
Quantum computational advantage with a 
programmable photonic processor

In the format provided by the 
authors and unedited

Nature | www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-022-04725-x



SI

Quantum computational advantage with a programmable photonic

processor

Supplementary Information

L.S. Madsen,∗ F. Laudenbach,∗ M.F. Askarani,∗ F. Rortais, T. Vincent,

J.F.F. Bulmer, F.M. Miatto, L. Neuhaus, L.G. Helt, M.J. Collins, V.D.

Vaidya, M. Menotti, I. Dhand, Z. Vernon, N. Quesada,† and J. Lavoie‡

Xanadu, Toronto, ON, M5G 2C8, Canada

A.E. Lita, T. Gerrits, and S.W. Nam

National Institute of Standards and Technology, Boulder, CO, USA

1



CONTENTS

1. Gaussian Boson Sampling and adversaries 3

1.1. Generating samples for the classical adversaries 6

1. 3rd order greedy 9

1.2. TVD for classical adversaries in a 16-mode GBS instance 11

1.3. Numerical specifications of the classical adversaries 13

2. Experimental setup and methods 15

2.1. Squeezed-light source 15

2.2. Loop-based programmable interferometer 16

1. Implementation errors of gate parameters 19

2. Phase stabilization of the interferometers 21

2.3. 1-to-16 demultiplexer 23

2.4. Photon number resolving detection 23

2.5. System transmittance 26

2.6. Generation and evaluation of two-mode squeezed states 26

3. Unitary matrix 28

4. Benchmarking methods 30

4.1. Obtaining the transfer matrix 30

4.2. Photon-number statistics 32

5. Scalability 33

Note on commercial equipment 34

References 35

∗ These authors contributed equally.
† nicolas.quesada@polymtl.ca
‡ jonathan@xanadu.ai

2



1. GAUSSIAN BOSON SAMPLING AND ADVERSARIES

In Gaussian Boson Sampling a set of single-mode gaussian states – quantum states having a

Gaussian Wigner function – are sent into an interferometer and then measured using photon-

counting detectors. The input Gaussian states are each specified by a 2×2 covariance matrix

that can be assumed to be diagonal without loss of generality, and a length-two vector of means.

In the main text we consider the following families of states specified by a quadrature covari-

ance matrix and a vector of means:

σsqueezed = ħ
2

e−2r 0

0 e2r

 , µsqueezed = (0,0), (1)

σthermal = ħ
2

2n̄ +1 0

0 2n̄ +1

 , µthermal = (0,0), (2)

σsquashed = ħ
2

1 0

0 4n̄ +1

 , µsquashed = (0,0), (3)

σcoherent = ħ
2

1 0

0 1

 , µcoherent =
√

ħ
2 (ℜ(β),ℑ(β)). (4)

Thermal and squashed states are parametrized in terms of their mean photon number n̄, while

the mean photon numbers of the squeezed and coherent states are given by sinh2 r and |β|2

respectively in terms of their squeezing parameter r and complex-displacement β. Given the

covariance matrices and vectors of means of a set of modes input into a interferometer we can

construct the output covariance matrix and vector of means of the collection of modes. Note

that the only non-classical states from these families are the squeezed states that have one

quadrature variance below the vacuum level ħ
2 . The moments of the different input states can

also be specified using the moments of the annhilation and creation operators. The first order

moments are simply α≡ 〈a〉 and the second order ones are n = 〈a†a〉− |α|2 and m = 〈a2〉−α2.
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For the families of Gaussian states above we have

nsqueezed = sinh2 r, msqueezed = 1
2 sinh2r, αsqueezed = 0, (5)

nthermal = n̄, mthermal = 0, αthermal = 0, (6)

nsquashed = n̄, msquashed = n̄, αsquashed = 0, (7)

ncoherent = 0, mcoherent = 0, αcoherent =β. (8)

In the Heisenberg picture, the action of the interferometer T transforms the input annihila-

tion operator of the modes a j according to

ai → a′
i =

M∑
j=1

Ti j a j +
M∑

j=1

(√
IM −TT †

)
i j

e j . (9)

These operators satisfy the canonical commutation relations [ai , a j ] = [a†
i , a†

j ] = 0 and [ai , a†
j ] =

δi j . Similarly, the operators e j represent bosonic environmental modes into which photons

from the input modes can be lost. Note that if the transfer matrix T is unitary (TT † = IM ) then

the modes of interest decouple from the environment modes giving a lossless interferometer.

For a set of input states entering an interferometer we can easily write how their first and

second quadrature moments transform. If we denote

αi = 〈ai 〉 , (10)

ni j = 〈a†
i a j 〉−α∗

i α j , (11)

mi j = 〈ai a j 〉−αiα j , (12)

the input moments αin,nin and min are transformed according to

αin →αout =Tαin, (13)

nin →nout =T ∗ninT T , (14)

min →mout =TminT T . (15)

In particular if the input is a product state, then the input matrices are diagonal . For a state

with zero quadrature mean α = 0, it is straightforward to write the first two moments of the
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photon number distribution

n̄i =ni i , (16)

Cov(ni ,n j ) = |ni j |2 +|mi j |2 +δi jni i . (17)

Higher order moments can be obtained using Wick’s theorem [1].

Finally, given a zero-mean ℓ-mode Gaussian state with moment matrices m and n, we can

write the probability of a photon number measurement with outcome S = (S1,S2, . . . ,Sℓ) ∈Nℓ0
in terms of the hafnian function defined as [2, 3]

Haf(A) = 1

k !2k

∑
σ∈S2k

k∏
i=1

Aσ(2i−1),σ(2i ), (18)

where S2k is the symmetric group of permutations of 2k objects. To write the probability, we

define

Q=
 n m

m∗ n∗

+ I2ℓ

2
, (19)

A=X2ℓ(I2ℓ−Q−1), (20)

X2ℓ =
0 Iℓ

Iℓ 0

 , (21)

and finally write [4]

Pr(S) = 1√
det(Q)

Haf(AS⊕S)∏ℓ
i=1 Si !

. (22)

In the last equation S⊕S = (S1, . . . ,Sℓ,S1, . . . ,Sℓ) and the matrix AK is constructed from A by

repeating the i th row and column of A ki -many times (e.g., if ki = 0, both the corresponding

row and column are removed entirely). Note that if the zero-mean Gaussian state is pure, then

we can write n=U∗ [⊕ℓi=1 sinh2 ri
]
UT and m=U

[1
2 ⊕ℓi=1 sinh2ri

]
UT with U a unitary matrix

and then A = B ⊕B∗ with B = U
[⊕ℓi=1 tanhri

]
UT and we can write the probability as the
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modulus squared of a probability amplitude

Pr(S) = 1√
det(Q)

|Haf(BS)|2∏ℓ
i=1 Si !

. (23)

The complexity of calculating the probability of a pure state photon-number event with out-

come S = (S1, . . . ,Sℓ) is given by O([
∑ℓ

i=1 Si ]
√∏ℓ

i=1(1+Si ). For mixed states this complexity

becomes O([
∑ℓ

i=1 Si ]
∏ℓ

i=1(1+Si ) using state of the art methods [5]. For threshold GBS with a

binary pattern S the complexity is given by the torontonian of a matrix of size given by the

number of clicks C . Recent improvements have taken the complexity of this calculation from

C 32C as in Ref. [6] to Cω2C with ω∼ 1.1 as shown in Ref. [7].

