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Supplementary Information

Selection of representative cancer driver genes and hotspots. We selected a total of 26 represen-

tative tumor suppressors and oncogenes implicated in driving tumorigenesis and commonly mutated

in TCGA1,54. These genes are: KRAS, HRAS, NRAS, PTEN, PIK3CA, PIK3R1, EGFR, BRAF, NOTCH1, RB1,

ARID1A, MYC, POLE, MLH1, MSH2, IDH1, CDKN2A, CTNNB1, ERBB2, SMAD2, SMAD4, APC, BRCA1,

BRCA2, FAT4, and TP53. We only considered missense mutations, which are amenable to our model

predictions since, for example, there are fewer doubts concerning mutant protein expression. We man-

ually curated hotspots from TCGA. The genes and their hotspots are shown in Table 1.

Gene Hotspots

KRAS G12D, G12V, G12C

HRAS Q61R

NRAS Q61R, Q61K

PTEN R130Q, R130G

APC S2307L

PIK3CA E545K, H1047R, E542K

PIK3R1 G376R, N564D

EGFR L858R, A289V, G598V

BRCA1 E1258D

BRCA2 A1393V, E3342K

BRAF V600E

NOTCH1 A465T

RB1 R876C, R741C, R451C

ARID1A G2087R

MYC S161L

POLE P286R, V411L

MLH1 R265C, R385C

MSH2 R929Q, R406Q, K871N

IDH1 R132H, R132C

ARF H83Y, P114L, D108Y

CTNNB1 S37F, T41A, S45P

ERBB2 S310F

SMAD2 R120Q, S276L, R321Q

SMAD4 R361H, R361C

FAT4 R2685Q, R1671C, D1790N, H2514Y

TP53 R175H, R248Q, R273H, R248W, R273C, R282W, G245S, Y220C

Table 1: Selected cancer driver genes and hotspots.

Selection of representative genes andmutations implicated in non-cancer diseases. We tested if mu-

tations which are less conserved are more likely to generate more immunogenic peptides (as defined by

likelihood to be presented on class I MHC), outside of the cancer setting. To do so, we examined dozens

of genes which have single nucleotide polymorphisms that are associated with non-cancerous diseases.

We filtered out any gene for which there was at least some evidence that it had functional importance

for cancer development, or whose symptoms manifested as benign tumors. We kept genes in which, to
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date, mutations only have strong documented evidence for roles in non-cancerous diseases.

We considered a total of nine genes. Five of these genes are hemoglobin subunits (HBA, HBB, HBD,

HG1, HG2), and the other four are related to other non-cancer associated conditions (PAH, F8, PHEX,

POGZ).Mutations in hemoglobin subunits arewell-documented,mainly theHBA andHBB subunitswhich

are the major hemoglobin subunits in adults86,87. While some mutations are benign and do not alter

hemoglobin function or stability, there are multiple mutations which are functionally destructive. Mu-

tations in phenylalanine hydroxylase (PAH) are associated with phenylketonuria, resulting in reduced

phenylalanine metabolism88. Mutations in Factor VIII (F8) contribute to hemophilia A89. Mutations in

phosphate-regulating neutral endopeptidase, X-linked (PHEX) are related to bone deformations due to

inhibited phosphate retention90. Mutations in the pogo transposable element with ZNF domain (POGZ)

gene are related to White-Sutton syndrome91. In all cases, mutations within the genes in question may

have a spectrum of functional effects, from negligible changes to significant alterations in function or

protein stability.

We collated single-nucleotide polymorphism data for these genes available from the NCBI’s dbSNP92

and mapped genomic mutations to amino acid alterations using the GRCh38 reference genome, iden-

tifying a total of 2,195 missense mutations across these 9 genes. We then only kept the mutation

set which were unequivocally not-pathogenic (annotated as “benign”, “protective”, “likely-benign”,

and/or “benign-likely-benign”) or pathogenic (annotated as “pathogenic”, “likely-pathogenic”, and/or

“pathogenic-likely-pathogenic”) as determined by the NCBI’s ClinVar annotation system93. This resulted

in 113 not-pathogenic mutations and 836 pathogenic mutations for a total of 949 mutations. All other

mutations were not considered for the analysis.

For each gene, we compared inferred population-averaged likelihood of class-I MHC presentation for

the nine 9-mer peptides surrounding the mutation across the “non-pathogenic” (i.e., more sequence

conservation) and “pathogenic” (i.e., poor sequence conservation) groups.

