
Methods

Background mutation distribution

Predicted background mutation frequencies. We quantified the background mutation frequencies of

amino acid mutations across commonly mutated tumor suppressors and oncogenes with dinucleotide-

based mutation rates39. In brief, dinucleotide-based mutation rates were derived from a nonreversible

mutation model based on alignments between human and mouse non-coding DNA sequences from hu-

man chromosomes 10 and 21. In this mutational model, there are no external mutational pressures

such as those derived from UV radiation or toxins such as aflatoxin. Since we observed such strong

mutation distribution conservation across databases, we posited that although such mutational signa-

tures may be relevant, intrinsic mutational processes should be the main determinant of background

mutation rates. The internal CpG-associated C → T mutation signature is an order of magnitude more

common than the other types of mutations. For each nucleotide position across each gene, we assign

a mutational rate which is the average of the left and and right neighboring dinucleotide mutation rates

for dinucleotides containing the position in question, effectively assigning a trinucleotide mutation rate

for single nucleotide mutations. To derive the background mutation frequencies, we first assign each

nucleotide in the coding region of each gene an effective trinucleotide mutation rate. Next, for each

amino acid mutation we sum the mutation rates of all of its possible nucleotide mutations. Finally, we

normalize the rates to create a probability distribution.

Let ln and rn be the rates of mutation of a nucleotide n corresponding to its left and and right dinu-

cleotides. Further, let the set Nm correspond to all of the nucleotide mutations that result in amino

acid mutation m. We set the average rate of mutation for a nucleotide n as µn = (ln + rn)/2. We

set the background mutation frequency of an amino acid mutation by normalizing across all amino acid

mutation rates,

pm =

∑
n∈Nm

µn∑
m′

∑
n′∈Nm′

µn′
. (1)

We consider the full gene sequence with both introns and exons, which we downloaded from the Na-

tional Center for Biotechnology Information (NCBI)40. All nucleotides within the coding region of each

gene have a right and left neighboring nucleotide, i.e. there are no boundary cases. The amino acid al-

terations corresponding to each nucleotidemutationwere determinedwith the SnpEff software package

(Version 4.3)41.
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Definition of conservation and neoantigen presentation

Amino acid conservation. We defined the conservation of a driver gene mutant as the conservation

of the wild-type amino acid with homologs to the driver gene protein. Amino acids which are conserved

may play a role in function and protein structure, as well as protein-protein binding. Mutations in con-

served amino acids may contribute to the cancer phenotype more so than not-conserved amino acids.

In brief, we infer conservation via evolutionary rates for each amino acid across commonly mutated tu-

mor suppressors and oncogenes in cancer similar to the default parameters of the ConSurf server42,43.

For each protein sequence (except p53), we find homologous sequences available within the Uniref90

database44,45 using the phmmer software (HMMER Version 3.3.2, hmmer.org) with an E-value cutoff of

0.0001. We then select 150 equally-spaced homologous Uniref90 protein sequences. Next, we clus-

ter the sequences using cdhit46,47 with a sequence identity threshold of 0.95. We then align the 150

homologous sequences with the original protein sequence using the MAFFT software (Version 7.47548).

Finally, we run the rate4site software (Version 3.0.049) to assign a standardized evolutionary rate to

each amino acid of the protein sequence. For p53, we used 33 pre-determined homologous protein

sequences across species used in previous work3 using the ConSurf server with default parameters. The

evolutionary rates are defined so that the average of them is zero and the standard deviation is one.

Lower evolutionary rates indicate increased conservation.

We determined the degree to which hotspots were in conserved amino acids, with respect to the other

non-hotspot mutations within the same gene, using the two-sided Welch’s T-test.

Neoantigen presentation. We define the neoantigen presentation of a driver gene mutant as a func-

tion of the neoepitopes derived from themutation and the germlineMHC-I haplotype in the personwith

the cancer. We infer dissociation constantsKm
I (p, h) in nM units from computationally-derived IC50 val-

ues calculated fromNetMHC 3.4 and NetMHC 4.050–53.We estimated the effectivemutant peptideMHC-I

affinities for all missense mutants by computing:

1

Keff
m
I

=

〈
max
p∈P
h∈H

1

Km
I (p, h)

〉
H∈DH

, (2)

where p is a peptide, Pm is the set of mutated peptides around mutationm, h is an HLA-I within the set

H of germline HLA-I,Km
I (p, h) is the predicted dissociation constant between a mutant peptide and an

HLA-I molecule, and DH is a population of MHC-I haplotypes. Here we consider all mutated peptides

of length nine, the most common length presented51. Typically, |Pm| = 9 and |H| = 6; exceptions may

occur if the mutation occurs close to the edges of the protein or if there are additional mutations which

reduceMHC-I expression. The peptides are derived from canonical protein transcripts as determined by

UniProt44. The ”reduced neoantigen presentation” is computed as a two-sided Welch’s T-test between

the hotspot mutations’ versus the non-hotspot mutations’ effectivemutant peptideMHC-I affinities (Eq.

2) for a particular driver gene.
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Inference of apparent dimer dissociation constants

In order to estimate the functional capacity of all possible p53 missense mutants, we leveraged a trans-

activation yeast assay dataset5. In that work, all possible p53 missense mutations derived from single

nucleotide mutations were mono-alleleically expressed in yeast cells in which eight target promoter se-

quences were tagged with either enhanced green fluorescent protein (EGFP) on the p21WAF1 target se-

quence or Ds-Red on the other seven target genes (MDM2, BAX, GADD45, h1433s, p53AIP1, NOXA, and

p53R2). The p21WAF1 and MDM2 sequences are human-derived, and the others were synthetic with

p53 response elements. Fluorescence intensity was measured for each mutant. The average relative

fluorescence intensity of each p53 mutant was reported with respect to wild-type p53.

Under such conditions, it is assumed that all of the mutant and wild-type p53 proteins are expressed at

equally-low concentration. Therefore, we expect the relative transactivation values reported are largely

driven by the different affinities of each mutant to the target DNA sequence. p53 monomers have a

tendency to oligomerize as dimers or tetramers23. p53 primarily transactivates target DNA in a highly-

cooperative manner as a tetramer, i.e. a “dimer of dimers”54. which may sequentially bind the same

promoter sequence. The affinity of the second dimer is typically much larger than the affinity of the

first dimer due to cooperativity. The “effective dimer dissociation constant” is equal to the geometric

mean of the two dimer dissociation constants. The effective dimer dissociation constants of truncated

wild-type p53 (DNA-binding domain and oligomerization domain, amino acids 94-360) to well-known

targets of p53 transactivation have also been quantified in vitro55. For promoter sites with multiple

binding sites, we take the geometric mean of the affinities as the effective affinity. Additionally, it has

been shown that the N- and C- termini of p53 regulate DNA binding, as they non-specifically bind to DNA

and reduce the effective affinity of the dimer complex to a specific sequence, with an approximately 10-

fold reduction in specific binding affinity both in vitro and in vivo56–58. Furthermore, the termini contain

residues that are targets of post-translational modification such as acetylation59 which may or may not

be post-translationally modified. Therefore, we correct for the full-sequence dissociation constant by

multiplying the reported dissociation constants by a factor of 10 in order to correct for the termini.

The likelihood of p53 binding a target sequence will involve both the p53 concentration and the amino

acid sequence-based binding affinity. We interpret the probability that p53 binds to a target DNA pro-

moter sequence via a Hill function with cooperativity of two54:

Pm
DNA =

(LREF)
2

(LREF)2 + (Km
DNA)

2
, (3)

where Pm
DNA is the probability of a mutant m binding to target DNA, LREF is the concentration of p53

dimer in the yeast assay, andKm
DNA is the effective dimer dissociation constant of binding a DNA promoter

sequence for mutantm.