1.1. Generating samples for the classical adversaries

Scoring the cross entropy of our experimental samples against the various spoofers requires

us to fabricate synthetic samples for each of the hypotheses. The Gaussian hypotheses of

squashed, thermal, and coherent states are classical input states and can therefore be sam-

pled from efficiently (in our case using Xanadu’s open-source package TheWalrus [8]). The

samples generated by distinguishable squeezed states are drawn from a distribution of single-

mode squeezed states that have gone through the interferometer individually (experiencing

loss and phase but no interference). In the generation of all sets of synthetic samples (includ-

ing the greedy algorithm samples described in the next section), the mean photon number of

each output mode was exactly matched to the ground truth in order to give our adversaries a

fair chance to spoof our experimental samples.

We also generalize the greedy algorithm introduced by Villalonga et al. [9] to work with

photon-number resolved samples. We note that unlike previous GBS experiments where only a

fraction of the input modes of the interferometer are used and only click cumulants for thresh-

old detection events are calculated, our experiment involves counting photons in a setup where

every input of the interferometer is illuminated. These differences cause the third and higher

order cumulants to be extremely small. In fact, if the input squeezing parameters are all equal

and the losses are uniform, one can show that the third-order cumulants, involving three dis-

tinct modes, of the ground truth distributions are exactly zero. Finally, we note that Villalonga

et al. also use a mean-field solution to a spin-1/2 problem to generate samples using a Boltz-

6



mann machine. This approach does not generalize in a straightforward manner to sampling

problems with more than two outcomes per mode and thus have not been considered here.

We produce a set of D synthetic M-mode samples via a greedy algorithm. The samples are

arranged as a D ×M matrix S, where each row Sd is an array of M photon number measure-

ments Sdm with values ranging between 0 and some maximum cutoff value (which we set to

10 for the samples considered in the main text). Each integer Sdm represents the outcome of a

PNR measurement on mode m of an M-mode Gaussian quantum state. The algorithm works

by modifying the entries in S so as to decrease the distance from the target 1-body histogram

T (1)
m j = int(DP (1)

m j ) (i.e. the expected number of times j photons are measured in mode m) and

from the target 2-body histogram T (2)
m1m2 j1 j2

= int(DP (2)
mn j k ) (i.e. the expected number of times

( j1, j2) photons are measured in modes (m1,m2)). The probability distributions P (1) and P (2)

are computed from the Gaussian state directly.

The algorithm works as follows:

1. For each column index m ∈ [1, M ]: fill the column with D independent samples from

the 1-body target marginal in that mode: Sdm ∼ P (1)
m . At this stage the samples have the

correct 1-body marginals, but each mode is sampled independently, and therefore the 2-

body marginals are not respected. One could also use the 2-body marginal distribution

and generate the samples at modes m1 and m1 in pairs: (Sdm1 ,Sdm2 ) ∼ P (2)
m1m2

. This helps

a bit but not much, as only O(M) out of O(M 2) 2-body marginals would be respected.

2. The empirical sample histograms are stored as two arrays: C (1)
m j = ∑

d 1{Sdm = j } and

C (2)
m1m2 j1 j2

= ∑
d 1{Sdm1 = j1,Sdm2 = j2}. The L1 count distance can now be computed

as ∆ = ||C (1) −T (1)||1 + ||C (2) −T (2)||1 and a TVD proxy can be computed as δ = ∆/D . We

include the 1-body L1 count distance in the 2nd order sampler in order to help it respect

the 1-body marginals even when there are too few samples to determine it accurately

from the 2-body counts.

3. Until a stopping criterion is satisfied, loop over columns and rows and replace the value

Sdm with the value S∗
dm that minimizes the L1 count distance (this is where the algorithm

is greedy).

In the algorithm we write C (1)
Sdm← j and C (2)

Sdm← j to mean the sample histogram if Sdm had

value j . Note that this step does not require a full recalculation of the sample histogram in
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order to assess each possible new value: if the value Sdm in the samples is modified from j

to j ′, we can simply decrease by 1 the entry corresponding to the old value (C (1)
m j = C (1)

m j − 1)

and increase by 1 the entry corresponding to the new value (C (1)
m j ′ = C (1)

m j ′ +1). For the 2-body

histogram, we need to do this for all M − 1 pairs of modes (C (2)
mn j k = C (2)

mn j k − 1 ∀n ̸= m,∀k

and C (2)
mn j ′k = C (2)

mn j ′k + 1 ∀n ̸= m,∀k) and their transpose. In this way we can quickly select

the optimal value S∗
dm without actually changing the samples and without recomputing the

sample histogram.

Algorithm 1 Produce a set of samples S

Require: M , D , P (1), P (2), cutoff ▷ num modes, num samples, target marginals, cutoff
1: T (1) ← int(DP (1)) ▷ target one-mode histogram initialized
2: T (2) ← int(DP (2)) ▷ target two-mode histogram initialized
3: S ← zeros(D, M)
4: for m ∈ {1, . . . , M } do
5: for d ∈ {1, . . . ,D} do
6: sample Sdm ∼ P (1)

m
7: end for
8: end for ▷ samples initialized
9: C (1) ← zeros(M ,cutoff)

10: C (2) ← zeros(M , M ,cutoff,cutoff)
11: for m ∈ {1, . . . , M } do
12: for d ∈ {1, . . . ,D} do
13: j ← Sdm

14: C (1)
m j ←C (1)

m j +1
15: for n ∈ [1, M ]; n ̸= m do
16: k ← Sdn

17: C (2)
mn j k ←C (2)

mn j k +1

18: end for
19: end for
20: end for ▷ sample histograms initialized
21: while convergence criterion not met do
22: for m ∈ {1, . . . , M } do
23: for d ∈ {1, . . . ,D} do
24: Sdm ← S∗

dm = argmin j ||C (1)
Sdm← j −T (1)||1 +||C (2)

Sdm← j −T (2)||1 ▷ greedy step
25: end for
26: randomly shuffle rows (along index d)
27: end for
28: end while
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1. 3rd order greedy

We have extended the greedy sampler to take into account 3rd order correlations using the 3-

body marginal distributions across all triples of modes. We observe that the 3rd order sampler

performs slightly worse than the 2nd order one described in the previous section. The main

reason is that a large fraction of 3-body events have a probability that is too low to be picked

up by the sampler. In the 3rd order sampler the target counts T (3) = int(DP (3)) contain many

values that are artificially zero as 0 < DP (3) < 1 even if D is O(106). In order to show this effect we

consider the first 12 modes from our system and a cutoff of 10. Figure S1 shows a histogram of

the values of the 3-body joint probabilities that are below 10−6. In comparison, the histogram

of the probabilities of the 2-body events is in Fig. S2.

