑡𝑡
 𝜌𝜌�(𝑡𝑡)  =  −

𝑖𝑖
ℏ
�𝐻𝐻�𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑁𝑁−1 (𝑡𝑡) ,𝜌𝜌�(𝑡𝑡)� .                                               (12) 

Eq. (12) is solved by using the B-spline RCS-ADC method, which we extended here to describe 
the photoionization dynamics of (N-1)-electron systems. The solution provides an explicit 
description of the ionization continua of the dication as well as of the Auger decay process, and 
both photoemission channels are included in the calculation. In particular, this equation can be 
solved by taking advantage of the Schmidt decomposition Eq. (11) of the ionic density matrix upon 
the pump-ionization step. It allows us to tackle the solution of Eq. (12) by propagating 𝑁𝑁𝛼𝛼𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖𝑡𝑡=0  
independent TDSE,  

𝑖𝑖 ℏ  
∂ ∣ Φ𝑃𝑃

𝜌𝜌 (𝑡𝑡) ⟩
∂𝑡𝑡

    =   𝐻𝐻�𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑁𝑁−1 (𝑡𝑡)   ∣ Φ𝑃𝑃
𝜌𝜌  (𝑡𝑡) ⟩       𝑚𝑚 =  1, . . . . . ,𝑁𝑁𝛼𝛼𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖𝑡𝑡=0                  (13) 

corresponding to the individual pure ionic states obtained by the purification of the initial (before 
the interaction with the probe pulse) ionic density matrix prepared by the pump pulse. The time-
dependent ∣ Φ𝑃𝑃

𝜌𝜌 (𝑡𝑡) ⟩ states can be expanded in the basis of (N-1)-electron RCS-ADC states as  

 ∣ Φ𝑃𝑃
𝜌𝜌,𝑁𝑁−1 (𝑡𝑡) ⟩ =   � 𝑐𝑐𝑃𝑃,μ(𝑡𝑡)

𝑃𝑃,μ
 𝑎𝑎�μ
† ∣ Ω𝑃𝑃

𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅⟩  + � 𝑐𝑐𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)
𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅

∣ Φ�𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁−1⟩[𝑛𝑛].             (14) 

This expression can be further simplified, and renormalized in terms of cationic eigenstates, by 
expressing the ∣ Φ�𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁−1⟩ RCS configurations in terms of the RCS ionic eigenstates  



 
 

 

∣ Φ𝑛𝑛′,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝛼𝛼𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩ and ∣ Φ𝑛𝑛′′,𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩. One derives 

∣ Φ𝑃𝑃
𝜌𝜌,𝑁𝑁−1 (𝑡𝑡) ⟩ = � 𝑐𝑐𝑃𝑃;𝑛𝑛𝜇𝜇(𝑡𝑡)

𝑛𝑛,𝜇𝜇
𝑎𝑎�μ
† ∣ Ω𝑛𝑛

𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅⟩ + 

+� 𝑐𝑐𝑃𝑃;𝑛𝑛′(𝑡𝑡)
𝑛𝑛′

∣ Φ𝑛𝑛′,Pump−ionized
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩ + � 𝑐𝑐𝑃𝑃;𝑛𝑛′′(𝑡𝑡)

𝑛𝑛′′
∣ Φ𝑛𝑛′′,𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩.                    (15) 

In Eq. (15) we have thus expressed the wavefunction of the time-dependent pure-state channel                 
∣ Φ𝑃𝑃

𝜌𝜌,𝑁𝑁−1 (𝑡𝑡) ⟩ as an expansion over the full electronic spectrum of the ionic subsystem, including 
both its low-energy bound excitations, i.e. the valence-ionized states populated by the pump pulse, 
the C(1s) core-ionized states, which were not populated in the pump-step simulation, and the 
electronic continua of the valence-doubly-ionized states. 

The time-dependent ionic Hamiltonian 𝐻𝐻�𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑁𝑁−1 (𝑡𝑡) in the dipole approximation is given by  

𝐻𝐻�𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑁𝑁−1 (𝑡𝑡) = 𝐻𝐻�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1 + 𝐷𝐷�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1 𝐸𝐸𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖(𝑡𝑡) − i𝑊𝑊,�                               (16) 

where 𝐻𝐻�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1  and 𝐷𝐷�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1  are again the representations of the shifted field-free ionic 
Hamiltonian and the dipole operator, respectively, in the (N-1)-electron configuration space 
spanned by all the ionic states of Eq. (15). In this work, the RCS core-ionized states are calculated 
at the ADC(2)x level of theory employing the core-valence approximation, i.e.  

⟨ Φn′,Pump−ionized
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ∣ 𝐻𝐻�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1 ∣ Φ𝑛𝑛′′,𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩  = 0, and read 

𝐻𝐻�𝐴𝐴𝐴𝐴𝑅𝑅(2)𝑥𝑥
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅  ∣ Φ𝑛𝑛′′,𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩  =  𝐼𝐼𝑛𝑛′′
𝑃𝑃    ∣ Φ𝑛𝑛′′,𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩  ;   𝐼𝐼𝑛𝑛′′
𝑃𝑃  =   𝐸𝐸𝑛𝑛′′

𝑁𝑁−1 − 𝐸𝐸0𝑅𝑅𝑅𝑅𝑅𝑅                   (17) 