For each missense mutation, the yeast assays report an averaged relative transactivation value for each

target promoter sequence, which we define as:

Tm
g =

Fm
g

Fwt
g

, (4)

whereTm
g is the ratio of themutant fluorescenceFm

g over thewild-type fluorescenceFwt
g for a particular

target gene promoter sequence g and mutantm.
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We assume the fluorescence value is in the linear range of the binding curve, so that the fluorescence

of wild-type or mutant p53 binding DNA is equally proportional to its probability of binding DNA. The

relative transactivation value can then be estimated as:

Tm
g =

(LREF)
2 + (Kwt

Tg
)2

(LREF)2 + (Km
Tg
)2

, (5)

whereKwt
Tg

andKm
Tg

are the effective dimer dissociation constants for the wild-type homotetramer and

the mutant homotetramer and a specific DNA target sequence g, respectively. Therefore, we can trans-
form the mutant-specific relative transactivation Tm

g to the mutant-specific dissociation constant Km
Tg

via:

Km
Tg

=

√
(Kwt

Tg
)2 + (LREF)2(1− Tm

g )

Tm
g

'
Kwt

Tg√
Tm
g

, (6)

where the final approximation arises since the dissociation constants tend to be of order ≥ 102 nM, as

the ratio of flourescence values is bounded in the experimental data by 0 . Tm
g . 4.6. We choose a

reference concentration for a p53 dimer,LREF, of approximately 1 nM that is consistent with a previously-

defined low-concentration regime of p53 in yeast60. To account for non-specific binding, we add an offset

of 9× 10−4, which is an order of magnitude lower than the lowest non-zero transactivation value in the

experiment (Tm
g = 0.001).

Note there is a non-linear relationship between the two variables, with lower Tm
g values corresponding

to higher Km
Tg

values. We define the functional category of p53 mutants using the IARC definitions of

Tg
61.

The transcriptional activity Tm
A of a TP53 mutant is defined as the median of the association constants

derived from Eq. 6 across genetic targets:

Tm
A = med

g∈G

[
1

Km
Tg

]
. (7)
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Inference of tissue- and mutant-specific concentrations

Under normal conditions, wild-type p53 is maintained at low concentrations and has a half-life of ap-

proximately 20 minutes largely via a negative-feedback loop with MDM222. Under conditions of stress,

wild-type concentration typically rises, increasing transactivation of target genes responsible for cellu-

lar stress response. Missense-derived mutant p53 concentration tends to increase to non-typically high

levels that are both tissue- and mutant-specific, while nonsense mutations tend to strongly reduce p53

concentration12-14.

The fitness model strongly depends on the mutant concentration, as it links both the functional and im-

mune components via a biophysical binding model. However, quantitative concentration information

for most p53 mutants is unavailable. To address this, we aimed to infer each missense mutant’s con-

centration. p53 concentration is directly regulated by MDM2 and p53 mutants alter the ability for the

transcription factor to bind promoter sites on DNA, such as the MDM2 promoter site. From this, we

expect that mutants which retainMDM2 promoter DNA capacity will induce wild-type p53 comparable

levels ofMDM2,whichwill in turn constrain p53 concentration towild-type levels. Mutantswhich greatly

reduce p53 binding ofMDM2 promoter DNA will reduce the amount of circulating MDM2, thus permit-

ting a higher concentration of mutant p53. We leverage this principle and apply it to a TCGA proteomics

dataset to infer tissue- and mutant-specific concentrations utilizing inferred mutant DNA-binding affini-

ties from previous work in yeast5. In doing so we quantify the role of the p53-MDM2 negative feedback

loop in a large dataset such as TCGA. We describe the methods in detail below.

Quantifyingmutant p53 concentrations. For a particular sample, the concentration of p53will depend

on the tissue type. It will also depend on themutational status and the number of mutant/wild-type p53

alleles available. It will also strongly depend on tumor heterogeneity, such as the clonal status of themu-

tation and the purity of the sample. We aimed to quantify the distribution of mutant p53 concentration

using TCGA, where the Reverse-Phase Protein Assay (RPPA) has been used to quantify relative protein

expression in TCGA samples. We downloaded Level 4 RPPA data (TCGA-PANCAN32-L4) from The Cancer

Proteome Atlas (TCPA)62,63. In a manner similar to a Western blot, protein expression is inferred via flu-

orescence from a tagged antibody. To account for batch effects, the inferred log2 concentration values

are median-normalized by subtracting each sample’s value with twomedians – the median log2 concen-

tration for that protein across all samples and the median log2 concentration of all of the proteins in one

sample. The value reported is proportional to the log2 of the true concentration in the sample. If we

define RPPA reported values asR, the subtracted constants as c and assume that c is distributed around
a central value, and the protein concentration as L, then R = log2 L − c or L = C × 2R, where C is

a constant which provides the appropriate units. We show the values for C, and by extension, c, are
distributed around a central value for wild-type p53.

Multiple efforts have tried to quantifywild-type p53 concentration in cells under different conditions22,23,

typically converging on concentrations on the order of 102 to 103 nM across different cell types. In MCF-

7 wild-type p53 breast cancer cell lines, the average concentration is estimated at approximately 150

nM22. We leverage this value to define the constant C, with appropriate nanomolar units (nM) using

TCGA wild-type breast cancer (BRCA) p53 RPPA data. An average concentration of 150 nM of p53 in

MCF-7 breast cancer cells with two wild-type p53 alleles means that we expect each p53 allele to con-

tribute approximately 75 nM. In order to find the equivalent protein expression in the RPPA dataset, we

examined the distribution of 2R per allele in p53 wild-type breast cancer cells (BRCA) in TCGA. We se-

lected samples for which there were no p53mutations nor amplifications/deletions. In general, for each

p53-mutated TCGA sample, when possible, we: (1) estimate the purity of the sample, (2) estimate the

5



clonal status of the p53 mutation in the tumor, (3) infer the number of p53 alleles, and (4) distinguish

which p53 alleles are wild-type and mutant. This methodology is described below.

Estimating tumor heterogeneity. The p53 RPPA value for a mutant p53 tumor sample in TCGA is not

entirely due to the mutated p53. The p53 RPPA value of a tumor sample may be decomposed as:

2RS = 2Rwt [CN(1− p) + CTp(1− f) + (CT −Nm)pf ] + 2Rm [Nmpf ] , (8)

whereRS is the sample p53 RPPA value,Rwt is the wild-type p53 component of the sample RPPA,RM is

themutant p53 component of the sample RPPA,CN is the expected p53 ploidy in typical, non-cancerous

cells, p is the purity of the sample, f is the cancer cell fraction, CT is the number of p53 alleles in tumor

cells, andNm is the number of mutant alleles in a p53-mutant cell. The components may be justified as

follows:

• WT p53 alleles from the normal portion of the sample: CN(1− p)

• WT p53 alleles from the tumor portion of the sample without p53 mutations: CTp(1− f)

• WT p53 alleles from the tumor portion of the sample with p53 mutations: (CT −Nm)pf

• MT p53 alleles from the tumor portion of sample with p53 mutations: Nmpf

subject to the following constraints: CN = 2 (typical p53 ploidy), CT ≥ 0, Nm ≥ 0, 0 ≤ Nm ≤ CT ,

0 ≤ p ≤ 1, and 0 ≤ f ≤ 1. For example, if CT = 2 andNm = 1, then the cell is heterozygous in mutant

p53, and ifNm = 2, then it is homozygous in mutant p53.

The purity of TCGA samples was quantifiedwith ASCAT64 and downloaded from COSMIC65. Copy number

variation data for TCGA samples was downloaded from the National Cancer Institute’s Genomic Data

Commons repository66. For processing of p53 copy number variation data, we averaged all p53 copy

number values, after converting from segmentation values (CT = 2× 2seg, where seg is the segmenta-

tion value), overlapping with the TP53 gene region (defined as chr17 : [7661779, 7687550], reference

genome GRCh38). Neither the cancer cell fraction nor the zygosity of p53 mutants in TCGA have been

previously quantified, whichwe compute in the next section. Knowing these quantities allows us to solve

for 2RM , a value that is proportional to the concentration of one mutant p53 allele.

Estimating cancer cell fraction f and the number of mutant alleles Nm. Sequencing of DNA from

tumor samples provides the number of reads that cover amutation. It indicates the number of reference

and alternate alleles, given a reference genome. If we define the number of reference allele reads asRr,

the number of alternate allele reads to Ra, and the variant allele fraction as V , we have:

V =
Ra

Rr +Ra

, (9)

where 0 ≤ V ≤ 1. The variant allele fractions for p53 mutations in TCGA were downloaded from

the Genomic Data Commons repository,66 the values of which were averaged across mutation callers.