0.0 0.2 0.4 0.6 0.8 1.0
probability 1e 6

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

200,000

oc
cu

rre
nc

es

Histogram of probabilities of 3-body events (12 modes, cutoff 10)

Figure S1. Too many 3-body events have a probability that is lower than 1/D (i.e. the “resolution” of the

sampler). In this example with 12 modes and a cutoff of 10, if the sampler could work on optimizing 109

samples, almost 10% of events would still not be reproduced because events with probability below 10−9

will be treated as not occurring. For this reason the 3rd order greedy sampler is worse than the 2nd order

one.

The histogram in Fig. S1 contains 53% of the total events (note that it spans only the 0-

0.000001 range), i.e about half of the 3-body events have a probability that is below 10−6 and in

fact 34% are below 10−7, 18% are below 10−8 and 9% are below 10−9, which means one needs

to produce billions of samples in order for the sampler to consider more than 95% of the high-

photon-number events. Compare this with the 2nd order case, where only 14% of the events

has a probability lower than 10−6, 4% lower than 10−7, 0.5% lower than 10−8 and 0.05% lower
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Histogram of probabilities of 2-body events (12 modes, cutoff 10)

Figure S2. In the 2nd order case the sampler is able to take into account most of the 2-body events with

a number of synthetic samples of O(106).

Probability 10−6 10−7 10−8 10−9

3rd order 53% 34% 18% 9%
2nd order 14% 4% 0.5% 0.05%

Table S1. The percentage of events below a small probability threshold is significantly higher in the 3rd

order case and leads to too many events being suppressed by the sampler.

than 10−9. So in the 2nd order case, O(106) samples contain most of the possible events. We

summarize these numbers in table S1.

To illustrate the effect, we optimize 1 million samples for 12 modes and cutoff=10 over 5

sequential epochs with both the 2nd order and 3rd order sampler. For the 2nd order sampler

the TVD contribution of the 1-body events is 0.0015 and of the 2-body events is 0.0373. For

the 3rd order sampler, while the contribution of 3-body events decreases, the contributions

from 1-body and 2-body events increase to 0.0020 and 0.0436 respectively, making it easier to

determine whether the samples are synthetic.

Note that in the USTC experiment, which was performed using thresholded measurements,

there are no “low probabilities” as any multi-photon event is clumped into the same click. In

Fig. S3 we show the histogram for the same data, if we had used threshold detectors instead of

PNRs. As can be seen, the lowest probabilities are significantly larger than those for the PNR

data. In fact, no probability is too low.
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Figure S3. If the data is taken with threshold detectors rather than PNRs, there are no events with too

low probability, so in this case a 3rd order greedy sampler is able to reproduce all the events.

1.2. TVD for classical adversaries in a 16-mode GBS instance

As explained in the main text, we run a GBS instance in the regime of few modes and low

photon number, consisting only of 16 temporal modes instead of 216. Limiting the number

of modes to 16 keeps the number of possible outcomes manageable which allows us to, firstly,

compute the full probability distribution predicted by the ground truth and, secondly, compare

it to the empirical probability distribution of the experimental data (see Fig. 2 in the main text).

Comparing the probability distributions obtained by ground-truth simulations and experiment

using the Bhattacharyya distance and total variation distance (TVD) gives us a good intuition

of the fidelity of our experiment.

Here, we extend this analysis to all our classical adversaries. For that purpose, we create

synthetic mockup samples for each spoofer and sample the probability distribution of possi-

ble 16-mode outcomes in the same way as we are doing for the experimental samples. Here

we make sure to use the same number of samples for all candidates at each N , so none of the

adversaries is given a statistical advantage over the others. Figure S4 illustrates the TVD as a

function of total photon number N between the ideal theoretical distribution and the distribu-

tions sampled from the respective adversaries.

In addition to the classical adversaries, we also generate samples directly from the ground-

truth probability distribution to illustrate the optimal bound and the effect of finite samples.
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Figure S4. Total variation distance (TVD) of the 16-mode GBS instance as a function of total photon
number N . The samples generated from the ground truth (dotted blue) are a full simulation of the 16-

mode state and hence yield the optimal TVD given the finite number of samples which, for each N , is

set to be equal to that of the experiment and all adversaries. For all photon numbers up to N = 6, the

experiment is closer to the ground truth than the adversarial distributions corresponding to coherent,

distinguishable squeezed, thermal, and squashed states and the greedy sampler, respectively. The error

bars on the experimental data points (green) are given by the standard deviation of the nine repetitions

of the 16-mode state within each acquisition cycle. The other error bars are the standard errors of the

sampled TVDs.

Coming from the ground truth directly, these samples are ideal and the TVD of their sampled

distribution is only lower-bounded by statistical error: the higher N , the more possible out-

comes there are, the less accurately the probability of each outcome can be sampled. The TVD

of these ideal samples and their statistical error is illustrated by the dotted blue line in Fig. S4.

Note that in order to achieve 8.3×107 experimental samples we run a total of 9.3×106 acqui-

sition cycles with nine repetitions of the 16-mode state in each cycle. The modes of these nine

repetitions experience the same interferometer but end up in different combinations of PNR-

detector channels which is why each repetition has its own, slightly different, ground truth.

This subtlety is not taken into account in Fig. 2 on the main text where, for the sake of quantity,

we bunch the 8.3×107 samples together and compare them against a single ground truth. It
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is, however, taken into account in Fig. S4 where making 8.3× 107 synthetic samples for each

spoofer is too expensive anyway. Here, we compare each repetition of the experimental sam-

ples with its own ground truth which leads to slightly different TVD values compared to the

ones reported in the main text.

We now briefly investigate the marginalized TVD method considered in Ref. [9] using the

16-mode GBS instance. The results of this, presented in Fig. S5, show that the greedy spoofer

typically has a smaller TVD to the ground truth than the experiment when heavily marginalized.

However, as the number of modes we consider starts to approach all the modes of the system

(i.e., as we marginalize over fewer modes) the experiment outperforms the spoofer in this met-

ric. We cannot reproduce this exact analysis to directly verify that this trend holds for the 216-

mode instance, since the computational resources and number of samples required to estimate

probabilities suffers an exponential blow up. On the 216-mode data, for heavy marginalization

with few modes retained, and small photon number cutoffs, the greedy sampler does produce

samples lying slightly closer to the ground truth than do the experimental samples; this was

confirmed for up to 17 modes retained with cutoff 2, 10 modes retained with cutoff 3, and 8

modes retained with cutoff 4. Yet, this smaller-scale 16-mode GBS instance, which allows us to

avoid truncation of photon number and for which we can reliably estimate probabilities with a

reasonable number of samples, serves as a strong counterexample to the proposition that the

TVD metric, under heavy marginalization, has any conclusive bearing on the performance of

the exact same experiment when the full outcome space over all modes is retained.

1.3. Numerical specifications of the classical adversaries

For the cross entropy score illustrated in Fig. 3a of the main part, we generated one million

synthetic samples for each classical adversary, respectively. They were constructed under the

condition to match the mean photon number of each mode to the ground truth (as verified

by the low total variation distance (TVD) of the first-order cumulants in Table S2). Moreover,

the table shows that our greedy algorithm successfully produced samples that even match the

second-order cumulants better to the ground truth than the actual experiment does.

For the bayesian score illustrated in Fig. 3b of the main text, the classical adversaries were

constructed by applying the ground-truth transfer matrix to the respective optical input states.