Mutation datasets. Our models are applied to somatic mutations across commonly mutated tumor

suppressors and oncogenes, as well as pre-neoplastic TP53 mutations. For mutant TP53, we train the

mutation model on somatic TCGA TP53 mutation distributions downloaded from the Genomic Data

Commons54. We consider a total of 2,764 p53 mutations across 2,580 tumors in TCGA. We only con-

sider missense mutations which arise from a single-nucleotide variation.

In examining models without concentration for all considered commonly mutated tumor suppressors

and oncogenes, we utilizedmissensemutation distributions from both COSMIC (version 90)53 and TCGA,

as available from the Genomic Data Commons54. When comparing COSMIC and TCGA, we filtered out

the mutations from COSMIC that also appear in TCGA. When comparing TCGA and IARC, we filtered

out the mutations from IARC that also appear in TCGA. We only considered missense mutations from

single-nucleotide variations to limit confounding issues with protein expression in other types of mu-

tants, such as truncation mutants. Where possible, we assured that we considered properly matched

primary canonical transcripts of these genes across databases. For KRAS, where there are two well-

expressed isoforms which have largely conserved amino acid sequences, we focused on isoform “A”,

which is listed as the canonical transcript in the UniProt database94. For TP53, we excluded all mutations

at codons 72 and 46 involving proline/arginine or proline/serine, respectively, as these are well-known

polymorphisms.

It has become clear in recent years that TP53 mutations exist in cells which are non-cancerous30. To

date, there is no large-scale non-tumor somatic p53 mutation database which collates data from multi-
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ple sources, such as IARC does for p53 mutations in tumors and in patients with Li-Fraumeni Syndrome.

To address this, we assembled SNV-generated missense TP53mutations in non-tumor tissues across 17

publications into one non-neoplastic TP53 mutation database, collating 3,541 missense mutation oc-

currences (3,135 of which are in the DNA binding domain, defined here as amino acids [100, 300]),

comparable in order-of-magnitude to other databases such as IARC R20 Europe (N=7,579) and TCGA

(N=2,764). We gathered mutations in the blood from eight datasets95–100, urothelium mutations in one

dataset101, bladder mutations in one dataset102, bronchial mutations in three datasets103–105, colorectal

mutations in three datasets106–108, gynecological mutations in seven datasets109–115, esophageal muta-

tions in nine datasets116–124, liver mutations in one dataset125, skin mutations in ten datasets126–134, and

four pan-tissue datasets135–138. In all cases we assured that only mutations which were identified as not

being cancer-derived were included.

For LFS mutations in IARC, we used the R20 version of the IARC germline database49. We excluded all

data which may have been contributed by the NCI, in order to avoid analyzing survival for the same

person twice. We only considered missense mutations.

Kaplan-Meier Curves. We examined the role of inferred mutant p53 functional, immune, and total

fitness on survival in both non-immunotherapy treated (TCGA, pan-cancer) and immune checkpoint-

blockade (ICB)-treated (non-small cell lung cancer, Memorial Sloan Kettering Cancer Center (MSKCC))

cohorts. For the IARCR20 Li-Fraumeni patientswith germline TP53mutations, weplotted a Kaplan-Meier

curve for first age of onset of a tumor. In all cases we estimated the mutant fitness using the inferred

tissue-specific concentration and the matched haplotype where possible. We used the matched mutant

and haplotype for defining the immune fitness for all cohorts except for the IARC R20 Li-Fraumeni cohort.

For the IARC Li-Fraumeni cohort, we infer the haplotype using TCGA haplotype distribution.

Description of statistical methods. We used Welch’s T-test and the Mann-Whitney U-test for categor-

ical tests. We used the Pearson and the Spearman correlations for continuous variables. For model

training and testing, we calculated the Kullback-Leibler divergence using the observed and predicted

mutation frequencies. The confidence intervals in SI Fig. 2 are 95% confidence intervals computed using

the normal approximation. The log-rank test is used for testing separation significance in Kaplan-Meier

curves.
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Supplementary Figures

Supplementary Figure 1 | Correlation of observed mutation frequencies to expected intrinsic back-

ground mutation frequencies.

Comparison of the expected background dinucleotide mutation frequencies and the observed mutation

frequencies of selected cancer driver genes in TCGA.
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Supplementary Figure 2 | Additional fitness model results on specific hotspots.