Theoretically, the variant allele frequency can also be defined as67–70:

V =
pfNm

CN(1− p) + CTp
. (10)

We have estimates for all variables except f andNM . The term w = fNM is defined as the multiplicity.

The probability distribution of the number of reads that align to a mutation may be interpreted in terms
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of a binomial distribution, where Ra is the number of successes and Rr + Ra is the number of trials.

We find the value of w that maximizes the posterior distribution. We treat f and Nm as independent.

We calculate f by computing the value that maximizes the likelihood of getting a sample variant allele

frequency according to the following procedure:

1. For each sample in TCGA we obtain a value of Rr, Ra, and V for a p53 mutant.

2. We vary f from 0.01 to 1 for 100 evenly-spaced values and calculate V across the variations of f .

3. We calculate the probability of gettingRa successes givenRr +Ra trials given a probability V for

each varied f . p = B(Rr +Ra, V ) =
(
Rr+Ra

Ra

)
V Ra(1− V )Rr .

4. We then normalize the probability distribution and find the cancer cell fraction that maximizes the

binomial probability. This is fopt.

5. Finally, we solve forNm using the actual V from TCGA sample and round it to an integer. IfNm >
CT , then we setNm = CT .

Having these components for TCGA tumors, we can estimate the heterozygosity of p53 mutations, the

concentration of themutant alleles in a sample, and the typical concentrations of different p53mutants.

Furthermore, we can quantify the MDM2 and p53 negative-feedback loop from such data as a check for

consistency. There is no RPPA information available for the MDM2 protein, but there is RNA expression

data available. As MDM2 is transactivated by p53, we expect MDM2 RNA expression (quantified in

Transcripts Per Million (TPM)) to be proportional to MDM2 concentration, and negatively related to

p53 concentration. Similarly, we expect the p53 concentration to be positively correlated with p53 RNA

expression as a check on self-consistency.

Computing the effective p53 MDM2 promoter affinity in TCGA samples. By normalizing by the num-

ber of mutant p53 alleles, the methods outlined above allow us to infer the per-allele mutant concen-

tration in a particular sample. Next, we predicted the level of MDM2 transactivation within a cancer cell

based on the estimated distribution of mutant and wild-type p53 alleles. Samples in TCGA may contain

different distributions of the number of MT and WT alleles, as some may be heterozygous in a p53 mu-

tation, others may be homozygous, and others may have deletions/amplifications in the TP53 gene. A

sample with bothwild-type andmutant TP53 alleles will not only contain fully mutant and fully wild-type

tetramers, but to a larger extentwill also contain a distribution of hybridwild-type andmutant tetramers.

Previous work has attempted to quantify the effect that mixed mutant and wild-type tetramers have on

binding affinity, suggesting that hybrid wild-type andmutant p53 tetramers are not fully inactivated, tak-

ing approximately three mutant p53 monomer subunits to truly render a p53 tetramer non-functional

for certain mutations71.

The dissociation constant used in the cooperative Hill function for the functional term is the apparent

dimer dissociation constant, defined as the geometric mean of the sequential dissociation constants of

two dimers to same promoter region, where the first is large and the second is small54. We can infer

the wild-type dimer dissociation constant from previous work55, and we earlier estimated the dimer

dissociation constant for a fully-mutant p53 tetramer. In order to estimate the effective dissociation

constants associated with mixed wild-type/mutant p53 tetramers, we assume that an equally-mixed

tetramer composed of one WT:WT dimer and one MT:MT dimer must have the same binding efficiency

as one composed of two WT:MT dimers. The dimer dissociation constant of an equally-mixed tetramer

is assumed to beKMT,WT

T =
√

K2WT
T ×K2MT

T . By similar logic, the dimer dissociation constant of a 3 WT
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: 1 MT mixed tetramer is assumed to be

√
K2WT

T ×KMT,WT

T , and the dimer dissociation constant of a 1

WT : 3 MT mixed tetramer is assumed to be

√
K2MT

T ×KMT,WT

T .

The probability of a particular tetramer species existing will depend on the number of WT and MT TP53

alleles in a sample. If we define the total number of TP53 alleles asNTot = CN+CT , the number of TP53

wild-type alleles asCN , and the number of TP53mutant alleles asCT , then the probability of a wild-type

monomer incorporated into a tetramer is qw = CN/NTot, and the corresponding mutant probability is

qm = CT/NTot.

The probability of a tetramer λ is then:

Pλ = P (X,Y = 4−X) =

(
NTot

X

)
qXw qYm , (11)

whereX is the number ofwild-typemonomer units in the tetramer,Y is the number ofmutantmonomer

units in the tetramer, andX + Y = 4 for all tetramers λ ∈ Λ.

Wedefine the effective association constant ofMDM2promoter as the expectation value across tetramer

species, weighted by their probability of being formed in a cell:

〈
1

KT

〉
Λ

=
∑
λ∈Λ

Pλ
1

Kλ
T

=

(
NTot

X

)
qXw qYm

1

Kλ
T

. (12)

Nowwe can determine if there are any relationships between the effectiveMDM2 promoter association

constant and the per-allele corrected concentration across TCGA samples with available data. In pan-

cancer and tissue-specific settings, we plot all of the uniqueMDM2 promoter association constants ver-

sus themedian of the per-allele concentrations corresponding to that association constant to control for

noise. We fit a line to the data using a least-squares regression, which defines a quantitative expression

for the relationship between normalized mutant p53 concentration and expected MDM2 transactiva-

tion by p53 across missense mutants. The predominantly negative relationships between the expected

MDM2 association constant and the p53 concentration provide additional evidence for the p53-MDM2

negative feedback loop in TCGA and allow us to estimate tissue- and mutant-specific concentrations

based on the regression line for mutations with unavailable concentration data.

In all cases, the relationship between the effectiveMDM2 promoter association constant and p53 con-

centration is given by the expression:

log2 L
m
p = a×

〈
1

KT

〉
Λ

+ b , (13)

where log2 L
m
p is the log2 of the per-allele concentration ofmutant p53monomers, 〈 1

KT
〉Λ is the effective

association constant of MDM2 promoter across theΛ tetramers, and a and b are the slope and intercept
that are being fit. We present fitness models in both the pan-cancer setting and a tissue specific model

for colorectal cancer. In the pan-cancer setting, a = −133.06 and b = 8.68.
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Free fitness model

Fitness model components. We propose a minimal biophysical model of the fitness advantage a tu-

mour acquires from a TP53 mutation in order to explain the observed population mutation frequency

distribution. We expect higher fitness TP53mutations aremore likely to be fixed in tumors and therefore

will have a higher observed mutation frequency, and the opposite will occur for less fit mutations.

The relative fitness of a mutation m for a patient with HLA haplotypes H = [A1, A2, B1, B2, C1, C2] is
defined by the following fitness function:

fm(H) = σTTm + σIIm(H) ≡ fT
m + f I

m(H) , (14)

where the term σTTm defines the “functional fitness”, fT
m (the effect a TP53 mutation has on mutant

p53 transcription factor-associated binding activity), and σIIm(H) defines the “immune fitness”, f I
m(H)

(corresponding to the immunogenicity of the mutant peptides generated by a TP53 mutation, which

depends on the set of HLA-I molecules in haplotypeH). The parameters {σT , σI} assign relative weights
to the fitness components and set the overall scale of the fitness amplitude. They are optimized to fit

the training set in our model.

We define Tm as themedian probability that amutant p53 homotetramer does not bind target promoter

sites in DNA across the eight target genes (WAF1,MDM2, BAX, h1433s,AIP1,GADD45,NOXA, and P53R2)

for which we have data available from previous work defining mutant p53 binding in a quantitative yeast

assay5. Tm is modeled by a cooperative Hill function with a cooperativity coefficient of two54,

Tm =
(Km

T )2

(Lm
D)

2 + (Km
T )2

, (15)

where Lm
D is the concentration of a mutant p53 homodimer for mutationm, which is equivalent to half

of the total mutant p53 monomer concentration, and Km
T is the median apparent dimer dissociation

constant for binding target DNA across the eight target genes studied for mutationm. The methods for

computation ofKm
T and Lm

D are described in detail in the subsequent sections.