∣ Φ𝑛𝑛′′,𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅⟩ = � 𝑉𝑉𝛼𝛼,𝑛𝑛′′

+

𝛼𝛼
∣ Φ�𝛼𝛼𝑁𝑁−1⟩  +  � 𝑉𝑉𝛼𝛼𝛼𝛼𝛼𝛼,𝑛𝑛′′

+

𝛼𝛼𝛼𝛼𝛼𝛼
∣ Φ�𝛼𝛼𝛼𝛼𝛼𝛼𝑁𝑁−1⟩.                          (18) 

In Eq. (18) each of the ADC configurations in the expansion features at least one hole-index (i, j) 
correspond to either the 4a’ or 5a’ C(1s) occupied molecular orbital; Eq. (18) thus describes the 
core-ionized states of the glycine cation in the energy range of the carbon K-edge. 
The first term on the right-hand side of Eq. (15) describes the IS configuration states of B-spline 
RCS-ADC for (N-1)-electron systems. These states take the form of ionization-channel-specific 
product-states 

 ∣ Φ𝜇𝜇,𝑛𝑛
𝑁𝑁−1⟩ =   𝑎𝑎�𝜇𝜇

† ∣ Ω𝑛𝑛
𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅⟩                                                     (19) 

built upon the RCS-ADC eigenstates of the dication ∣ Ω𝑛𝑛
𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅⟩. The latter are obtained by 

diagonalizing the dicationic ADC Hamiltonian 𝐻𝐻�𝐴𝐴𝐴𝐴𝑅𝑅(1)
𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅 computed using the single-particle RCS 

basis set  
𝐻𝐻�𝐴𝐴𝐴𝐴𝑅𝑅(1)
𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅 ∣ Ω𝑛𝑛

𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅⟩ = 𝐷𝐷𝐼𝐼𝑃𝑃𝑛𝑛  ∣ Ω𝑛𝑛
𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅⟩,                                      (20) 

where the double-ionization energy is given by 𝐷𝐷𝐼𝐼𝑃𝑃𝑛𝑛  =   𝐸𝐸𝑛𝑛𝑁𝑁−2 − 𝐸𝐸0𝑅𝑅𝑅𝑅𝑅𝑅. In this work, the 
eigenstates of the dication (produced by the probe pulse) ∣ 𝛺𝛺𝑛𝑛,Probe−ionized

𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩ =  ∑ 𝑉𝑉𝛼𝛼𝛼𝛼,𝑛𝑛
2+

𝛼𝛼𝛼𝛼  ∣ Ω�𝛼𝛼𝛼𝛼𝑁𝑁−2⟩ 
are described within the ADC(1) scheme for (N-2)-electron systems, and are expanded into  
2h ∣ Ω�𝛼𝛼𝛼𝛼𝑁𝑁−2⟩ configurations derived from the correlated ground state of the neutral molecule. They 
are thus described up to first order in the many-body perturbation theory. 

The remaining blocks ⟨ Φ𝑛𝑛′,Pump−ionized
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ∣ 𝐻𝐻��𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1 ∣ Φ𝜇𝜇,𝑛𝑛

𝑁𝑁−1⟩,  



 
 

 

⟨ Φ𝑛𝑛′,𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ∣ 𝐻𝐻��𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1 ∣ Φ𝜇𝜇,𝑛𝑛

𝑁𝑁−1⟩ and ⟨ Φ𝜈𝜈,n′
𝑁𝑁−1 ∣ 𝐻𝐻��𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1 ∣ Φ𝜇𝜇,𝑛𝑛

𝑁𝑁−1⟩ are calculated at the ADC(2)x 
level of theory.  
The initial condition for the solution of Eq. (13) reads  

 ∣ Φ𝑃𝑃
𝜌𝜌,𝑁𝑁−1 (𝑡𝑡 = 𝜏𝜏𝑖𝑖) ⟩ = � 𝑐𝑐𝑃𝑃;𝑛𝑛′(𝑡𝑡 = 0)

n′
e− 𝛼𝛼ℏ 𝐼𝐼

𝑛𝑛′
𝑝𝑝  𝜏𝜏𝑑𝑑 ∣ Φ𝑛𝑛′,Pump−ionized

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩ .            (21) 

It is important to note that the validity of the presented modeling of the cation-probe interaction 
requires the effect of the interaction with the x-ray probe pulse, on the ensuing many-electron 
dynamics of interest, to dominate over the residual interaction of the produced cationic system 
with the emitted photoelectron. For the aforementioned values of the pump-probe time-delay used 
here, this is indeed the case, as confirmed by the fact that the ionic density matrix 𝜌𝜌�(𝑡𝑡) stabilizes 
within the first 300 as after the pump ionization event. This is a result of the high kinetic energy 
of the photoelectron leaving the molecular region, and justifies the neglect of the pump-emitted 
photoelectron during the description of the probe step, i.e. at times greater than 1.3 fs.  
Analogously to the pump-step procedure, we calculate here the time-dependent reduced dicationic 
density matrix (R-DIDM) ρ�𝑅𝑅−𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼(𝑡𝑡) emerging from the probe-ionization step, by tracing out the 
unobserved photoelectron degree of freedom from the total time-dependent density matrix of the 
(N-1)-electron system  

ρ�𝑅𝑅−𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼(𝑡𝑡) = 𝜌𝜌�2+ = T𝑟𝑟𝜇𝜇  �∣ Φ𝑃𝑃
𝜌𝜌,𝑁𝑁−1 (𝑡𝑡) ⟩ ⟨ Φ𝑃𝑃

𝜌𝜌,𝑁𝑁−1 (𝑡𝑡) ∣�.                            (22)  

The density matrix of the molecular dication, in the basis of ADC(2) dicationic eigenstates 