These Gaussian adversaries were built under the imposed condition of a perfect overlap with
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Figure S5. Marginalized TVD of the 16-mode GBS instance for the four-photon subspace. a TVD as a

function of the modes retained (M) of the experiment (green) and the greedy sampler (orange) to the

ground truth. For both, all four-photon events from a 10 million sample data set are used. Each point

corresponds to the average of 100 randomly selected subsets of modes, except for M = 16 for which there

is only one set. The error bars correspond to the mean standard error of the individual TVDs. b, TVD

difference as a function of the number of modes retained (M).

Table S2. Total variation distance (TVD) for first- and second-order cumulants of experimental samples

and classical adversaries vs. the ground truth. For the cross entropy score found in the main text, the

cumulants were obtained by the mean photon number and photon-number covariance of the (experi-

mental and synthetic) samples. For the bayesian score, the cumulants of the classical adversaries were

obtained from their covariance matrices. Here, 〈N〉 corresponds to the experimentally measured mean

total photon number and r is the average squeezing.

TVD to ground-truth cumulants
Score Modes 〈N〉 r Candidate 1st order [10−3] 2nd order

Cross
entropy

216 21.120 0.533

Experimental 4.613 0.0759
Squashed 1.283 0.228
Thermal 1.249 0.305
Coherent 1.267 0.310

Dist. squeezed 1.313 0.153
Greedy 0.050 0.0716

Bayesian 72 22.390 0.886

Experimental 2.355 0.0366
Squashed 0 0.119
Thermal 0 0.297

Dist. squeezed 0 0.205

the first-order cumulants of the ground truth, which is verified by their TVD of exactly zero.
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2. EXPERIMENTAL SETUP AND METHODS

2.1. Squeezed-light source

A detailed schematic of the setup surrounding the squeezed-light source is shown in Fig. S6.

In what follows, we describe the optical parametric oscillator (OPO) cavity geometry and spec-

tral properties, how the pump pulses and the lock beam for the OPO are generated.

We use a hemilithic cavity geometry [10] to generate squeezed states of light. This OPO is

formed as a semi-monolithic doubly-resonant cavity around a 10 mm periodically poled KTP

(PPKTP) crystal and a piezo-mounted mirror as shown in Fig. S6. The fundamental wavelength

is 1550 nm, while the pump is at 775 nm. Given the Type-0 phase matching of the PPKTP

crystal, the pump and the squeezed-light beam share the same polarization, and by controlling

the temperature of the crystal, one can reach simultaneous resonance for both wavelengths. To

achieve double resonance and near single-mode operation, we selected appropriate coatings

on both the crystal surfaces and the output coupler as depicted in Fig. S7.

The pump light consists of a 6 MHz stream of 3-ns-duration rectangular pulses with an aver-

age power of 3.7 mW at 775 nm. The power was chosen to ensure sufficient brightness, and the

duration chosen to achieve single-temporal-mode operation [11]. As depicted in Fig. S6, it orig-

inated from the main ultra-low phase noise fiber laser, centered at 1550 nm. A 4 GHz lithium

niobate electro-optic intensity modulator (pulse generator) carves the pulses, under the con-

trol of an arbitrary waveform generator (digital pulse control). Those pulses are then ampli-

fied using an Erbium-Doped Fiber Amplifier (EDFA) and upconverted to 775 nm via second-

harmonic generation (SHG) using a fiber coupled MgO:LN ridge waveguide. The resulting train

of pump pulses is then directed towards the OPO. The average power of the pump light can drift

over timescales of minutes and hours. To overcome this power drift during longer sequences

of measurements, we actively stabilize the pump intensity using an acousto-optic modulator

(AOM) before the OPO, while monitoring pump light transmitted through the OPO using a pho-

todiode (PD2).

The train of single-mode squeezed vacuum pulses emitted from the OPO is separated from

the pump at a dichroic mirror (DM), coupled into a single-mode fiber, and directed towards the

fully programmable photonic processor.

To continuously lock the OPO cavity, using the Pound–Drever–Hall (PDH) technique, we
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prepare the ‘OPO lock light’ beam such that i) it is not at the same wavelength as the squeezed

pulses, ii) it has an orthogonal polarization to the pump pulses (to prevent continuous gener-

ation of squeezed light), and iii) it is independent of the pump pulses. The preparation of the

OPO lock light, depicted by a solid green line in Fig.S6, is as follows. Part of the main laser light

is modulated at ≈ 7 GHz to generate side-bands, by means of a phase modulator. The result-

ing light is passed through an etalon cavity (with a linewidth of 2 GHz and FSR of 60 GHz) to

filter out everything except the +1st -order side-band. We monitor the spectrum using an op-

tical spectrum analyser (OSA). It is then amplified and phase modulated with a second phase

modulator, driven by a RedPitaya field-programmable gate array (FPGA) board, to generate

side bands at 40 MHz for the PDH lock. Subsequently, the light passes through a temperature-

controlled fiber-coupled MgO:LN ridge waveguide (SHG) which up-converts ≈ 1550 nm light

to ≈ 775 nm. The transmitted light through the OPO is detected by a photodiode (PD1), from

which the PDH error signal is derived.

2.2. Loop-based programmable interferometer

Trains of single-mode squeezed vacuum pulses from the source are directed towards the

fully programmable photonic processor, consisting of three loop-based interferometers in se-

ries. Each loop ℓ= 0,1,2 is characterised by a variable beamsplitter (VBSl ) and a fiber delay line

(τ, 6τ and 36τ), where τ≈ 167 ns.

Each VBS is decomposed into a programmable phase shifter and a programmable Pockels

cell as shown in Fig.S8. In more detail, the Pockels cell system consists of a variable amplifier

(±600 V) combined with a non-resonant electro-optic (EO) Pockels cell allowing fast, arbitrary

polarization rotation. The repetition rate of 6 MHz is synchronized with the arrival time of in-

coming squeezed-light pulse trains. The EO crystal, a 2x2 mm2 Rubidium Titanyl Phosphate

(RTP) crystal with optical transmittance ≥ 99% at 1550 nm, is sandwiched between two polar-

izing beamsplitters and has a quarter-wave plate in front [12]. A remotely controlled arbitrary

function generator applies τ = 167 ns wide square pulse sequences of variable amplitudes to

the modulator, introducing a local polarization rotation of mode k leading to variable transmit-

tance tℓk ∈ [0,1] for loop ℓ ∈ {0,1,2}. In contrast, a squeezed light pulse is 10 ns wide, well within

the 167 ns gate length. The external phase gate, located in front of each loop-interferometer,

is controlled using a similar system: an amplifier (±300 V), remotely controlled by a function
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Figure S6. Squeezed-light source. OSA; optical spectrum analyser, EDFA; erbium-doped fibre amplifier,

SHG; second-harmonic generation, OPO; optical parametric oscillator, AOM; acousto-optic modulator,

DM; dichroic mirror, HWP; half-wave plate, QWP; quarter-wave plate. PD1, PD2, and PD3 are used for,

respectively, OPO lock light, pump power stabilization, and the loops’ lock light. Dashed green and solid

lines represent pulsed pump light and OPO lock light, respectively, whereas transparent red line depicts

the generated squeezed light. Blue lines/curves depict single-mode fibers.
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tal, λp; pump wavelength (775 nm), λs; squeezed-light wavelength (1550 nm), RoC; radius of curvature,

HRs(p); high-reflectivity coating at 1550 nm (s) and 775 nm (p), AR; anti-reflection coating, FSR; free

spectral range, FWHM; full-width at half maximum.

generator, modulates a non-resonant EO phase shifter (Lithium niobate crystal, ≥ 99% opti-

cal transmittance), for arbitrary phase adjustments of linearly polarized input squeezed-light

pulses. In our experiment the amplifier driving this component was limited to a voltage range

yielding−π/2 toπ/2 phase, but increasing the output range of the amplifier allows the full range

of−π toπ to be programmed. Both the phase shifter and Pockels cell systems are manufactured

by QUBIG GmbH.