We define Im(H) as the geometric mean of the predicted probabilities of all mutant peptides binding

class-I MHC molecules for mutationm, via a non-cooperative Hill function,

Im(H) =

( ∏
p∈Pm, h∈H

Lm
p

Lm
p +Km

I (p, h)

) 1
|Pm|×|H|

, (16)

where p is a peptide,Pm is the set ofmutated peptides aroundmutationm, h is an HLA-I within the setH
of germline HLA-I,Lm

p is the concentration of the peptide (which is also the p53monomer concentration

and twice the p53 dimer concentration), andKm
I (p, h) is the predicted dissociation constant between a

mutant peptide and an HLA-I molecule.

We infer the concentrations Lm
p and Lm

D = Lm
p /2 from TCGA in nanomolar (nM) units. We also con-

sider alternative fitness models with additional components, which we discuss in the section on model

performance and comparison.

Let mutation m occur in a patient with MHC-I haplotype H . The relative contribution of a mutation to

the growth of the tumor clone with this mutation is described by exp [(fwt + fm(H;σT , σI))], where
fwt is the background growth rate of the tumor clone without the mutation and fm is the fitness effect
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of mutation m. Given all possible mutations and their background frequencies, pm, as determined by

the background mutation rates, the model-predicted frequency of an observed mutationm within the

haplotypeH is given by

x̂m(H) = Z−1
H pm exp [fm(H)] = Z−1

H pm exp
[
fT
m + f I

m(H)
]
, (17)

whereZH =
∑

m pm exp [fm(H)]. Sincewe consider the relative frequencies ofmutations, the constant

wildtype growth term fwt factors out from the above expression. To incorporate the effect of background

mutations on equal footing with the fitness terms we can define the “free fitness” of a mutation, Fm, as

Fm ≡ log(pm) + fT
m + f I

m(H). (18)

Fm, now a free fitness function, serves an analogous purpose to a negative free energy in statistical

physics. The free fitness of a mutation may be conveniently represented as a point, Pm, in a phenotypic

space:

Pm = (log(pm) + fT
m, f

I
m(H)). (19)

Such a representation of the free fitness landscape therefore serves as a genotype-to-phenotype map-

ping. In the text we refer to log(pm) + fT
m as an “intrinsic fitness”, since it refers to processes intrinsic to

the cancer cell, and f I
m(H) as an “extrinsic fitness”, since it refers to effects on the cell from its environ-

ment.

The population level predictions for frequencies of mutations are computed as the expectation value

over the database of haplotypesDH representative of a population,

x̂m = 〈x̂m(H)〉H∈DH
. (20)

The mutation frequency predictions depend on the fitness model parameters: x̂m ≡ x̂m(σT , σI). Each
mutation occurs within a TP53 codon. We define the codon mutation frequency as the sum of the mis-

sense mutation frequencies that alter a codon’s amino acid (i.e. all missense mutations within a codon).

For instance, the codon frequency at position R175 is the sum of all individual missensemutations which

alter the arginine corresponding to codon 175. This step is done as an additional check on the predictive

power of the fitness model, as the p53 mutation hotspots are clustered in a set of well-defined hotspot

codons.

The relative fitness of a TP53mutation defines whether or not its population frequency increases or de-

creases with respect to the background mutation frequency. Higher fitness mutations will increase their

population frequency with respect to their background mutation frequency, and lower fitness mutants

will have a lower population frequency with respect to their backgroundmutation frequency. We define

the predicted ratio Ŵm = x̂m/pm as the relative increase or decrease of the predicted frequency with

respect to the background mutation frequency for mutation m, and the posterior ratio Wm = xm/pm
as the relative increase or decrease of the observed mutation frequency with respect to the background

mutation frequency for mutationm. These terms are the Wrightian fitness of a mutation – ratios which

are > 1 indicate population frequency growth, and ratios which are < 1 indicate population frequency

decrease.

Haplotype distributions. We train the weights for our model on the missense p53 mutation frequen-

cies andhaplotypes availablewithin TCGA72. Our training cohortwas chosen since these are non-simulated

haplotypes with full MHC-I linkage information. There are a total of 8,507 haplotypes which corre-

spond to 6,379 unique haplotypes. For testing the relevance of the sampled haplotype space on the
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fitness model predictions, we used marginal haplotype frequencies from the National Marrow Donor

Program (NMDP) database corresponding to European Caucasian-Americans, which provides informa-

tion on 1,242,890 donors73,74. Within this database, there is no extensive haplotype information but

there is extensive individual HLA population frequency information.

We assume the MHC-I haplotype will consist of two each of HLA-A, HLA-B, and HLA-C for a total of 6

MHC-I genes. We assume a multinomial distribution with an independent frequency model without

MHC-I linkage for each HLA-A, HLA-B, and HLA-C gene. We constructed all possible haplotypes using all

available MHC-I within the database. The number of heterozygous HLA-I genes is given by NH , where

NH ∈ [0, 1, 2, 3]. The probability of a haplotypeH = [A1, A2, B1, B2, C1, C2] is given by:

p(H) = 2NH

∏
h∈H

ph , (21)

where ph corresponds to the marginal probability of HLA-I h within haplotypeH .

We sort the haplotype probabilities and take a subset of the most frequent haplotypes. We compute

the expected mutation frequency for each haplotype and calculate a weighted average across the pop-

ulation, with weights given by the expected haplotype probabilities, resulting in the expected mutation

population frequency according to Eq. 20.

Pareto optimality. We compute the Pareto front for our data as follows: we query each mutation m
and its corresponding point Pm in phenotypic space and compare it to every other mutation n and its

corresponding phenotype point Pn. A mutation not on the Pareto front is one for which there exists a

point in phenotypic space for which one feature is improved while the other is at least equal.

Specifically, for each pair of mutations m and n we consider the two differences between their coordi-

nates in the phenotypic space:

(log pm + fT
m)− (log pn + fT

n ) = log

(
pm
pn

)
+ (fT

m − fT
n ) = d1 , (22)

and

f I
m − f I

n = d2 . (23)

For a mutation m, if d1 or d2 are greater or equal to ε = 0.1 for all other mutations in the pheno-

typic space, then point Pm is on the Pareto front. To illustrate the Pareto front, we draw a convex hull

containing the Pareto front coordinate set using the shapely Python package smoothed using the fol-

lowing parameters: pareto_front.buffer(10, join_style=1, mitre_limit=50).buffer(-10,
join_style=1, mitre_limit=50).

We then truncate the the convex hull based on the maximum of the intrinsic fitness, log pmi
+ fT

mi
, and

the maximum of the immune fitness, f I
mi
, and do not close the convex hull, allowing the Pareto front to

be delimited by the Pareto optimal coordinate set. To obtain the optimal solution on the Pareto front,

we calculate the point on the Pareto front with themaximum free fitness by discretizing the Pareto front

into 10,000 equally spaced points and calculating the free fitness value for each point.

11



Model training

Model fitting. To optimize the fitnessmodel parameters,Θ = {σT , σI}, weminimize the cross entropy

between the observed mutation frequencies xm and the frequencies predicted by the model, x̂m,

H(xm, x̂m, ; Θ) = −
∑
m

xm log x̂m(Θ) . (24)

Minimization of the cross-entropy is equivalent to the minimization of the Kullback-Leibler divergence

between the distributions of the observed and predicted frequencies and to maximization of the like-

lihood of the mutation data under the given fitness model. Each unique observed mutation m in the

database Dm is predicted to occur with probability x̂m(Θ). The data log-likelihood under our model is

given by:

L(Dm|Θ) =
∑

m∈Dm

log x̂m(Θ) = −nH(Θ) , (25)

where n = |Dm| is the size of the database of p53 mutations. We minimize the cross entropy us-

ing the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) with the analytically-

computed gradient of the cross-entropy. We find that the optimized parameters for pan-cancer TCGA

are σ∗
T = 4.152 and σ∗

I = −42.212.

Alternative models. We compared our minimal model in Eq. 14 to alternative models of varying com-

plexity. To assess the predictive power of individual components, we performedmodel decompositions,

where only a subset of components was used. We also examined more complex models which include

other phenotypes of p53.

Models without selection. Thesemodels account for themutation rates only and assume no selection on

themutations (fm = 0). We consider a uniformmodel and amodel of dinucleotide-specific frequencies.