∣ Ω𝑃𝑃,   𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖−𝛼𝛼𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩, reads 

ρ�𝑃𝑃,𝑛𝑛
2+ (𝑡𝑡) = �𝑐𝑐𝑃𝑃μ(𝑡𝑡)�𝑐𝑐𝑛𝑛μ(𝑡𝑡)�

∗

μ

+ 2𝑒𝑒𝛼𝛼(𝐴𝐴𝐼𝐼𝑃𝑃𝑛𝑛−𝐴𝐴𝐼𝐼𝑃𝑃𝑚𝑚)𝑡𝑡 � �𝑤𝑤ν,μ𝑐𝑐𝑃𝑃μ(𝑡𝑡′)[𝑐𝑐𝑛𝑛ν(𝑡𝑡′)]∗𝑒𝑒−𝛼𝛼(𝐴𝐴𝐼𝐼𝑃𝑃𝑛𝑛−𝐴𝐴𝐼𝐼𝑃𝑃𝑚𝑚)𝑡𝑡′𝑑𝑑𝑡𝑡′
μ,ν

𝑡𝑡

−∞
.               (23) 

Finally, the measurable photoemission spectrum resulting from the interaction of the x-ray probe 
pulse with the pump-prepared cationic system is recovered by convoluting the discrete, final 
populations of dicationic states 𝑝𝑝𝑛𝑛2+(𝑡𝑡)  =   �𝜌𝜌𝑛𝑛,𝑛𝑛

2+ (𝑡𝑡)� with a Gaussian function of FWHM width 
𝛿𝛿 ≈  2.5 eV 

𝑝𝑝𝑖𝑖−
𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖−𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖𝑖𝑖(𝐸𝐸) = �𝑝𝑝𝑛𝑛2+(∞) 𝑒𝑒

−𝑝𝑝𝑛𝑛(2)��𝐸𝐸−𝐼𝐼𝑚𝑚
𝑝𝑝 −ℏ𝜔𝜔𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃+𝐴𝐴𝐼𝐼𝑃𝑃𝑛𝑛�

2𝛿𝛿
� �

2

𝑛𝑛

                        (24) 

The latter takes into account both the broadenings due to nuclear vibrations, probe pulse bandwidth 
and the instrument resolution. We also found that the position of the phase jump observed in the 
calculated photoemission spectra (see Section S2.2) is rather insensitive to changes in the 
parameter 𝛿𝛿 in the 1.5 – 3.5 eV range. 
  



 
 

 

S2. Results.  
S2.1. First ionization of the neutral species by the x-ray pump pulse: characterization of the 
mixed state of the cationic system prepared by pump ionization. 
Pump ionization is described by directly propagating the initial ground state of the neutral 
molecule with the full many-body B-spline RCS-ADC(2)x/ADC(2,2) Hamiltonian. Results are 
shown for the equilibrium nuclear geometry of the Gly I conformer.  
In the simulation we used a multicenter B-spline basis (24, 28) characterized by a radial box radius 
𝑅𝑅max = 70, a linear grid in the center-of-mass expansion (24) with step size h = 0.3 a.u. and 
maximum value of the orbital angular momentum 𝐿𝐿max = 12. The RCS single-particle basis set 
we used consists of the virtual orbitals of an HF calculation performed in the cc-pVDZ GTO basis 
set, further truncated at the threshold energy of 2 a.u.. The number of open ionic channels included 
in the calculation (see Eq. (2)) and the dimension of the Hamiltonian matrix in A’ symmetry space 
are 𝑁𝑁𝐼𝐼𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖 = 38 and 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝐼𝐼𝑎𝑎𝑥𝑥𝑖𝑖𝛼𝛼𝑃𝑃 = 220500, respectively. The values of the CAP parameters used 
in this calculation are η = 5 × 10−3 and 𝑟𝑟𝑅𝑅𝐴𝐴𝑃𝑃 = 25 a. u. The ab initio simulation of the pump-step 
has been performed using a linearly polarized pulse, characterized by a Gaussian temporal 
envelope, a central frequency ℏω𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 274 eV, peak intensity 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 6 × 1015 W/cm2 and 
time duration 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∼ 1 fs (FWHM). Convergence of the results has been obtained by using a 
time-step Δ𝑡𝑡 =  0.5 as and a Krylov-space dimension  𝐾𝐾 =  40 in the Arnoldi/Lanczos time 
propagation.   
The electronic state of the emerging ionic system has been fully characterized by computing the 
R-IDM. Fig. S1 shows the calculated degrees of quantum electronic coherence 𝐺𝐺𝑃𝑃,𝑛𝑛 and the 
relative phases φ𝑃𝑃,𝑛𝑛 between each pair of ionic eigenstates populated by the x-ray pump pulse. 
The final stationary populations 𝑝𝑝𝑛𝑛(∞) of the bound ADC(2,2)-calculated eigenstates of the Gly I 
cation are also shown in the vertical and horizontal side panels of Fig. S1. In the calculations 
presented here, all the ionic time-dependent populations 𝑝𝑝𝑛𝑛(𝑡𝑡) have converged to their final 
stationary value at 𝑡𝑡 ∼ 200 as after pump ionization. The final photoelectron spectrum resulting 
from the ionization of neutral glycine by the x-ray pump pulse is also plotted in Fig. S1. It is 
recovered by convoluting the calculated discrete, final populations of cationic states Gaussian 
function of FWHM width 𝛿𝛿 ≈  2.5 eV, which takes into account both the broadenings due to 
nuclear vibrations, probe pulse bandwidth and the instrument resolution: 