In order to achieve high in-coupling efficiency to the loop delays (approaching 97% on aver-

age) throughout the entire interferometer, we use 4f or 8f imaging systems by means of spher-

ical lenses and graded-index (GRIN) lens fiber couplers. The loss introduced by the delay line

in each loop is measured to be 5% for the first, and 7% and 12% for the second and third loops,

respectively. These losses are due to free-space-to-fiber coupling efficiency and the delay line

fibers’ intrinsic loss. To match the relative lengths of each loop delay and to optimize the tem-

poral overlap between different time bins (to the accuracy of 250 ps), we use two spherical

lenses, placed at the output of each delay line. By adjusting the position of the lenses and fiber

coupler, we can optimize the round-trip time through each loop using interference between

two pulses.

According to the manufacturer of the fiber, dispersion at our wavelength (1550 nm) is < 18.0

ps/(nm*km). The line-width of our OPO is ∼ 66 MHz, corresponding to ∼ 0.0005 nm. Given
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a train of 216 pulses, the delay between the first (going through fiber) and the last pulse (free-

space) would be 215∗(34 m) = 7.3 km. Note that this length of fiber is 5.9 times longer than our

longest coil and is used only to derive an upper bound on the amount of dispersion expected.

With this propagation length, we can estimate the time spreading experienced by the first pulse

of approx. < (18 ps)∗ (0.0005 nm)∗ (7.3 km) = 0.0657 ps, or < 65.7 femtoseconds. This spread

is at least six orders of magnitude smaller than the original pulse length, and thus, to very good

approximation, dispersion will not introduce significant distinguishability between long-range

pulses in our experiment.

Other concerns could be raised about polarization mode dispersion (PMD). According to

the same manufacturer of the fiber, the reported value of PMD is <0.04 ps/sqrt(km) for con-

catenated lengths of fiber. Using the same propagation length as described in the previous

paragraph, we can estimate the temporal broadening experienced by one pulse to be <(0.04

ps)*sqrt(7.3 km) = 0.11 ps, or < 110 femtoseconds. This spread would also be approximately six

orders of magnitude smaller than the original pulse length, and thus, to very good approxima-

tion, PMD will not introduce significant distinguishability between long-range pulses.

Finally, at the output of the interferometer, we filter out additional non-degenerate two-

mode squeezed states from the OPO, in the±1,±2, ... FSR modes. For this purpose, we use a pair

of fibre Bragg gratings (FBGs). The FBGs have a flat top reflection band of width approximately

5 GHz (corresponding to 0.04 nm @ 0.5dB) and a relative offset of approximately 1 GHz. The

first FBG is used in reflection. The frequency of the squeezed light is tuned so that nothing

but the degenerate frequency band and the +1 FSR side-band is reflected. The second FBG

is used in transmission and reflects the +1 FSR mode while transmitting the squeezed light.

Combining these filters suppresses all the other OPO modes by more than 30 dB. In addition,

we employ a broadband dielectric filter with a bandpass of 10 nm around 1550 nm and around

60 dB suppression of room and pump light. These filters in conjunction with fiber couplings

have a total transmittance of around 80% for a single-mode squeezed pulses.

1. Implementation errors of gate parameters

In this section, we discuss the expected errors in the implementation of beamsplitter and

phase shifter parameters. We then simulate the impact of those errors on the second-order cu-

mulants. Prior to the experiment, we have characterized the system performance of all three
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Figure S8. Loop-based programmable interferometer. VBS stands for variable beamsplitter, high-

lighted by purple area for each loop. See details in text.

phase shifters and three amplitude modulators (beamsplitters) using coherent states and re-

peated sequences of gate parameters. By comparing the expected amplitudes with measure-

ments, we found a deviation of less than 1% on average for all devices, while using a step width

of 167 ns and analyzing a temporal window of 25 ns where the squeezed light pulse is meant to

pass the gate. We also quantified the shot-to-shot repeatability (reproducibility) of the devices

by analysing a repeated sequence of random amplitudes several times, and found typical errors

to be less than ±0.8%.

In Fig. S9, we apply a range of amplitude and phase errors to our theoretical models. Am-

plitude noise imposed by the variable beamsplitters, and phase noise imposed by the phase

shifters are investigated using Monte-Carlo simulations of a Gaussian noise with standard de-

viation σT and σφ, respectively. In addition to random noise, we investigate the effect of con-

stant amplitude offsets caused by possible improper alignment or calibration of the variable
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beamsplitters. (Constant offsets in the phases applied by our phase shifters will not affect the

photon-number distribution and are therefore neglected in this analysis.) In order to get an

intuition on the impact of these errors on the photon number distribution, we build the differ-

ence of the second-order cumulants that are simulated under addition of gate errors to the ex-

perimentally observed ones (blue lines). The red vertical line corresponds to the noise regime

where we estimate our devices to be from prior calibrations, situated where the cumulants’

noise response is more or less flat in all cases.

In order to obtain an upper bound on the combined imperfections of our modulators, we

also calculate the difference between the cumulants, simulated under different error assump-

tions, and the ground truth as a function of the respective gate imperfections (orange lines).

The intersection of these orange lines with the horizontal dashed line (the mismatch between

experiment and ground truth) marks an upper bound to implementation errors of gate pa-

rameters: For instance, if the entire mismatch between experiment and ground truth would

be accounted to nothing else but amplitude errors of the beamsplitters, these fluctuations

would have a standard deviation of ∼ 0.055. In a similar fashion, we obtain an upper bound

of σφ ∼ 0.025π for the phase shifters and an upper bound of ∆T ∼ 0.08 for the beamsplitter

offsets. In the actual experiment, of course, several small imperfections act together and we

thus expect the modulators to be significantly better, close to specified levels marked by the

red vertical lines.

2. Phase stabilization of the interferometers

The main challenge in locking the interferometers is the combination of different require-

ments, in particular: PNR detector compatibility, introducing minimum extra loss on the

squeezed light, and independent phase-stabilization of the three loops.