The predicted frequencies of mutations will therefore reflect the background distributions:

x̂m = 1/N , (26)

x̂m = pm . (27)

Partial models. In these models the background distribution of mutations is assumed to follow the

dinucleotide-based estimation. We consider decompositions of the minimal fitness model into indi-

vidual components:

fm = σTTm , (28)

fm(H) = σIIm(H) . (29)

Extended functional models. For extended models, we included all target genes in setG (WAF1,MDM2,

BAX, h1433s, AIP1, GADD45, NOXA, and P53R2) for evaluating the transactivation component of the

fitness model:

fm =
∑
g∈G

σg
TT

g
m , (30)

fm(H) =
∑
g∈G

σg
TT

g
m + σIIm(H) . (31)
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For each additional model, we retrained the parameters using COSMIC- and TCGA-derived mutations as

well as TCGA-derived haplotypes.

Protein conservation and stability.

We also evaluated an additional stability term for each p53 mutant. Previous work has suggested differ-

ent mutants have different temperature-dependent stabilities that do not necessarily reflect functional

binding of target DNA75. The stability of the protein is quantified as the change in free energy between

the natural and denatured state. If the change in free energy of folding is zero, then at equilibrium

there will be an equal amount of folded and unfolded protein, as both the unfolded and folded states

are equally likely. The fraction of stable folded protein, which is equivalent to the probability that the

protein is folded properly (defined as Sm) is defined as:

Sm =
1

1 + exp−∆G/RT
, (32)

where R is the gas constant, T is the temperature in Kelvin, and∆G is the change in free energy.

Previous work experimentally quantified ∆G for a number of mutants75. Structural algorithms have

been developed that are highly correlated to the experimental values previously reported76. In order to

quantify the changes in free energy for all possiblemutants, we use values from the PBSA algorithm, as it

had the highest linear correlation to experimental values76. The PBSA algorithmonly reports on the DNA-

binding domain of p53 (here defined as amino acids between 96 to 289) as available crystal structures

for p53 largely report on this region. For the other mutants outside of the defined DNA-binding domain,

we assume they do not alter protein stability, and are assigned ∆G = 0, which is consistent with the

fact that these regions are largely disordered and difficult to structurally characterize77.

The PBSA algorithm reports∆∆G, which is defined as76:

∆∆G = ∆GM
N−D −∆GW

N−D , (33)

where∆GM
N−D is the change in free energy for the mutant, and∆GW

N−D is the change in free energy for

the wild-type, both for the natured-to-denatured direction. The value of∆GW
N−D has been reported by

extrapolation to be approximately -3 kcal/mol75. We then solve for∆GM
N−D for themutant change in free

energy across mutants.

Models across commonly mutated tumor suppressors and oncogenes. For all considered commonly

mutated tumor suppressors and oncogenes, we considered models of varying complexity. We consid-

ered models with only a dinucleotide background, as in Eq. 27. Additionally, defining the conservation

term as σCCm, we also considered models with only conservation predictions over a dinucleotide back-

ground,

fm = σCCm , (34)

only in silico immunogenicity predictions (as in Eq. 2) over a dinucleotide background,

fm = σI
1

Keff
m
I

, (35)
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and combined models with both conservation and immunogenicity components over a dinucleotide

background,

fm = σCCm + σI
1

Keff
m
I

, (36)

For KRAS, there is additional function information available for seven hotspot mutants (G12A/C/D/R/V,

G13D, and Q61L)25. We included the additional functional information for just these mutants as an

additional level of complexity for modeling KRAS mutations,

fm = σCCm +
∑
q∈Q

σq
FF

q
m + σI

1

Keff
m
I

, (37)

where the term
∑

q∈Q σq
FF

q
m considers functional phenotypes F q within the set of Q functional phe-

notypes, which are intrinsic and extrinsically-assisted GTPase activity, as well as downstream binding to

RAF effector protein. Notably, of these functional phenotypes for KRAS only the downstream binding to

RAF effector was predictive of the KRASmutation frequencies.

The structural term σSSm is only available for p53. For p53, we consider fitness models that are ex-

tended by the protein conservation and stability terms, across two versions of the functional component,

namely:

fm(H) = σTTm + σIIm(H) + σCCm , (38)

fm(H) =
∑
g∈G

σg
TT

g
m + σIIm(H) + σCCm , (39)

for conservation and

fm(H) = σTTm + σIIm(H) + σSSm , (40)

fm(H) =
∑
g∈G

σg
TT

g
m + σIIm(H) + σSSm , (41)

for stability.

Predictive performance ofmodels. For eachmodel, we train parameters bymaximizing data likelihood

(Eq. 25), and compare the performance of the models in predicting the observed mutation frequencies

in tumors (Supplementary Table 2) as well as non-tumor mutated cells for p53 (Supplementary Table

5). To compare between the models M of different complexity, which corresponds to the number of

parameters, we utilize both the Bayesian Information Criterion (BIC) and the Aikake Information Criterion

(AIC):

AIC = 2(k − ln(L̂(Dm|Θ∗
M))), BIC = k ln(n)− 2 ln(L̂(Dm|Θ∗

M) , (42)

where k is the number of parameters, n is the number of data points being fit, and Θ∗
M is the set of

parameters that maximizes the likelihood for modelM (Eq. 25). BIC has a higher penalty for the num-

ber of parameters in a model for our case where there are many mutation frequency data points being

fit. Each version of the fitness model is assigned an AIC and a BIC value, which depends on the number
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of parameters, the number of datapoints being fit (for BIC), and how well the data is fit. Model selec-

tion can be further justified by calculating the relative likelihood of models with respect to a reference

criterion value corresponding to a reference model. We justify model selection by calculating the rel-

ative likelihood of models with respect to the two-parameter reference model (Eq. 14) , which can be

expressed as:

rM = exp[(CREF − CM)/2] , (43)

where rM is the relative likelihood value corresponding to model M , CM is the criterion value corre-

sponding to model M , and CREF is the criterion value corresponding to the reference model. The cri-

terion value can either be from AIC or BIC. The relative likelihood value quantifies how likely model M
minimizes information loss with respect to the referencemodel. We evaluate rM for all alternativemod-

els with respect to our two-component minimal fitness model, (Eq. 14), which is used as the reference

model throughout the manuscript.

We additionally compute the rank (Spearman) and linear (Pearson) correlation coefficients and p-values

for the observed and predicted frequencies, x and x̂, respectively. The p-values are computed assuming

a null distribution of correlation values derived from two independent t-distributions using the exact

Pearson and Spearman probability density functions in the Python stats.pearsonr and stats.spearmanr

functions from the scipy package.

Datasets. In the models we developed across tumor suppressors and oncogenes, which did not have

concentration information, we evaluated the performance of all possible models with parameters fit

on TCGA haplotypes and separately on TCGA and COSMIC mutation distributions for each gene. We

fit models on both TCGA and COSMIC mutation distributions since the mutation distributions for many

genes were less consistent between the databases as compared to p53. When comparing COSMIC and

TCGA, we filtered out the mutations from COSMIC that also appear in TCGA. When comparing TCGA and

IARC, we filtered out the mutations from IARC that also appear in TCGA.

Predictive performance. For p53, the two component minimal fitness model (Eq. 14) leads to pre-

dicted mutation frequencies that are strongly correlated to the observed mutation distribution in tu-

mors. Moreover, consistently, as evaluated across the measures and reported in Supplementary Table

2, models including both the functional and immune fitness components over-perform partial models,

leading to predicted mutation frequencies that are strongly correlated to the observed mutation dis-

tribution. The addition of the immunogenicity component reduces the KL divergence of the predicted

mutation frequencies with respect to the observed mutation frequencies and, despite increased model

complexity, significantly improves model performance. Evaluation of the relative likelihood ratio (Eq.

43) demonstrates that the partial models have virtually no probability of minimizing information loss

with respect to the minimal two-parameter model (Eq. 14). Moreover, while the two-parameter mini-

mal model is highly predictive, we observe further increased predictive power of the extended models.

These results illustrate how the proposed fitness model framework can be extended and can be used to

gauge the importance of various phenotypes.