𝑝𝑝𝑖𝑖−
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐸𝐸) = �𝑝𝑝𝑛𝑛(∞) 𝑒𝑒

−𝑝𝑝𝑛𝑛(2)�
�𝐸𝐸−ℏ𝜔𝜔𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝+𝐼𝐼𝑛𝑛

𝑝𝑝�
2𝛿𝛿
� �

2

𝑛𝑛

                          (25) 

In Fig. S1, it is possible to identify islands of strong quantum electronic coherence close to the 
main diagonal (the highest degrees of generated quantum electronic coherence being ~ 0.95), for 
ionic states belonging to the 10a’ (highlighted in Fig. S1) and 9a’ bands. In general, a robust degree 
of coherence is produced between pairs of states with an energy gap up to the value of pump-pulse 
bandwidth, while the coherence produced between different ionic eigenstates with larger energy 
gaps rapidly decays to very low (< 0.2) values. The results of our ab initio simulation of x-ray 
ionization are in very good agreement with the predictions of the sudden approximation, especially 
in terms of the relative phases (φ𝑃𝑃,𝑛𝑛= 0) and relative populations of the ionic states belonging to 
the bands which show a breakdown of the MO picture, such as the 10a’ (and 9a’) inner-valence 
ionized band for which the sudden-approximation ansatz can be written as (using Eq. (4)) 



 
 

 

 ∣ Φ𝑅𝑅𝑆𝑆𝐴𝐴𝐴𝐴𝐸𝐸𝑁𝑁
10𝑎𝑎′,𝑁𝑁−1 ⟩ = ∣ (10a′)−1⟩ = ∑ 𝑉𝑉10𝑎𝑎′,𝑃𝑃+

𝑃𝑃 ∣ Φ𝑃𝑃,Pump−ionized
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩. The good accuracy of the sudden 

approximation for molecular ionization at x-ray photon energies is a result of the high (relative to 
the energy-scale of the bound electrons dynamics) kinetic energy of the photoelectron leaving the 
molecular region. 

S2.2. Second ionization of the cationic species by the x-ray probe pulse: quantum beatings 
in the time-resolved photoelectron kinetic-energy distribution observable. 
Results are calculated for the nuclear equilibrium geometry of the Gly I conformer. X-ray 
photoionization of the cationic system by the probe pulse is described here by solving Eqs. (13) 
and (15) for the cases of the three principal quantum-coherent pure-state channels, denoted here 
as ∣ Φ1

𝜌𝜌 (𝑡𝑡) ⟩,  ∣ Φ2
𝜌𝜌 (𝑡𝑡) ⟩, ∣ Φ3

𝜌𝜌 (𝑡𝑡) ⟩, as obtained in Eq. (11) by the purification of the ionic density 
matrix prepared by the pump pulse. These principal, coherent ionic channels correspond to the 
coherent superpositions of ionic states in the 10a’ (𝐼𝐼10𝑎𝑎′

𝑃𝑃 ∼ 20 eV, 𝑟𝑟1 =  0.15) and 9a’ (𝐼𝐼9𝑎𝑎′
𝑃𝑃 ∼ 

Fig. S1. Ab initio TD B-spline RCS-ADC simulation of the pump-induced first ionization 
of molecular glycine (Gly I conformer). The simulation is performed using the measured 
FLASH pulse parameters. The interaction between the pump x-ray pulse and the neutral Gly I 
molecule prepares a cationic system (Gly I)+ in a mixed state characterized by a density matrix. 
The left panel shows the degrees of quantum electronic coherence 𝑮𝑮𝒎𝒎,𝒏𝒏 (Eq. (9)) produced 
between each pair of ADC(2,2)-calculated cationic eigenstates populated by the pump pulse. 
The relative phases 𝝋𝝋𝒎𝒎,𝒏𝒏 (Eq. (10)) between each pair of ADC(2,2)-calculated ionic 
eigenstates are shown in the right panel. The areas corresponding to states of the 10a’ band are 
highlighted. The populations of the ionic eigenstates, plotted against the corresponding 
photoelectron energy (ℏ𝝎𝝎 −  𝑰𝑰𝒎𝒎

𝒑𝒑 ), are also shown in the vertical and horizontal side panels; 
the ionic states of the 10a’ band are highlighted by a different stick colour. The kinetic energy 
distribution of pump-ionized electrons (Eq. (25)) is also shown in the vertical and horizontal 
side panels (red curve).  
 
 



 
 

 

23 eV, 𝑟𝑟3 =  0.09) bands, respectively, as well as the coherent superposition of the two ionic states 
consisting of 11a’ and 12a’ hole-mixing (𝑟𝑟2 =  0.13) at an energy 𝐼𝐼11𝑎𝑎′/12𝑎𝑎′

𝑃𝑃 ∼ 17.5 eV.  

The absolute value of the expansion coefficients of these pure-state channels (in the basis of the 
38 ionic eigenstates �∣ Φ𝑃𝑃,Pump−ionized

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩� included in the simulation of the x-ray pump ionization 
step) as calculated by Eq. (11), are shown in the insets of Fig. S3. The other pure-state channels 
contributing to the expansion of Eq. (11) are characterized by a negligible quantum coherence in 
the basis of the cationic eigenstates and therefore do not contribute to the observed oscillations in 
the photoelectron observables. 
In order to illustrate the charge dynamics triggered by the x-ray pump ionization, in Fig. S2 we 
show the hole densities (defined as the difference between the electron density of the neutral 
ground state and the one of the pump-prepared correlated ionic state), corresponding to the 10a’ 
band coherent ionic channel ∣ Φ1

𝜌𝜌 (𝑡𝑡) ⟩, at ten different times, namely immediately after the pump 
ionization event at t1 = 1 fs up to t10 = 21.4 fs after it covering one full charge oscillation period.  

