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Dear Ran, 
 
Thank you for your patience while your manuscript "Shared and disease-specific host gene-
microbiome interactions across human diseases" was under peer-review at Nature Microbiology. It has 
now been seen by 3 referees, whose expertise and comments you will find at the end of this email. 
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Although they find your work of some potential interest, they have raised a number of concerns that 
will need to be addressed before we can consider publication of the work in Nature Microbiology. 
 
In particular, referees #1 and #3 ask that you use “associate” rather than “interact”, and referee #2 
asks that you tone down overstatements throughout. Referees #1 and #3 also note that sample size 

and therefore statistical power varies across disease groups, and referee #2 notes that data 
processing also varied across datasets. Please clarify how this was accounted for and add a discussion 
to the text. Referee #1 has suggestions for alternative methods for some analyses, referee #2 asks 
for additional code details including a tutorial for the provided scripts, which should be added to 
GitHub, and referee #3 has several requests for more information regarding the datasets and cohorts 
used, and suggests improvements for the figures, including figure 2, which we encourage. 
 

We will overrule the request from referee #2 to include a proof of principle experiment to validate 
your findings. 
 
Should further experimental data allow you to address these criticisms, we would be happy to look at 
a revised manuscript. 
 

We are committed to providing a fair and constructive peer-review process. Please do not hesitate to 
contact us if there are specific requests from the reviewers that you believe are technically impossible 
or unlikely to yield a meaningful outcome. 
 
We strongly support public availability of data. Please place the data used in your paper into a public 
data repository, if one exists, or alternatively, present the data as Source Data or Supplementary 
Information. If data can only be shared on request, please explain why in your Data Availability 

Statement, and also in the correspondence with your editor. For some data types, deposition in a 
public repository is mandatory - more information on our data deposition policies and available 

repositories can be found at https://www.nature.com/nature-research/editorial-policies/reporting-
standards#availability-of-data. 
 
Please include a data availability statement as a separate section after Methods but before references, 
under the heading "Data Availability”. This section should inform readers about the availability of the 

data used to support the conclusions of your study. This information includes accession codes to public 
repositories (data banks for protein, DNA or RNA sequences, microarray, proteomics data etc…), 
references to source data published alongside the paper, unique identifiers such as URLs to data 
repository entries, or data set DOIs, and any other statement about data availability. At a minimum, 
you should include the following statement: “The data that support the findings of this study are 
available from the corresponding author upon request”, mentioning any restrictions on availability. If 

DOIs are provided, we also strongly encourage including these in the Reference list (authors, title, 
publisher (repository name), identifier, year). For more guidance on how to write this section please 
see: 
http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf 

 
 
If revising your manuscript: 

 
* Include a “Response to referees” document detailing, point-by-point, how you addressed each 
referee comment. If no action was taken to address a point, you must provide a compelling argument. 
This response will be sent back to the referees along with the revised manuscript. 
 
* If you have not done so already we suggest that you begin to revise your manuscript so that it 
conforms to our Article format instructions at http://www.nature.com/nmicrobiol/info/final-



 
 

 

3 
 

 

 

submission. Refer also to any guidelines provided in this letter. 
 
* Include a revised version of any required reporting checklist. It will be available to referees (and, 
potentially, statisticians) to aid in their evaluation if the manuscript goes back for peer review. A 
revised checklist is essential for re-review of the paper. 

 
 
When submitting the revised version of your manuscript, please pay close attention to our 
href="https://www.nature.com/nature-research/editorial-policies/image-integrity">Digital Image 
Integrity Guidelines.</a> and to the following points below: 
 
-- that unprocessed scans are clearly labelled and match the gels and western blots presented in 

figures. 
-- that control panels for gels and western blots are appropriately described as loading on sample 
processing controls 
-- all images in the paper are checked for duplication of panels and for splicing of gel lanes. 
 
Finally, please ensure that you retain unprocessed data and metadata files after publication, ideally 

archiving data in perpetuity, as these may be requested during the peer review and production 
process or after publication if any issues arise. 
 
 
Please use the link below to submit a revised paper: 
 
[Redacted] 

 
<strong>Note:</strong> This url links to your confidential homepage and associated information 

about manuscripts you may have submitted or be reviewing for us. If you wish to forward this e-mail 
to co-authors, please delete this link to your homepage first. 
 