In predicting the non-neoplastic mutation distribution, addition of the immune component improved

predictions to a lower degree than for the neoplastic mutation distribution. In the neoplastic setting,

a combined model is ' 107 times more likely to be a more appropriate model, whereas in the non-

neoplastic setting the benefit was zero for a comparable sample size (2,764 mutation occurrences in

TCGA versus 3,451 mutation occurrences in non-neoplastic settings) as determined via BIC (Supplemen-
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tary Table 5). This suggested that the role of the immune system in non-neoplastic cells may be smaller,

which possibly depends on other genetic mutations, its environment, and how close the lesion is to

becoming a neoplastic tumor.

For themodelswe tested across all examined cancer driver genes, we determined the appropriatemodel

complexity via the Bayesian Information Criteria for both TCGA- and COSMIC-fit mutation frequency fit-

ness models. We find that the appropriate model differs across the examined tumor suppressors and

oncogenes, and that there is a positive relationship between the complexity of the model and the vari-

ance in the mutation frequencies for a particular gene. We find that genes with increased variance in

mutation frequency are best explained by immunogenicity-only and combined models. These results

illustrate the unique driving forces behind the mutation frequencies across diverse tumor suppressors

and oncogenes, and show how minimal models successfully predict the mutation frequencies across

these commonly mutated genes central in cancer development.

Effect of the number of simulated haplotypes. We train p53models on germline TCGAHLA haplotypes

and TCGA mutations. TCGA haplotypes are directly inferred from TCGA samples and are not simulated.

To investigate the effect of the number of haplotypes on the modeling results, we applied the same

model weights to models with populations in the half-open interval [1, 10,000) simulated haplotypes in

100 haplotype steps, and in each case quantified the Kullback-Leibler divergence.

Internal validation. In the fitness model, each p53 mutation is assigned an effective background mu-

tation rate, functional phenotype, and immune phenotype, where the phenotypes are linked by mutant

p53 concentration. We investigated the consequences of shuffling these components on the model

fitting. We posited that the fitness model was only appropriate based on the available experimental

and computational data for TP53 mutations, and randomly shuffling these values should render phe-

notype data which the fitness model can not appropriately fit. For each internal validation step, we

randomly permuted the background mutational frequencies, functional phenotypes, and immune phe-

notypes 1,000 times and attempted each time to fit the reference two-parameter model (Eq. 14). In

each iteration, the minimized Kullback-Leibler divergence is always an order of magnitude larger than

the results with non-shuffled data, and we found that in no case were we able to fit a model as well as

with the non-permuted data. This suggests that the fitness model presented would not be appropriate

for randomly-generated datasets.

Relative immune weight. To quantify the relative contribution of the fitness components, we refactor

our fitness expression to a form that is equivalent for predicting mutation frequency. To do so, we stan-

dardize the Tm and Im distributions across mutations and haplotypes to an equivalent relative fitness

form:

f̃m({σT , σI}, H) = σT sT

(
Tm − µT

sT

)
+ σIsI

(
Im − µI

sI

)
= σT sT

(
Tm

sT

)
+ σIsI

(
Im
sI

)
−
[
σTµT

sT
+

σTµT

sT

]
= (σT )

′
(
Tm

sT

)
+ (σI)

′
(
Im
sI

)
−
[
σTµT

sT
+

σIµI

sI

]
,

(44)
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where µT,I and sT,I are the means and standard deviations of the Tm and Im distributions, respec-

tively, across mutations and haplotypes, and (σT )
′ = sTσT and (σI)

′ = sIσI . Note that the fitness is

translationally invariant, so the final constant term is not relevant for predicting themutant frequencies.

Therefore, the fitness as expressed in Eq. 44 is equivalent to the original fitness expression (Eq. 14) for

predicting mutation frequencies, as the only difference between them is a constant.

The sum of the two rescaled fitness weights correspond to a particular amplitude A′. Note that both

fitness expressions from Eq. 14 and Eq. 44 have only one degree of freedom despite the fact that there

are two parameters, since (σT )
′ = A′ − (σI)

′. Therefore, Eq. 44 can be written as a linear function of

(σI)
′ only. Knowing this, we can define the relative immune weight νI as:

νI =
|(σI)

′|
|(σ∗

T )
′|+ |(σ∗

I )
′|
, (45)

where (σ∗
T )

′ and (σ∗
I )

′ are optimized standardized weights. We derive sT = 0.178 and sI = 0.0106 from
the full TCGA mutant TP53 Tm and Im(H) distributions, respectively, across mutations, haplotypes, and

tissues, as this is the data with which we train our fitness model.

To determine the optimal model for a cohort, we vary the parameter νI over the interval [0, 1] to deter-
mine the relative importance of the immune component to an optimizedmodel. We do so by recomput-

ing the logrank scores for Kaplan-Meier curves separated on themedianmutant p53 total fitness defined

for each νI value.
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Modeling trade-offs for KRAS

Utilizing the detailed functional information available for a number of KRAS hotspot mutations25, we

inferred the oncogenicity and the immunogenicity of these KRAS hotspot mutations in TCGA PAAD sam-

ples. Importantly, the only functional component which was predictive for fitting the KRAS mutational

distributionwas the downstreamRAF protein effector binding. Therefore, for the functional “oncogenic”

component, we determined the probability of a particular mutant KRAS binding downstream RAF effec-

tor protein in theMAPK pathway in a non-cooperative fashion, normalized by the number of KRAS alleles

and assuming equal number of wild-type and mutant KRAS alleles as well as fully-active mutant KRAS.

The ”functional probability” component summarizes the likelihood of active, mutant KRAS binding RAF

protein and transducing cell growth signaling:

PRAF =
LKRAS

LKRAS +KRAF

, (46)

where LKRAS is the inferred concentration of mutant KRAS in a particular cancer cell, and KRAF is the

provided dissociation constant for KRAS-RAF protein binding from Ref. 25. For the immune component,

we inferred the effective probability of mutant KRAS nonamer peptides being presented on matched

HLA-I molecules, in a manner similar to Eq. 16. The ”avoidance of neoantigen presentation” component

is therefore defined as 1− Im(H), where Im refers to Eq. 16 andH is a germline MHC-I haplotype.

There is no RPPA proteomic data available for KRAS in TCGA. In order to address this, we inferred the

concentrations of KRAS in TCGA PAAD samples using KRAS RNA expression, calibrated using known wild-

type KRAS concentrations in a WT/WT KRAS SW48 cell line. We infer the wild-type KRAS concentrations

from Ref. 83, using the parental wild-type cell line. We assume a cell diameter of 20 micrometers78, a

typical KRAS ploidy of twowhichmeans suggest' 105 KRAS proteinmolecules per allele, and a spherical

cell shape. In brief, we assumed that all RNA expression was strongly linearly correlated to protein ex-

pression. Next, since the SW48 cell line is derived from a colon cancer, we calibrated the RNA expression

to an expected concentration value across wild-type KRAS TCGA COAD tumors. This was done in an anal-

ogous way as for p53, where we inferred concentration using wild-type p53 BRCA RPPA data calibrated

using a breast cancer-derived cell line with known wild-type p53 concentration. From this, we obtain an

expected concentration of KRAS for each TCGA PAAD tumor cell. We further normalize by the number

of alleles, assuming equal numbers of wild-type and mutant KRAS alleles.

As the protein concentration goes into both the oncogenic and immunogenic terms, cancer cells which

upregulate mutant KRAS, for the purpose of increased cell growth, do so at the cost of increasing the

concentration of the mutant antigen, implying a trade-off between the oncogenic potential of a mutant

and its immune selection in upregulated oncogenes.
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Validating trade-offs with ATAC-seq and RNA

We predict functional fitness based on the yeast functional assay (see Section Inference of apparent

dimer dissociation constants). We estimate downstream functional capacities of mutant p53 on target

gene RNA expression in a tumor using ATAC-seq (Assay for Transposase-Accessible Chromatin with high-

throughput sequencing) and RNA-seq data in matched TCGA samples. Previous work performed ATAC-

seq on 423 TCGA samples across 23 cancer types, predominantly breast cancer79. We leverage ATAC-seq

transcription factor footprinting, using three TP53motifs (M3698_1.02, M1929_1.02, andM3699_1.02)

for which transcription depth and flank are measured. Increased depth indicates higher transcription

factor occupancy and increased flank indicates increased increased chromatic accessibility by other fac-

tors80.