The time propagation is performed by means of the Arnoldi/Lanczos algorithm. During the 
simulation of the probe step, we have included in the expansion of the many-electron wavefunction 
Eq. (15) all the open doubly-ionized channels with energy up to 3.5 a.u. The resulting number of 
open dicationic channels included in the simulation is 𝑁𝑁𝐴𝐴𝛼𝛼𝑖𝑖𝑎𝑎𝑡𝑡𝛼𝛼𝑖𝑖𝑛𝑛 = 225. The highest value (among 
the different molecular symmetry spaces) of the Hamiltonian matrix dimension is 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝐼𝐼𝑎𝑎𝑥𝑥𝑖𝑖𝛼𝛼𝑃𝑃 =
1335318. The other numerical parameters are the same as for the simulation of the pump step (see 
Section S2.1).  
To reduce the demanding computational effort resulting from the size of the Hamiltonian matrix, 
we employed the following approximation and neglected the interchannel couplings in the 
continuum between different dicationic channels, i.e. we set  
⟨ Φ𝜈𝜈,n′

𝑁𝑁−1 ∣ 𝐻𝐻�𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁−1 ∣ Φ𝜇𝜇,𝑛𝑛
𝑁𝑁−1⟩  =  0,   𝑛𝑛′ ≠  𝑛𝑛.     

Fig. S2. Hole densities corresponding to the correlated 10a’ pure state channel between 
t1 = 1 fs and t10 = 21.4 fs after the pump ionization event. The density iso-surfaces 
displayed are the ones with value 0.015, blue and red colors indicate positive and negative 
values of the hole density, respectively. 



 
 

 

Fig. S3 shows the relative variation, as a function of the x-ray pump-probe time-delay τd, of the 
separate contributions to the probe-induced electron yield  𝑝𝑝𝑖𝑖−

𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖−𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖𝑖𝑖 (Eq. (24)) from the three 
pure-state ionic coherent superpositions associated with the 10a’, 11a’/12a’ and 9a’ bands, 
respectively. The change of electron yield is plotted relative to the time-delay averaged value. 
Since the time-delay oscillation of the relative change in 𝑝𝑝𝑖𝑖−

𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖−𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖𝑖𝑖(𝐸𝐸, 𝜏𝜏d) shows, for each 
coherent ionic channel, a change of phase by π in different regions of the kinetic energy spectrum, 
we plot the integrated 𝑝𝑝𝑖𝑖−

𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖−𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖𝑖𝑖(𝜏𝜏d) yield in both the kinetic energy ranges above and below 
the phase jump position resulting from the ab initio numerical calculations.  
 
The π difference observed in the experiment between the phase of oscillation of the photoelectron 
signal in the lower and higher kinetic energy ranges of the photoelectron spectrum, respectively, 
is due to the different time evolution of the 1h and 2h1p components of the time-dependent ionic 
state created by the pump pulse in the 10a’ band. The latter can in fact be written as a time-
dependent linear combination of the 10a’ 1h configuration (hole in the 10a’ orbital) and several 
2h1p configurations, which can, in principle, have holes in any of the outer-valence and inner-
valence molecular orbitals. As far as the dicationic eigenstates are concerned, they can be 
approximated as linear combinations of 2h and three-hole, one-particle (3h1p) configurations. 
From energy considerations, it appears clear that configurations with one hole in the 10a’ orbital 
will mostly contribute to highly-excited dicationic eigenstates, while low-energy dicationic 
eigenstates will mostly consist of two holes in outer-valence molecular orbitals. Moreover, it is 
also clear that ionization into highly-excited dicationic states will be accompanied by the emission 
of photoelectron within the lower kinetic energy range, compared to the ones accompanying 
ionization into the lowest excited dicationic states. According to the sudden approximation, whose 
accuracy we have verified to be high in the photon energy range of the experiment, immediately 
after ionization by the pump pulse the linear combination is such that the only (time-dependent) 
coefficient appreciably different from zero is the one of the 10a’ 1h configuration.  
Therefore, on the one hand, as the pump-probe time-delay increases, the evolution of the time-
dependent ionic state is such that the amplitude of the 10a’ 1h coefficient decreases. As a result, 
since most of the oscillator strength to highly-excited dicationic states with (at least) one hole in 
the 10a’ orbital is carried by this part of the time-dependent state, also the photoelectron signal in 
the low kinetic energy range initially decreases. On the other hand, the amplitude of the 2h1p 
coefficients initially increases. Since these carry most of the oscillator strength for ionization 
transitions to the lowest-energy dicationic states, the higher-kinetic energy photoelectron signal 
will also initially increase. This explains the π phase difference between different kinetic energy 
regions of the photoelectron spectrum. 