In order to make the lock beam PNR compatible we use a 1550 nm beam, 7 GHz frequency-

shifted with respect to the squeezed light, generated together with the OPO lock light. It is

injected counter-propagating compared to the squeezed light (i.e. propagating from the third

loop towards the first loop) on a 99.5 % beamsplitter and coupled out on a free-space circulator

(5 % loss to the squeezed light) after the three interferometers with 1µW of power. About 1

part in 1000 of the lock beam is back-reflected from the interferometer and travels towards the

PNRs. The 7 GHz frequency shift is tuned such that the beam is transmitted through the first
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Figure S9. Implementation errors of gate parameters. a, Amplitude noise of the beamsplitters: Relative

difference of simulated and experimental second-order cumulants with respect to the standard devia-

tion of the three beamsplitters’ amplitude noise (σT ). For each σT , we perform a simulation of the GBS

instance used in Fig. 4 of the main text. These simulations yield the second moment of the photon-

number distribution which are compared against the moments obtained from the experiment (blue)

and the ones of the ground truth (orange). The red vertical lines correspond to the noise levels obtained

from independent calibration measurements (which are also verified by the manufacturer’s specifica-

tions). The dashed horizontal line marks the difference between the experimental statistics and the

ground truth. The y-axis is computed by the average of 2|cov i ,i+d
0 −cov i ,i+d

sim |/(cov i ,i
0 +cov i+d ,i+d

0 ) where

cov is a photon-number covariance matrix, i runs from 0 to 215, and d ∈ {1,6,36}. b, Phase shifter noise:

Same as (a), except we simulate phase noise of the phase shifters instead of the amplitude noise of the

beamsplitters. (c) Beamsplitter offsets: Same as previous, with constant transmission offsets added to

the beamsplitters.

fiber Bragg grating (which reflects the squeezed light) and reflected on the second fiber Bragg

grating (which transmits the squeezed light), giving an additional 50 dB attenuation. Although

such a well-attenuated back-reflected lock light does not saturate or heat up the PNRs more

than the squeezed light, it would still be a significant source of stray counts. Therefore, the

lock beam is gated using an AOM, so it is only present between pulse trains, each containing

216 modes for example. In other words, the loops’ lock light and the squeezed modes enter the

interferometers alternating with a time window of 65 µs for the former and 35 µs for the latter

and thus, a clock rate of 10 kHz.

To make the loop-interferometers’ locks independent from one another while only using a

single lock beam, we generate the error signals in each interferometer by an amplitude mod-

ulation that is minimally affected by the other loops. In more detail, the beamsplitter is set to

couple all light into the delay line (cross state) and applies a modulation of 1.3 MHz, 3.5 MHz,

and 1.8 MHz for loop 1, 2 and 3, respectively, with a depth of around Vπ/2/10. For the unmodu-

lated component of the light (the carrier) the loop is in the cross state, and therefore it does not

interfere. The modulated side band – for which the beamsplitter deviates from the cross state –

interferes with itself, creating the error signal. With each loop having a different frequency, the
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three error signals are decoupled from one another.

After the circulator, the light is detected on a high-gain 5 MHz photodetector. The elec-

tric signal is high-passed, amplified and split in three signals. Each part is mixed down with

the frequency of the respective loop and low-passed in order to form a lock-in measurement.

Each of these signals is then sent to a Red Pitaya running PyRPL[13], which enables propor-

tional–integral feedback. The feedback is sent to high voltage amplifiers connected to a piezo-

mounted mirror in the first and to fiber stretching piezos in the second and third loops. Finally,

to decrease the phase shifts from thermal drifts we place each fiber-delay coil in a temperature-

stabilized polystyrene box.

2.3. 1-to-16 demultiplexer

As mentioned in the main text, to bridge the gap between the repetition rate of the squeezed

modes (6 MHz) and the inverse relaxation time of our photon-number resolving (PNR) de-

tectors, a 1-to-16 demultiplexer (demux) is assembled. A detailed schematic of the demux is

shown in Fig. S10. The demux effectively slows down the repetition rate of the squeezed modes

from the initial 6 MHz to the final 375 kHz for each PNR detector channel. To achieve this, there

are 15 low-loss resonant electro-optic polarisation modulators (EOMs), from QUBIG GmbH,

grouped in four different layers. EOMs in each layer have a preset frequency: one at 3 MHz,

two at 1.5 MHz, four at 750 kHz and eight at 375 kHz. Each EOM is sandwiched between two

polarizing beamsplitter (PBS) and a quarter-waveplate at 45 degrees in front. The modulators

are driven by a standalone unit (also from QUBIG GmbH), generating multiple phase locked

sine wave signals temporally synchronized with the input train. The switching extinction ratio

is measured to be above 200:1 on average for all modulators. The average total transmittance

of the demux is over 90%, including 95% free-space-to-fiber coupling efficiency of each output,

achieved using a pair of lenses to image efficiently the input to each output.

2.4. Photon number resolving detection

A transition-edge sensor makes use of the dynamic phase transition from the superconduct-

ing to the normal state of a thin film. In this application the device includes 20 x 20 µm square

of tungsten film, Niobium leads and bond pads as well as a dielectric mirror optimized for
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Figure S10. 1-to-16 demultiplexer. See text for description

1550 nm between the tungsten and the silicon substrate [14]. The substrate is cooled well below

the film’s superconducting transition temperature and the detector is voltage-biased within the

transition, with Joule heating electro-thermal feedback stabilizing the device. When photons

are absorbed by the detector the temperature, and thus the resistance, increases momentarily

and this change can be read out by a change in current through the input coil of a DC-SQUID
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Figure S11. PNR data and tail subtraction. a, 200 repetitions of 13 modes, separated by 1/375 kHz, as

measured in one PNR channel of the demux, with 216 squeezed pulses at its input. b, Zoom in on the

first two pulses from panel a; photon numbers of up to 5 are observed. c, Same as in panel b, including

the relevant calibrated shapes overlayed. Each waveform in pulse 1 will be assigned the photon number

to whose template it has the smallest distance as described in the text. d, The calibrated shapes corre-

sponding to each identified photon number subtracted, so that pulse 1 does not interfere with pulse 2.

e, two stray events have been identified and their tails also subtracted. Pulse 2 is now ready for photon-

number extraction.

array.

The output voltage signal from the SQUIDs is amplified and digitized at 15.625 MHz giving

42 points per pulse from which the photon number is extracted. For a 216 mode GBS state,

each PNR will receive 13 or 14 pulses. As a first step in the analysis, an offset is subtracted. The

output data from 200 repetitions of such a pulse train is shown in Fig. S11a.

As described in the Methods section of the main text, to extract the photon numbers from

a pulse train, we first calibrate the individual detectors to obtain the mean unique shape of
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each photon number using well separated pulses and the area-based photon number extrac-

tion approach [15]. The unique shapes are extracted once and reused as long as the detectors

are unchanged.

The main procedure to extract photon numbers from the pulse train is to calculate the dis-

tance between the data and each unique shape and then assign the photon number to the least

distance. Fig. S11c shows the unique shapes overlaid with the data for pulse 1 and 2 of the pulse

train. The distance is only calculated within the 42 points and weighted by the unique shape of

the single-photon trace.

As seen in Fig. S11b, the pulse shapes of pulse 1 extends into pulse 2. To minimize the effect

of crosstalk between sequential pulses, we subtract the tails of the unique shape from the data

as shown in Fig. S11d. In this way, correctly-identified photon numbers with no stray event will

look like 0 events (vacuum) after subtraction.