The flanking accessibility (AF ) and footprint depth (DF ) are computed for each TP53 motif (M ) as fol-

lows:

AM
F = log2

[
Flank Height

Background

]
, (47)

and

DM
F = log2

[
Footprint Base

Flank Height

]
. (48)

We compute a lack of DNA binding score (NM
F ) for p53 for each motifM as:

NM
F = 2

DM
F

AM
F . (49)

As this value increases, either the depth increases and/or the flank decreases, indicating a lack of binding

compared to background. For each sample with available data, we identified samples with one mutant

TP53 allele. We extract the depth, flank, and determine the combined lack of binding score NM
F for

each motif, which we use as a proxy for the likelihood p53 is not binding its DNA target motif. For each

mutation, we define the effective lack of DNA binding score as the harmonic mean of the lack of binding

scores across the three motifs in order to control for large outlier values:

NF =
3∑

M 2
−

DM
F

AM
F

. (50)

We consider RNA expression in Transcripts per Million (TPM) of the eight p53 target genes previously

examined in the yeast assay (WAF1,MDM2, BAX, h1433s, AIP1, GADD45, NOXA, and P53R2). There are

373 TCGA samples with matched ATAC-seq and RNA-seq data.

Independently, we also consider the chromatin accessibility on regulatory regions for the eight target

genes where such data is available79. This was the case for only six target genes (WAF1, BAX, h1433s,

AIP1,GADD45, andNOXA). Each genemay havemultiple regulation sites, and each site has an associated

number of Tn5 transposase insertion events which correlate to the site’s chromatin accessibility. We

transform the accessibility of these regulation sites into a probability distribution as follows. First, we

define the chromatin accessibility of each gene G as GA, which is the sum of the insertions across all

regulatory sites:
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GA =
∑
r

Ir , (51)

where r is a regulatory site and Ir is the number of Tn5 transposase insertions corresponding to a reg-

ulatory site. This takes into account both the number of regulatory sites and the accessibility of these

sites. For each sample, we define themedian target gene accessibility SA as themedian number of gene

insertions across all of the target genes’ regulatory sites:

SA = medianG (GA) . (52)

Finally, we transform the distribution ofSA into a probability distribution via the softmax function, where

P (A) is the probability the p53 target genes are accessible in a particular sample:

P (A) =
expSA∑
S expSA

. (53)

We then define the probability of p53 binding target DNA P (B) as follows:

P (B) =
P (B|A)P (A)

P (A|B)
, (54)

where P (B | A) is the probability of p53 binding DNA given it is accessible, which is derived from the

yeast assay and the mutant’s typical concentration (see Sections Inference of apparent dimer dissoci-

ation constants, Inference of tissue- and mutant-specific concentrations, and Fitness Model), P (A) is
the sample’s target gene regulatory site accessibility probability, and P (A | B) = 1, where if p53 is

binding DNA then it follows that the DNA is by accessible. Therefore, the probability of p53 binding DNA

is conditioned on the probability of the target genes having sufficient chromatin accessibility.
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Patient Data

Immunotherapy-treated non-small cell lung cancer cohort. Patients were those with metastatic non-

small cell lung cancer (NSCLC) treatedwith PD-(L)1 blockade-based immunotherapy between2013-2019.

Those treated with concurrent PD-(L)1 + cytotoxic chemotherapy were excluded. To be included, pa-

tients had to have molecular next-generation sequencing results by MSK-IMPACT as well as available

outcomes data from their response to PD(L)1 therapy. Objective overall response and progression-free

survival outcomeswere determined by RECIST, performed by a blinded thoracic radiologist. Patientswho

did not progress were censored at the time of their last available imaging assessment. Overall survival

was determined from the start of PD-(L)1 blockade until date of death; those who were still alive were

censored at the time of last contact.

National Cancer Institute Li-Fraumeni Syndrome cohort. A total of 82 individuals carrying either pathogenic

or likely pathogenic missense germline TP53 variants from the National Cancer Institute (NCI) LFS cohort

(NCT01443468; http://lfs.cancer.gov)81 were included. All participants or their legal guardians signed

informed consent. As of March 24, 2020, 52 carriers had developed at least one cancer while 30 had

remained cancer-free. Non-melanoma skin cancers and HPV-associated high grade dysplasias were ex-

cluded from the cancer count. Genotyping was conducted using the Illumina Infinium Global Screening

Array-24 (Illumina Inc. San Diego) at the Cancer Genomics Research Laboratory (CGR) in the Division

of Cancer Epidemiology and Genetics (DCEG). HLA alleles were imputed with the tool HIBAG82 using a

model trained for European ancestry.
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Experimental Methods

Peptide predictions. The HLA molecules predicted to present the R175H and R248Q/W hotspot pep-

tides using NetMHC 3.450–52 are reported in Supplementary Table 6. The HLA-A*02:01 allele is the most

common HLA-I in TCGA. We aimed to infer differential potential immunogenicity between TP53 R175H

and R248Q/W mutations, as these hotspots lie on different end of the trade-off between loss of func-

tion and potential neoantigen immunogenicity. We inferred all mutant peptides of 8-14 amino acids

in length that cover the R175H and R248Q/W mutations and predicted IC50 affinities to HLA-A*02:01

using the NetMHC 3.4. All peptides with predicted affinities less than 500 nM are presented in Sup-

plementary Table 6. Only peptides corresponding to the R248Q/W mutations passed this filter, and we

used the 10-mer peptides for the in vitro assays, as they were more likely to be presented. For R175H,

we considered the HMTEVVRHC peptide, as previous work implied this peptide can be presented on

HLA-A*02:0133 although the predicted affinity was 10716 nM.

T2 binding assay. The TAP2-deficient human lymphoblastoid cell line T2 was maintained in RPMI-1640

supplemented with 7.5% FBS, NEAA, 2 mM L-glutamine and penicillin/streptomycin. Prior to assay

setup, T2 cells were washed three times in serum-free RPMI-1640 and then plated at a concentration

of 1x106/mL in serum-free RPMI-1640 with 5 µg/mL recombinant human (rh)β2 microglobulin (Sigma-

Aldrich, cat. no. 475828) and 1, 10 or 100 µg/mL of peptide (>85% purity, Genscript) or DMSO as vehicle

control and incubated overnight. The following day, cells werewashed and stainedwith a fixable viability

dye (Zombie NIR, 1:8000, BioLegend, cat. no. 423106) in PBS for 15 min on ice. Cells were then washed

and stained with a FITC-conjugated anti-human HLA-A*02 antibody (clone BB7.2, 1:100, BD Biosciences,

cat. no. 551285) for 30 min on ice in PBS. After staining, cells were washed and resuspended in PBS

for acquisition on a 4-laser Aurora full spectrum cytometer (UV-V-B-R, Cytek). Data were analyzed using

FlowJo software (version 10.7.1).

Human samples. All patients and healthy donors signed an approved informed consent before pro-

viding tissue samples. Patient samples were collected on a tissue-collection protocol approved by the

MSKCC Institutional Review Board. Peripheral blood mononuclear cells (PBMCs) from HLA-A*02:01

healthy donors and patients with TP53 R175H or R248Q mutant bladder or ovarian cancer were iso-

lated from whole blood collected in CPT tubes containing sodium heparin (BD Vacutainer) according

to the manufacturer’s instructions. PBMCs from cancer patients were cryopreserved in FBS containing

10% DMSO until use. PBMCs from healthy donors were plated in 10 cm tissue culture dishes at 4-6x106

cells/mL in RPMI-1640, supplemented with 1% human serum (pooled male AB, Sigma-Aldrich, cat. no.

H4522), 10mMHEPES, 2mML-glutamine, and 50 µM2-β-mercaptoethanol and incubated at 37C for one

hour. Non-adherent cells were washed off with PBS and cryopreserved in FBS containing 10% DMSO un-

til further use. Adherent cells were cultured for 7 days in RPMI-1640 with 1% human serum, 1000 IU/mL

rhGM-CSF, and 500 IU/mL rhIL-4 to induce differentiation ofmonocytes intomonocyte-derived dendritic

cells (mDCs). CD4+ and CD8+ T-cells were isolated from the non-adherent cell fraction using human CD8

Microbeads (Miltenyi, cat. no. 130-045-201) and the human CD4+ T-cell Isolation Kit (Miltenyi, cat. no.