 
 

 

 
The calculated position of the phase jump for the 10a’ and 9a’ coherent ionic channels (~255 eV) 
appears shifted to a higher value of the electron kinetic energy with respect to the one observed in 
the experimental data. This deviation shows that, despite the excellent agreement in capturing at a 
qualitative level the phase-jump mechanism, the theoretical modeling of the final doubly-ionized 
states ∣ Ω𝑛𝑛,𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖−𝛼𝛼𝑖𝑖𝑛𝑛𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁−2,𝑅𝑅𝑅𝑅𝑅𝑅 ⟩ adopted here does not accurately include the effect of electron correlation 
in the populated final states of the glycine dication. The part of the spectrum where the phase jump 
is observed in the experiment is a region of complete breakdown of the MO picture of double 
ionization, characterized by a high density of doubly-ionized satellite states. As a result, the 
contribution of 3h1p configurations to the description of the states in this energy region is very 

Fig. S3. Ab initio TD B-spline RCS-ADC simulation of the interaction between the probe 
pulse and the pump-prepared cationic system (Gly I conformer). The simulation is 
performed using the measured FLASH pulse parameters. (A) Relative change of the 
probe-produced electron yield in the kinetic energy ranges above and below the phase jump, 
as a function of x-ray pump-probe delay; contribution from the pump-prepared pure-state ionic 
channel consisting of a coherent superposition of eigenstates in the 10a’ ionic band. In both 
energy ranges the electron yield includes contributions from Auger emission and sequential 
double ionization as a function of x-ray pump-probe delay. (B) and (C) – same as (A) for the 
contribution of the pump-prepared pure-state ionic channels consisting of coherent 
superpositions of eigenstates in the 11a’/12a’ and 9a’ ionic bands, respectively.   



 
 

 

strong. Since this contribution is not included here (at the ADC(1) level, 2h configuration mixing 
is taken into account), the absolute position of the dicationic energy band is not well-captured at a 
quantitative level, leading to a shift of the predicted phase-jump position.  
In both energy ranges the electron yield includes contributions from both the direct sequential 
double ionization (SDI) by the probe pulse of the cationic states populated coherently by the pump 
pulse, and the Auger emission from the probe-excited 4a' and 5a' core-ionized Auger channels.  
In order to quantify the relative contribution of these two mechanisms, in Fig. S4 we show the 
relative change, as a function of the x-ray pump-probe time-delay, of the total contribution from 
the pump-prepared cationic mixed state to probe-induced electron yield in the kinetic energy 
ranges above and below the phase jump. For comparison, we also plot the isolated contribution 
due to electrons emitted through Auger-decay. The total spectrum shown in Fig. S4 consists of the 
incoherent sum of the individual contributions from the 3 coherent pure-state channels shown in 
Fig. S3.  The Auger electron contribution for each coherent channel is calculated as  

𝑝𝑝𝑖𝑖−𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑃𝑃(𝐸𝐸) = �𝑝𝑝𝑛𝑛
2+,𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑃𝑃(∞) 𝑒𝑒

−𝑝𝑝𝑛𝑛(2)��𝐸𝐸−𝐼𝐼𝑚𝑚
𝑝𝑝 −ℏ𝜔𝜔𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃+𝐴𝐴𝐼𝐼𝑃𝑃𝑛𝑛�

2𝛿𝛿
� �

2

𝑛𝑛

                       (26) 

by integrating the CAP term of the diagonal dicationic density matrix (Eq. (23)) starting from 
t = 0.5 fs after the probe pulse 

𝑝𝑝𝑛𝑛
2+,𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑃𝑃(∞)  =   �𝜌𝜌𝑛𝑛,𝑛𝑛

2+,𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑃𝑃(∞)� = � lim
𝑡𝑡→∞

2� �𝑤𝑤ν,μ𝑐𝑐𝑃𝑃μ(𝑡𝑡′)[𝑐𝑐𝑛𝑛ν(𝑡𝑡′)]∗ 𝑑𝑑𝑡𝑡′
μ,ν

𝑡𝑡

0.5𝑓𝑓𝑖𝑖
�          (27) 

The validity of this formula is based on the different time-scales corresponding to direct and Auger 
electron emission, and by the fact that the photoelectron wave-packet emitted as a result of direct 
photoionization by the probe pulse is completely absorbed by the CAP within the first 0.3 fs after 
the probe pulse. The total Auger electron contribution presented in Fig. S4 thus describes the total 
yield of electrons emitted in the Auger decay of the C(1s) 4a' and 5a' core-ionized states populated 
by the probe pulse.  
The result of Fig. S4 show that, at the photon energy value used in the present experiment, the 
direct photoionization dominates over the excitation of the intermediate Auger-active core-singly-
ionized C(1s) resonances. The calculated Auger signal is indeed about one order of magnitude 
smaller than the SDI one.  
Therefore, the quantum-coherent electron dynamics prepared by the x-ray pump in the cation is 
imprinted in the direct probe-ionized electron signal, which dominates over the Auger-induced 
electron signal. Moreover, the results show that the photoelectron signal is more sensitive to the 
quantum coherence in the 10a’ band compared to the coherences produced in the 11a’/12a’ and 
9a’ ionic bands: this is because the pure-state ionic channel consisting of a coherent superposition 
of eigenstates in the 10a’ band is characterized by a higher population weight 𝑟𝑟10𝑎𝑎′ =  0.15 (see 
Schmidt decomposition in Eq.(11)), and, as shown in Fig. S3, also gives rise to higher-amplitudes 
in the calculated oscillation of the electron yield. As a consequence, the position of the phase jump 
in the total time-delay dependent electron yield is also approximately the same as the one of the 
10a’ coherent channel alone.  