In the example given by Fig. S11d, the waveform of two stray events can be seen. These can

occur due to room light, back reflections or finite extinction in the demux or loop. These stray

events are identified using the points right before the pulse arrives. If the mean of the waveform

is more than four standard deviations above the one of the zero-photon trace, a tail normalized

to the height is subtracted. This procedure was also performed on the first pulse in Fig. S11b

which further reduces miscounts caused by stray events. The process can then be repeated for

the next pulse and so forth. The stray-event rate from all lock beams and room light amounts

to an average of 0.003 photons per pulse .

2.5. System transmittance

As described in Section IV.E in the main text, the common loss as well as the loss imposed

by the loops and the 16 demux/PNR channels, respectively, are extracted from a systematic

calibration routine, and the respective transmittances are reported in Table S3.

2.6. Generation and evaluation of two-mode squeezed states

As mentioned in Section IV.E of the main text, we synthesize two-mode squeezed states in

order to obtain crucial information about our experiment, including the single-modeness of

our squeezed-light source, the intrinsic phase offsets in each loop, and the optical loss in the
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Table S3. Transmittance values obtained from the calibration routine. The common transmittance de-

scribes the minimum amount of loss that all modes share. It corresponds to the transmittance expe-

rienced by a mode that has bypassed all delay lines and ends up in our most efficient demux/detector

channel. The transmittance value of each loop corresponds to a roundtrip in the delay line, followed by

a second transit through the VBS optics. The demux/detector transmittances are actually described by

a list of 16 values, normalized by the most efficient channel. In this table we report the average of these

values. The number in parentheses corresponds to the uncertainty of the last digit displayed.

Element η

Common 0.482(9)
1τ loop 0.918(9)
6τ loop 0.889(5)

36τ loop 0.850(5)
Average demux/detector channel (relative) 0.930(3)
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Figure S12. Photon-number statistics of two-mode squeezed states. Panel a illustrates the unher-

alded second-order correlation g (2) as a function of the applied phase φ using phase gate and beam-

splitter assigned to the first loop. The minimum g (2) is 1.91 which corresponds to a Schmidt number

K = 1/(g (2)
min −1) ≈ 1.1. The dashed line at g (2) = 2 corresponds to ideal single-mode squeezing (K = 1).

Panel b shows the noise-reduction factor (NRF) vs.φ as measured using the first, second, and third loop,

respectively. The minimum NRF values measured with each loop are 0.59, 0.61, and 0.64. The dashed

line at NRF = 1 indicates the classical bound.

setup. These entangled pairs were created by coupling the first mode entirely into one loop

delay and, after one circulation, interfering it with a second mode by setting the variable beam-

splitter to 50 % transmittance. Imposed by the travel time in the delay lines, the entangled pairs

are 1, 6 or 36 time bins (τ) apart, depending on which loop was used to generate them. This

procedure is repeated for multiple pairs (54 pairs for the first loop, 72 pairs for second and third

loops) with a different relative phase applied to each pair, allowing us to obtain the g (2) and

noise-reduction factor for each loop as a function of the programmed phase φ (see Fig. S12).
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Figure S13. Long-range two-mode squeezed states. NRF vs. φ as measured using the third loop and a

total of 5 round-trips leading to 180 time bins of separation between the modes analyzed. The minimum

NRF value measured is 0.86. The dashed line at NRF = 1 indicates the classical bound.

To better address the question of how distinguishability [16] changes for larger pulse sep-

arations, we prepared and evaluated two-mode squeezed states using the third loop to delay

one mode 5 times, resulting in interference between squeezed states emitted with 180 time

bins of separation. The data for the NRF is shown in Fig. S13, and is fully consistent with our

model of the device taking into account different noise channels, i.e. no significant increased

distinguishability is observed within the limitations of our measurement.

3. UNITARY MATRIX

For our GBS instances, the arguments of the three phase-rotation gates were drawn from

a uniform distribution bounded by −π/2 and π/2. The intensity transmittance of the three

tunable beamsplitters can be programmed to take any values between 0 and 1. For example, in

the g (2) and NRF scans (cf. Fig. S12) of each individual loop we bypass the other two loops by

setting their respective beamsplitter transmissivity to zero. Similarly, the transmissivity is set to

unity whenever we need to fill the loop delays with the initial squeezed-light modes and empty

them at the end. Despite this high-degree of programmability, the family of unitaries accessible
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Figure S14. Distribution of elements of the adjacency matrix (B =UU T ) obtained from different families

of random 216× 216 unitaries. The green area illustrates the elements of a typical unitary applied by

Borealis where the distribution of beamsplitter transmittances is bounded between 0.45 and 0.55. For

comparison, the pink area corresponds to a Haar-random unitary. We observe that drawing from the full

transmittance range (blue line) yields a sparser adjacency matrix, and that setting the beamsplitters to a

static state of balanced transmission (t = 0.5, yellow line) will not approximate Haar-randomness better

than a typical GBS instance executed by Borealis.

to our device does not cover densely the set of unitary matrices between all modes.

Moreover, for equally squeezed states interfering in a Haar-random unitary, and assum-

ing negligible loss, the associated adjacency matrices of the Gaussian state would be given

by B = UUT , and element of the circular orthogonal ensemble [4, 17]. Our choice of gate

sequence was selected to ensure that the linear optical transformation used in our quantum

advantage demonstration satisfied the requisite assumptions needed to exit the regime of clas-

sical simulability. Other gate sequences can be readily programmed into the device, but the

regime of quantum advantage requires careful selection of gate settings within a specific range.

Although our beamsplitters are able to apply any given transmittance between 0 and 1, we limit

the interval of the distribution down to t ∈ [0.45,0.55], simply because the unitaries obtained

Uloop yield a much denser adjacency matrix B = UloopU
T
loop. As Fig. S14 illustrates, biasing

the beamsplitter transmittance distribution towards 50 % allows us to approximate matrices

from the circular orthogonal ensemble much better compared to a scenario where the inten-
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sity transmittance distribution is drawn uniformly between 0 and 1.

Note that the interferometer associated with a three-dimensional GBS instance leads to ad-

jacency matrices with similar statistical properties to the ones of an interferometer drawn for

the Haar measure. However, the losses associated with high-dimensional interferometer are

much smaller. For the three dimensional instances where M = a3(a = 6) modes go through

loops accommodating 1, a and a2, the dominant loss comes from the longest loop. If we as-

sociate ηuni t as the loss from the shortest, one time-bin loop, then the largest loss comes from

the longest loop and is given by ηnet = ηd 2

uni t = ηM 2/3

uni t . If instead we had constructed a universal

programmable interferometer where each mode sees M beamsplitters each with transmission

ηuni t , the net loss would accrue exponentially in the number of modes as ηnet = ηM
uni t as elab-

orated in Ref. [17]

4. BENCHMARKING METHODS

4.1. Obtaining the transfer matrix

A quantum program is defined by some transfer matrix T (in our case of dimension 216×
216) applied to squeezed input states, with squeezing array r. Accurate knowledge of T is cru-

cial to define the ground truth which our experimental data and all adversaries are compared

against. Using the six arrays of gate arguments (three rotation gates, three beamsplitters) the

phase offset associated with each loop and transmittance parameters, a user can conveniently

obtain T using Xanadu’s open-source photonic-simulation package StrawberryFields [18]. In

particular, the set of parameters required to obtain a full description of the GBS circuit is