130-096-533) according to the manufacturer’s instructions. CD4+ T-cells were activated with 10 µg/mL

PHA and cultured in the presence of 10 IU/mL rhIL-2 and 20 ng/mL rhIL-7 for one week before using

them as CD4+ Th-APCs in peptide restimulation assays.

In vitro peptide stimulation assays. We used two types of in vitro peptide stimulation assays: one

for inducing de novo priming of mutant p53 specific T-cell responses from healthy donors and one for

22



recalling memory responses against mutant p53 peptides in T-cells from patients bearing mutant p53

tumor lesions. To induce functional de novo priming of human CD8+ T-cells, we developed an opti-

mized in vitro restimulation system (method manuscript in preparation). Briefly, CD8+ T-cells from HLA-

A*02:01 healthy donors were stimulated with autologous mDCs pulsed with 10 μg/mL p53 peptides

(>85% purity, Genscript), CEF (CEF-Class I peptide pool, 1:20, CTL), 1 μg/mL 15-mer HIV GAG peptide

pool (JPT), or DMSO at a 5:1 ratio in RPMI-1640 supplemented with 10% FBS, NEAA, 2 mM L-glutamine,

penicillin/streptomycin, 1 mM sodium pyruvate, and 50 μM β-mercaptoethanol (complete media) in the

presence of 100 IU/mL rhIL-2 and 10 ng/mL rhIL-15. After one week of culture, cells were washed, and

re-stimulatedwith peptide-pulsed, PHA-activated autologous CD4+ Th-APCs at a 1:1 ratio. Cultures were

maintained in 100 IU/mL rhIL-2 and 10 ng/mL rhIL-15 for a second week. Cells were then washed and

incubated with the specific peptides before intracellular cytokine staining by flow cytometry. To recall

mutant p53 T-cell responses, patients’ PBMCs were stimulated with 10 µg/mL R175H and/or R248Q p53

(>85% purity, Genscript), CEF (CEF-Class I peptide pool, 1:20, CTL) as positive control, or DMSO as neg-

ative vehicle control in complete media in the presence of 10 IU/mL rhIL-2 and 10 ng/mL rhIL-15. Cells

were restimulated with the respective peptides on day 7, and cultures were maintained with rhIL-2 and

rhIL-15 for a second week. On day 15, cells were washed, restimulated with the specific peptides before

intracellular cytokine staining by flow cytometry.

Intracellular cytokine staining by flow cytometry. Monensin (1-2 μM, BD GolgiStop, BD Pharmingen)

was added 1 hour after the last peptide restimulation to inhibit intracellular protein transport and cul-

tures were incubated for additional 5 hours. Cells were then washed and stained with an eFluor 506

(1:1000, eBioscience, cat. no. 65-0866-18) or Zombie NIR (1:8000, BioLegend, cat. no. 423106) fixable

viability dye in PBS for 15 minutes on ice, followed by a 15-minute incubation with human Fc block-

ing reagent (1:10, Miltenyi) in 2% FBS PBS on ice, before staining with the following fluorochrome-

conjugated surface antibodies: anti-human CD3-BUV395 (1:100, BD Biosciences, cat. no. 740283),

anti-human CD4-BV650 (1:50, BD Biosciences, cat. no. 563875) or CD4-AlexaFluor700 (1:50, Invitro-

gen, cat. no. 56-0047-42), and anti-human CD8-BUV563 (1:50, BD Biosciences, cat. no. 612914) or

CD8-AlexaFluor647 (1:50, BD Biosciences, cat. no. 557708), anti-human CD45RA-BUV737 (1:100, BD

Biosciences, cat. no. 564442), and anti-human CD62L-PE (1:100, BD Biosciences, cat. no. 555544). Af-

ter 40-minute incubation on ice, cells were washed and subsequently fixed and permeabilized using the

FoxP3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific, cat. no. 00-5523-00). Intracel-

lular staining was performed in permeabilization buffer for 45 minutes on ice with the following anti-

bodies: anti-human IFN-γ-FITC (1:50, Invitrogen, cat. no. BMS107FI), anti-human TNF-α-PE-Cy7 (1:50,

BD Biosciences, cat. no. 557647) and anti-human Ki67-APC-eFluor 780 (1:1600, Invitrogen, cat. no.

47-5698-82). Cells were washed in permeabilization buffer and resuspended in PBS for acquisition on

a 4 laser Aurora full spectrum cytometer (UV-V-B-R, Cytek). Data were analyzed using FlowJo software

(version 10.7.1).

Multiplex Identification of Antigen-Specific T-Cell Receptors (MIRA) assay. To compare the relative

immune fitness of TP53mutations depending on the position of their amino acid substitutions, we used

MIRA to search for TCRs againstmutant p53 in naive CD8 T-cell repertoires of healthy donors. MIRA com-

bines conventional immunological techniques with high-throughput TCR sequencing to identify antigen

specific T-cells in high-throughput through the sorting and sequencing of T-cells activated in response to

pools of peptide epitopes83.

We synthesized 40 distinct 9-11 length peptide epitopes that encompassed common p53 mutations at

positions pR175 (H), pR248 (Q), pR273 (C/H/L), and pR282 (W) and which were predicted to bind to at
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least one of 60 commonHLA class I alleles byNetMHCpan version 4.184 (Supplementary Table 7). Peptide

synthesis was performed by GenScript (Piscataway, NJ). The 40 peptides were pooled in a combinatorial

fashion as described previously83, where peptides with high sequence similarity were grouped together

into discrete antigen sets. Each antigen set was placed in a unique subset of 6 out of 11 peptide pools

labelled A-K, hereafter referred to as the antigen’s occupancy.

We acquired Leukopaks from107 healthy donors froma variety of commercial sources (AllCells, Alameda

CA & Bloodworks Northwest, Seattle WA). Donors represented diverse HLA Class I backgrounds, encom-

passing 25 distinct HLA-A alleles, 46 HLA-B alleles, and 20 HLA-C alleles at 4 digit typing (Supplementary

Table 7). 100/107 donors had at least one A*02:01 allele. There were 103 unique MHC-I haplotypes.

We conducted a total of 222 MIRA experiments; on average 2 experiments per donor.

MIRAexperimentswere performedas follows: naive CD8 (nCD8) T-cellswere isolated fromdonor Leukopaks

and 30-200 million nCD8s were co-cultured for 12-14 days with monocyte-derived dendritic cells pulsed

with the entire set of query peptides in the presence of cytokines GM-CSF/IL-4/IFN-g and LPS. T-cells

were supplemented with IL-7 and IL-15 on day 3 of the expansion. Following a 12-14 day expansion,

the T-cell culture was split into replicate aliquots and T-cells were re-stimulated with MIRA-formatted

peptide pools at 37C for 16 hours. Sorting was done on CD3+CD8+CD137+ T-cells and followed similar

preparation and sequencing of the TCRb locus as previously reported85. T-cell presence was assessed

by aggregating the behaviour of specific TCRb sequences across sorted pools and we utilized a non-

parametric Bayesian model described previously85 to identify T-cell clonotypes with read count patterns

consistent with enrichment in 6 of the 11 replicate antigen exposures83.

We considered all TCR-antigen associationswith a posterior probability of >= 0.5 to represent a significant

response to the antigen at that occupancy, then counted the number of TCRs that responded to antigens

with each of the p53 p175, p248, p273, and p282mutations. To permit fair comparison of the number of

TCRs yielded between each of the TP53 positional mutants, we calculated each donor’s average count of

TCRs yielded per antigen peptide by (1) the number of peptides in theMIRA antigen set (i.e. the number

of putative epitopes at that occupancy), (2) the number ofMIRA antigens (i.e. occupancies) representing

each of the four TP53 positional mutants, and (3) each donor’s number of experiments. This procedure

yielded a single value representing each of the 107 donors’ average number of TCRs yielded per antigen

peptide, for each of the TP53 p175, p248, p273, and p282 MIRA antigen groups.

We reasoned that TP53 positional mutation antigen groups with lower immune fitness should yield

higher normalized TCR yield from these 107 healthy donors. To test for significant differences in nor-

malized TCR yield, we conducted a two-sided Mann-Whitney U Tests on normalized TCR yield values for

each pairwise combination of p175, p248, p273, and p282.
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