 
 

 

  

Fig. S4. Ab initio TD B-spline RCS-ADC simulation of the interaction between the probe 
pulse and the pump-prepared cationic system (Gly I conformer). The simulation is 
performed using the measured FLASH pulse parameters. (A) Relative change of the 
probe-produced electron yield in the kinetic energy ranges above and below the phase jump, 
as a function of x-ray pump-probe delay; total contribution from the pump-prepared mixed-
state of the ionic system. In both energy ranges the electron yield includes contributions from 
Auger emission and sequential double ionization as a function of x-ray pump-probe delay. (B) 
same as (A) for the isolated contribution of Auger electrons, resulting from the decay of the 
5a’ and 4a’ core-ionized states populated by the probe. (C) Kinetic energy distributions of the 
probe-induced Auger electrons (green curve) and the complete (Auger + SDI) probe-emitted 
electrons (red curve); the latter includes the dominant contribution of the photoelectron emitted 
in the process of (second) direct photoionization of the cationic system by the probe pulse. 



 
 

 

S3. Effect of nuclear ground-state geometry distribution: time-dependent survival 
probability of the pump-prepared mixed state.  
Here we analyze the effect of the geometry-spread of the ground state nuclear wavefunction on the 
survival of the quantum electronic coherences in the 10a’ and 9a’ ionized bands. The simulations 
were performed for and averaged over 201 different nuclear geometries, at which convergence of 
the calculated ionic density matrix survival probability was found. 
S3.1. Numerical procedure. 
The entire procedure of the calculation is outlined below. For each and every nuclear geometry, 
the calculation we performed consists of three elements: 
1- Calculation of the bound ionic states of glycine, in the 10a’ and 9a’ bands energy regions. This 
calculation was performed at the advanced ADC(2,2) level of theory (27) by using the cc-pVDZ 
basis set with the virtual orbital space truncated at the threshold energy of 2 a.u. Here, only ionic 
eigenstates with more than 1% 10a' or 9a’ contribution in their full ADC configuration expansion 
are kept.  
2- The pump-prepared initial mixed-state of the cationic system, characterized by the ionic density 
matrix 𝜌𝜌�(𝑡𝑡0), is time-propagated by solving the (field-free) time-dependent von Neumann equation 
(26) 

𝑑𝑑
𝑑𝑑𝑡𝑡
 𝜌𝜌�(𝑡𝑡)  =  −

𝑖𝑖
ℏ
�𝐻𝐻�𝐴𝐴𝐴𝐴𝑅𝑅(2,2)

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 ,𝜌𝜌�(𝑡𝑡)� ,                                               (28) 

 𝜌𝜌�(𝑡𝑡) =   e− 𝛼𝛼ℏ 𝐻𝐻�𝐴𝐴𝐴𝐴𝑅𝑅(2,2)
𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 (𝑡𝑡−𝑡𝑡0) 𝜌𝜌�(𝑡𝑡0)  exp+ 𝛼𝛼ℏ  𝐻𝐻�𝐴𝐴𝐴𝐴𝑅𝑅(2,2)

𝑁𝑁−1,𝑅𝑅𝑅𝑅𝑅𝑅 (𝑡𝑡−𝑡𝑡0).                           (29) 

For each nuclear geometry, the initial  𝜌𝜌�(𝑡𝑡0) reduced ionic density matrix is built according to the 
following criteria, which we name coherence-corrected sudden-approximation ansatz:  

- The relative populations of the valence ionic eigenstates (both in the 10a’ and 9a’ bands), 
as well as the relative phases between each pair of eigenstates, are estimated using the 
sudden approximation ansatz to model the ionization of neutral glycine by the pump pulse. 
Therefore, each ionic eigenstate has a population proportional to the weight of the simple 
one-hole configurations in their ADC configuration expansion, and the relative phases are 
0. 

- We assume a degree of quantum coherence different from zero only between ionic 
eigenstates of the same symmetry, and consequently do not include ionic states of a’’ 
symmetry in our description. Assuming a coherence different from zero only between ionic 
states of the same symmetry implies that the direction of the first emitted photoelectron is 
either not measured or integrated out in the analysis of the experimental data. At a 
theoretical level, it corresponds to calculating the ionic density matrix by tracing the full 
N-electron neutral wavefunction over the spatial-symmetry quantum numbers of the 
photoelectron. 

- Finally, for each pair of coherently populated ionic eigenstates, the degree of coherence is 
further decreased (from the initial value of 1) in order to take into account the effect of their 
energy separation, the bandwidth and profile of the pump pulse. Therefore, the off-diagonal 
matrix elements ρ𝑃𝑃,𝑛𝑛(𝑡𝑡0)of the ionic density matrix are modified according to 



 
 

 

𝜌𝜌𝑃𝑃,𝑛𝑛(𝑡𝑡0) =  𝜌𝜌𝑃𝑃,𝑛𝑛
𝑅𝑅𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 𝑒𝑒− 𝑝𝑝𝑛𝑛 (2)�𝐸𝐸𝑚𝑚−𝐸𝐸𝑛𝑛𝐸𝐸𝐵𝐵𝐵𝐵𝑛𝑛𝑑𝑑

�
2

,                                    (30) 

which provides a reliable estimate of the initial ionic density matrix prepared as a result of 
ionization by a 274 eV x-ray Gaussian pump pulse of bandwidth EBand.  

The validity of this ansatz is confirmed, at the nuclear equilibrium geometry, by the ab initio results 
of Fig. S1. 