Distributions of predicted HLA-I haplotype-specific frequency values for each of the hotspot mutations

for the TCGA pan-cancer model. The distributions are computed across haplotypes of patients in TCGA,

where different HLA-I haplotypes correspond to different levels of immune selection. The HLA-I hap-

lotype averaged frequencies are marked with dashed red lines, the observed frequencies are marked

with vertical dashed green lines, and the horizontal dashed green lines correspond to 95% confidence

intervals of the observed mutation frequency.
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Supplementary Figure 3 | Heterogeneity and inferred mutant p53 concentration.

a,Distributionofwild-type p53 concentrationused for transforming RPPA values to concentration values.

b, Distribution of mutant p53 concentration across mutations and tissues. c-d, Distribution of MT and

total number of TP53 alleles across TCGA. e, Cancer cell fraction distribution of TP53 mutations. f-g,

Relationships between TP53 and MDM2 RNA and inferred p53 protein expression. h-i, Distribution of

mutant and fraction of mutant alleles across different TCGA tissues. j, Distribution of inferred mutant

p53 concentration across TCGA tissues.
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Supplementary Figure 4 | Relationships between haplotype populations.

Highly-correlated shared HLA-I frequencies in simulated and TCGA MHC-I haplotype populations.
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Supplementary Figure 5 | Relationships between inferredmutant p53 conservation, stability, andmu-

tation frequency in additional models.

a-b, Relationship between conservation, stability andmutation frequency. Most hotspots are conserved

and induce protein instability. The temperature used for the stability calculations is 310 K, approximately

human body temperature. c, Relationship between conservation and protein stability.

8



References

86. Thom, C. S., Dickson, C. F., Gell, D. A. & Weiss, M. J. Hemoglobin variants: biochemical properties

and clinical correlates. Cold Spring Harbor Perspectives in Medicine 3, a011858 (2013).

87. Kaufman, D. P., Khattar, J. & Lappin, S. L. Physiology, Fetal Hemoglobin. StatPearls [Internet] (2021).

88. Scriver, C. R. The PAH gene, phenylketonuria, and a paradigm shift. Human Mutation 28, 831–845

(2007).

89. Oldenburg, J. & El-Maarri, O. New insight into the molecular basis of hemophilia A. International

Journal of Hematology 83, 96–102 (2006).

90. Dixon, P. H. et al. Mutational analysis of PHEX gene in X-linked hypophosphatemia. The Journal of

Clinical Endocrinology & Metabolism 83, 3615–3623 (1998).

91. Assia Batzir, N. et al. Phenotypic expansion of POGZ-related intellectual disability syndrome (White-

Sutton syndrome). American Journal of Medical Genetics Part A 182, 38–52 (2020).

92. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 29, 308–311

(2001).

93. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence.

Nucleic Acids Research 46, D1062–D1067 (2018).

94. Consortium, T. U. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research

49, D480–D489 (2021).

95. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559,

400–404 (2018).

96. Desai, P. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nature

Medicine 24, 1015–1023 (2018).

97. Wong, T. N. et al. Role of TP53mutations in the origin and evolution of therapy-related acutemyeloid

leukaemia. Nature 518, 552–555 (2015).

98. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. New England

Journal of Medicine 371, 2488–2498 (2014).

99. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.

New England Journal of Medicine 371, 2477–2487 (2014).

100. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malig-

nancies. Nature Medicine 20, 1472–1478 (2014).

101. Li, R. et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium.

Science 370, 82–89 (2020).

102. Lawson, A. R. et al. Extensive heterogeneity in somatic mutation and selection in the human blad-

der. Science 370, 75–82 (2020).

103. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature

578, 266–272 (2020).

9



104. Franklin, W. A. et al. Widely dispersed p53 mutation in respiratory epithelium. a novel mechanism

for field carcinogenesis. The Journal of Clinical Investigation 100, 2133–2137 (1997).

105. Kadara, H. et al. Driver mutations in normal airway epithelium elucidate spatiotemporal resolution

of lung cancer. American Journal of Respiratory and Critical Care Medicine 200, 742–750 (2019).

106. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature

574, 532–537 (2019).

107. Olafsson, S. et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182, 672–684 (2020).

108. Matas, J. et al. Colorectal cancer is associated with the presence of cancer driver mutations in

normal colon. medRxiv (2021).

109. Salk, J. J. et al. Ultra-sensitive TP53 sequencing for cancer detection reveals progressive clonal

selection in normal tissue over a century of human lifespan. Cell Reports 28, 132–144 (2019).