• phi0, phi1, phi2 (arrays): phase-gate arguments for each loop and time bin,

• alpha0, alpha1, alpha2 (arrays): beamsplitter arguments for each loop and time bin,

• phi_loop0, phi_loop1, phi_loop2 (floats): the phase offset associated with each loop,

• eta_comm (float): the common transmittance to each mode

• eta_loop0, eta_loop1, eta_loop2 (floats): round-trip transmittances of the three loops

• eta_ch_rel (array): the relative transmittance of the 16 demux/detector channels.
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In order to not only obtain the transfer matrix T but also the ground truth, a user will also

need knowledge of r (array), representing the squeezing parameters of the 216 computational

modes. Equipped with these parameters, T can be determined by the following code:

import numpy as np

import strawberryfields as sf

from strawberryfields.tdm.tdmprogram import get_mode_indices

from strawberryfields.ops import Sgate , Rgate , BSgate , LossChannel

modes = 216

delays = [1, 6, 36]

d = len(delays)

n, N = get_mode_indices(delays)

# loops are filled with 43 vacuum modes initially

vac_modes = sum(delays)

modes_tot = modes + vac_modes

# extend squeezing array by 43 zeros accounting for vacuum modes in the

delay lines

r_tot = np.concatenate ((r, (np.zeros(vac_modes))))

# phase offset in the loops

phi_loop = [phi_loop0 , phi_loop1 , phi_loop2]

# loop efficiencies

eta_loop = [eta_loop0 , eta_loop1 , eta_loop2]

# expand channel efficiencies to array of length modes_tot

reps = int(np.ceil(modes_tot / 16))

eta_ch_rel_tot = np.tile(eta_ch_rel , reps)[: modes_tot]
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# gate arguments for the sf.TDMProgram

gate_args = [r_tot , phi0 , alpha0 , phi1 , alpha1 , phi2 , alpha2 ,

eta_ch_rel_tot]

prog = sf.TDMProgram ([N])

with prog.context (* gate_args) as (p, q):

LossChannel(eta_comm) | q[n[0]]

for i in range(d):

Rgate(p[2 * i + 1]) | q[n[i]]

BSgate(p[2 * i + 2], np.pi / 2) | (q[n[i]], q[n[i + 1]])

Rgate(phi_loop[i]) | q[n[i]]

LossChannel(eta_loop[i]) | q[n[i]]

LossChannel(p[7]) | q[0]

prog.space_unroll (1)

prog = prog.compile(compiler="passive")

T_tot = prog.circuit [0].op.p[0]

T = T_tot[vac_modes:, vac_modes :]

In one straightforward step, we can add a squeezing operation to the above program which

allows us to obtain the covariance matrix that represents the ground truth (r,T ) of our GBS

instances.

4.2. Photon-number statistics

The experimental data was benchmarked in different ways for the low, intermediate and

high photon-number regime in the main text. In the low photon-number regime (N < 10)

the number of possible outcomes is still small enough for us to sample the probabilities of

each outcome experimentally and compare these probabilities against the predictions from

the ground truth. In the intermediate photon-number regime (N ∼ 20), the cross-entropy and
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Bayesian benchmark are both based on evaluating the probability that a particular sample has

been produced by the ground truth or one of the classical adversaries, respectively. In the high

photon-number regime (N > 30, where computing these probabilities becomes intractable)

we compare the statistical moments of the experimental samples against the ones of the differ-

ent hypotheses. The next two paragraphs will sketch how we obtain sample probabilities and

statistical moments that we used for performance benchmarking in the main text.

The probability to obtain a given sample under a certain transfer matrix T applied to a fam-

ily of hypothetical optical input states was obtained in different ways: For indistinguishable

(ground truth) and distinguishable squeezed states as well as for squashed and thermal states,

we first built the quadrature-covariance matrix by applying T to the respective optical input

states. The covariance matrix allowed us to obtain the adjacency matrix A from which we ob-

tain the respective outcome probability by Equation (22). For coherent states with mean pho-

ton number 〈n〉, the probability to produce a sample (n1,n2, . . . ,nN ) with total photon number

N was obtained via exp(−N )
∏

i 〈n〉ni
i /

(∏
i ni !

)
. These methods to compute the probabilities of

individual sample outcomes under different hypotheses were used for Figs. 2 and 3 in the main

part. In particular, for Fig. 2 we computed these probabilities for all possible outcomes when N

photons are to be placed in M time bins, grouped by the maximum amount of photons in one

bin.

The photon-number distribution for the ground truth (squeezed states) and adversaries

(squashed, thermal, and coherent states) used in Fig. 4a was obtained using the quadrature-

covariance matrices of the respective hypotheses (note that the distribution of the distinguishable-

squeezed adversary is by nature identical to the one of the ground truth and therefore not

illustrated in the plot). From the quadrature-covariance matrices, we also derive the photon-

number covariance matrices which describe correlations between modes i and j by Cov(ni ,n j ) =
〈ni n j 〉 − 〈ni 〉〈n j 〉. The elements of these photon-number covariance matrices (excluding

Cov(ni ,ni )) are used for the scatter plots in Fig. 4b where they are compared against the ex-

perimental photon-number correlations.

5. SCALABILITY

The striking advantage of time-domain multiplexing is that the number of qumodes can be,

in principle, increased with minimal effort, involving no additional hardware. The achievable
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Figure S15. Gaussian BosonSampling with 288 modes. By simply increasing the number of squeezed-

light pulses emitted by the source, for each sample containing M modes, we were able to sample GBS

instances with 288 modes and a mean total photon number of 143.2. Similar to Fig 4 in the main text,

panels a and b illustrate the photon-number distribution and second-order correlation of the experi-

mental samples compared to the ones of the different hypotheses, and panel c shows the computation

time required in order to simulate the experimental samples. The red star in panel c corresponds to our

brightest sample containing 242 photons, while samples from Jiuzhang 2.0 (blue) are the same as for the

main text.

number of modes in our experiment is currently limited by the repetition rate of the experi-

ment. A 10 kHz clock provides a time window of 100 µs per shot (sample). After subtraction

of the time it takes to relock and evacuate lock light and vacuum modes from the loops, we are

left with 48 µs acquisition time which, at 6 MHz pulse rate, allows us to generate and measure

up to 290 modes in each sample. Indeed, changing only a handful of lines in our code base

allowed us to experimentally demonstrate GBS instances with 288 optical modes with a mean

total photon number of 143.21±0.02 and the brightest sample containing 242 photons, as il-

lustrated in Fig S15. Decreasing the clock rate would immediately allow us to reach even higher

number of modes. One should note, however, that increasing the acquisition time beyond what

is sufficient for our demonstration, and thus disabling the locks for a longer time, may hinder

the stability of the setup and possibly impose a different locking scheme.

NOTE ON COMMERCIAL EQUIPMENT

Certain commercial equipment, instruments, or materials are identified in this paper to fos-

ter understanding. Such identification does not imply recommendation or endorsement by the

National Institute of Standards and Technology, nor does it imply that the materials or equip-
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ment identified are necessarily the best available for the purpose.
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