3- Given the density matrix 𝜌𝜌�(𝑡𝑡), the survival probability of the time-dependent quantum state is 
calculated as the fidelity between the quantum states described by the density matrix 𝜌𝜌�(𝑡𝑡) and the 
initial density matrix prepared by the pump 𝜌𝜌�(𝑡𝑡0) 

F(𝑡𝑡) =  �𝑇𝑇𝑟𝑟 � ��𝜌𝜌�(𝑡𝑡) 𝜌𝜌�(𝑡𝑡0)�𝜌𝜌�(𝑡𝑡)  ��
2

.                                    (31) 

S3.2. Nuclear geometry sampling.  

The optimization of the equilibrium geometry �𝑹𝑹𝒏𝒏�����⃗ �0 and the calculation of the normal-mode 
frequencies were computed at the coupled-cluster singles and doubles (CCSD) level of theory in 
a cc-pVTZ basis set, using the MOLPRO quantum chemistry package (30); the different nuclear 
geometries were sampled in the configuration space according to a probability distribution given 
by the Wigner distribution, integrated over momenta, corresponding to the nuclear ground-state 
(GS) wavefunction, i.e. �Λ𝐺𝐺𝑅𝑅𝑁𝑁𝑃𝑃𝑖𝑖𝑝𝑝𝑖𝑖𝑎𝑎𝑃𝑃��𝑹𝑹𝒏𝒏�����⃗ ���

2
. The latter was calculated within the harmonic 

oscillator approximation (around the equilibrium geometry) of the potential energy surfaces. 
Therefore, the ensemble of geometries was calculated using a product of normal Gaussian 
distributions, each one corresponding to the respective vibrational normal mode considered. Only 
vibrational normal modes that conserve the molecular symmetry of the equilibrium geometry (Cs 
point group) were considered. Monte Carlo integration of the time-dependent survival probability 
curves over different nuclear geometries �𝑹𝑹𝒏𝒏�����⃗ � was performed. The aforementioned procedure 
describes the effect of the spread of the GS nuclear wavefunction on the observed coherent electron 
dynamics. Vibrational dynamics is not included in the simulations. 

S3.3. Results. 
Fig. S5 shows the geometry-averaged, time-delay-dependent survival probability of the ionic 
density matrix prepared by the x-ray pump ionization. Results are presented for the two conformers 
Gly I and Gly III, as well as for three different statistical mixings of the populations of the two 
conformers in the sample.  
The results for both the singly-ionized Gly I conformer and the averaged abundance-weighted 
contribution of the two (Gly I and Gly III) conformers, show that it is possible to discern an 
oscillation with a ~ 20 fs period in the time-dependent survival probability of the cationic mixed 
state prepared by the pump ionization. The overall agreement with the experimental results is 
excellent in terms of the oscillation period and it provides strong evidence in support of the 
presence of an electronic coherence-driven oscillation characterized by a period of ~ 20 fs and 
whose coherence partially survives the nuclear GS distribution averaging.  



 
 

 

Here it is important to note that, whereas both the time-dependence and the temporal resolution of 
the measured physical observable does in principle present deviations from the calculated survival 
probability, the robustness of the latter with respect to the nuclear geometry averaging provides a 
probe-free demonstration of the survival of quantum electronic coherence on the tens-of-
femtosecond time-scale in this system.    
Regarding the profile of the oscillation, neither the theory results nor the bare experimental data 
points show a simple, perfectly singled-period oscillation. Moreover, the amplitude of the 
calculated oscillation is around 10% (measured against the time-delay averaged value), and 
therefore smaller than the experimentally measured one which ranges from 15% up to 30%.  
The observed difference in the relative amplitude of the oscillations has to be considered 
remarkably small, and thus supportive of the presented experiment’s interpretation, especially 
considering the potential theoretical sources of discrepancy (in addition to the experimental errors), 
which include: 

Fig. S5. Time-dependent survival probability of the pump-prepared ionic density 
matrix in the subspace of ionic eigenstates consisting of the 10a’ and 9a’ ionic bands. 
The result of Eq. (31) has been averaged over the nuclear ground-state geometry 
distribution for both the Gly I and Gly III conformers, as well as for three different 
statistical mixtures of the two. 



 
 

 

• Errors due to the use of a truncated single-particle basis set in the calculation of the 10a’ 
and 9a’ ionized states at the ADC(2,2) level of the ADC hierarchy. This can in principle 
have an appreciable impact on the observed discrepancy, as it can lead to relative errors in 
the excited ionic states expansions and consequently in the energy gaps between different 
ionic eigenstates as well as in the geometry of the corresponding potential energy surfaces.  

• Deviations, as a function of the nuclear geometry, of the relative ionic populations and 
ionic coherences, estimated by means of the procedure outlined above, with respect to the 
pump-prepared ones. The vertical ionization probabilities by the pump could potentially 
present deviations from the theoretically estimated one for the states involved, depending 
on the vertical ionization energies at different geometries. 

• The effect of phenomena not-included in the present analysis:  
i. the symmetry-breaking vibrational normal modes. 

the ionization-induced nuclear motion. 
 

ii. Given the relatively high temperature of the molecular sample used in the 
experiment, contributions from excited vibrational states could also play a non-
negligible role. 

 
 
 

Movie S1. 
The movie depicts the calculated temporal evolution of the relative variation of the hole  
density corresponding to the correlated 10a’ pure state channel between 1 fs < t < 21.4 fs after 
the pump ionization event with respect to its time-averaged value. The density iso-surfaces 
displayed are the ones with value 0.015, blue and red colors indicate positive and negative values 
of the hole density, respectively. 


	Schwickert
	abn6848_SupplementalMaterial_v4
	Supplementary Text