110. Krimmel, J. D. et al. Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and

reveals somatic TP53 mutations in noncancerous tissues. Proceedings of the National Academy of

Sciences 113, 6005–6010 (2016).

111. Krimmel-Morrison, J. D. et al. Characterization of TP53mutations in Pap test DNA of women with

and without serous ovarian carcinoma. Gynecologic Oncology 156, 407–414 (2020).

112. Paracchini, L. et al. Detection of TP53 clonal variants in Papanicolaou test samples collected up

to 6 years prior to high-grade serous epithelial ovarian cancer diagnosis. JAMA Network Open 3,

e207566–e207566 (2020).

113. Jia, L. et al. Endometrial glandular dysplasia with frequent p53 gene mutation: a genetic evidence

supporting its precancer nature for endometrial serous carcinoma. Clinical Cancer Research 14,

2263–2269 (2008).

114. Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580,

640–646 (2020).

115. Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. New England

Journal of Medicine 376, 1835–1848 (2017).

116. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science

362, 911–917 (2018).

117. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers.

Nature 565, 312–317 (2019).

118. Prevo, L. J., Sanchez, C. A., Galipeau, P. C. & Reid, B. J. p53-mutant clones and field effects in

Barrett’s esophagus. Cancer Research 59, 4784–4787 (1999).

119. Mandard, A.-M., Hainaut, P. & Hollstein, M. Genetic steps in the development of squamous cell car-

cinoma of the esophagus. Mutation Research/Reviews in Mutation Research 462, 335–342 (2000).

120. Weaver, J. M. et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogen-

esis. Nature Genetics 46, 837–843 (2014).

121. Waridel, F. et al. Field cancerisation and polyclonal p53 mutation in the upper aero-digestive tract.

Oncogene 14, 163–169 (1997).

10



122. Ross-Innes, C. S. et al.Whole-genome sequencing provides new insights into the clonal architecture

of Barrett’s esophagus and esophageal adenocarcinoma. Nature Genetics 47, 1038–1046 (2015).

123. Stachler, M. D. et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nature

Genetics 47, 1047–1055 (2015).

124. Yuan, W. et al. Clonal evolution of esophageal squamous cell carcinoma from normal mucosa to

primary tumor and metastases. Carcinogenesis 40, 1445–1451 (2019).

125. Kim, S. K. et al. Comprehensive analysis of genetic aberrations linked to tumorigenesis in regener-

ative nodules of liver cirrhosis. Journal of Gastroenterology 54, 628–640 (2019).

126. Ling, G. et al. Persistent p53 mutations in single cells from normal human skin. The American

Journal of Pathology 159, 1247–1253 (2001).

127. Martincorena, I. et al. High burden and pervasive positive selection of somaticmutations in normal

human skin. Science 348, 880–886 (2015).

128. Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proceed-

ings of the National Academy of Sciences 93, 14025–14029 (1996).

129. Simons, B. D. Deep sequencing as a probe of normal stem cell fate and preneoplasia in human

epidermis. Proceedings of the National Academy of Sciences 113, 128–133 (2016).

130. Ren, Z.-P. et al. Benign clonal keratinocyte patches with p53 mutations show no genetic link to

synchronous squamous cell precancer or cancer in human skin. The American Journal of Pathology

150, 1791 (1997).

131. Bäckvall, H. et al. Mutation spectra of epidermal p53 clones adjacent to basal cell carcinoma and

squamous cell carcinoma. Experimental Dermatology 13, 643–650 (2004).

132. Hernando, B. et al. The effect of age on the acquisition and selection of cancer driver mutations in

sun-exposed normal skin. Annals of Oncology 32, 412–421 (2021).

133. Tang, J. et al. The genomic landscapes of individual melanocytes from human skin. Nature 586,

600–605 (2020).

134. Muradova, E. et al. Noninvasive assessment of epidermal genomic markers of UV exposure in skin.

Journal of Investigative Dermatology 141, 124–131 (2021).

135. Coorens, T. H. et al. Extensive phylogenies of humandevelopment inferred fromsomaticmutations.

Nature 597, 387–392 (2021).

136. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597,

381–386 (2021).

137. Xia, L. et al. Statistical analysis of mutant allele frequency level of circulating cell-free DNA and

blood cells in healthy individuals. Scientific Reports 7, 1–7 (2017).

138. Yizhak, K. et al. RNA sequence analysis revealsmacroscopic somatic clonal expansion across normal

tissues. Science 364 (2019).

11


	Fundamental immune–oncogenicity trade-offs define driver mutation fitness