Nature Microbiology is committed to improving transparency in authorship. As part of our efforts in 
this direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. This applies to primary research papers 
only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly 
contributions. You can create and link your ORCID from the home page of the MTS by clicking on 
‘Modify my Springer Nature account’. For more information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 
If you wish to submit a suitably revised manuscript we would hope to receive it within 6 months. If 
you cannot send it within this time, please let us know. We will be happy to consider your revision, 
even if a similar study has been accepted for publication at Nature Microbiology or published 

elsewhere (up to a maximum of 6 months). 
 
In the meantime we hope that you find our referees' comments helpful. 

 
With best wishes, 
 
[Redacted] 
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***************************************************** 
Reviewer Expertise: 
 
Referee #1: gut microbiome, computational biology 
Referee #2: gut microbiome, machine learning, GI disease 

Referee #3: microbiome, computational biology 
 
Reviewer Comments: 
 
Reviewer #1 (Remarks to the Author): 
 
Summary: 

The authors present a well-written manuscript that brings together host gene expression (bulk RNA-
seq of gut biopsy tissue) and 16S amplicon sequencing of the gut microbiome. This data set is 
exciting, in that it combines two types of data that are rarely integrated and it spans different case-
control cohorts that represent three distinct disease states: CRC, IBD, and IBS (i.e. results can be 
compared across diseases for consistencies or differences). This work provides exciting new insights 
into associations between host gene expression and the ecological composition of the gut across three 

gut-relevant pathologies. The meta-analysis element of this work is especially cool, to see what 
associations are shared or distinct across diseases. 
 
While I'm enthusiastic about the data set and reported results, I have some methodological concerns 
and concerns about interpretation that should be addressed. Specifically, the individual subgroups 
analyzed vary in size and can be quite small (13 healthy controls in the case of IBS data set). I had 
some concerns about statistical power and comparing 'significant' associations identified across groups 

of varying sizes. 
 

Specific Comments: 
 
Throughout the manuscript, you use the term 'interact' when describing correlations/associations 
between host genes and microbial abundances. I don't think this is semantically appropriate due to 
the implicit causality inherent to this term. I know different fields can use terms differently. In ecology 

or molecular genetics, 'interaction' usually implies a direct (and directed) interaction between entities 
(e.g. predator+ prey or transcription factor/repressor + gene expression). In linear regression, 
'interaction' implies something like: [y ~ beta_1(x) + beta_2(z) + beta_3(x*z) + intercept + 
residuals], where beta3 is the 'interaction' term. I don't think you can claim any of these 
interpretations. I'd suggest sticking to the term 'association' throughout. 
 

lines 90-98: I understand the authors' point about having a multi-variate approach, but they might 
overstate it a bit (seems somewhat unnecessary, and therefore a tad distracting). They are using 
established methods (i.e. CCA & LASSO). Univariate tests with multi-test corrections, like Pearson or 
Spearman, are valid ways to go (pros and cons to any approach). For example, LASSO has the 

limitation of being a linear method (but it has a nice advantage in being fairly interpretable, compared 
to other ML approaches). The authors mention statistical power, but they end up running separate 
tests to assess the 'significance' of the various LASSO coefficients...so it probably ends up being 

somewhat similar to univariate+correction for power (although you are getting rid of a lot of the 
colinear stuff with the L1 penalty, so maybe it's a bit better). Anyway, I think the overall approach is 
fine -- I'd just present it as it stands, without needing to justify it. 
 
Line 147: Based on my own (anecdotal) experience, I've found that Procrustes can sometimes give 
unreasonably low and less consistent p-values, when compared against a Mantel test. I think it's fine 
here, but you may want to double-check against Mantel. 
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lines 167-171: I have some concerns about how your control vs. case analysis was conducted. From 
what I read, it seems like you identify your gene-microbe associations within the healthy cohort and 
within the disease cohort separately, and then exclude associations found in the healthy cohort, 
correct? My concern arises from the different sizes of these cohorts in IBD and IBS. Your statistical 

power is changing across these groups, and if you're using some kind of p-value cutoff for picking 
associations then you'll be comparing statistical apples to oranges. Did you account for this somehow? 
Coefficients are usually much more robust to differences in sample sizes than p-values (e.g. 
correlation coefficients). I'm not sure how exactly this relates to LASSO coefficients due to the 
hyperparameter tuning and regularization steps... But this makes me a tad queasy. If I was doing this 
in a classic GLM, I'd add an interaction term between the independent variable and disease status and 
identify significant interaction effects (i.e. association is significant in one population but not in the 

other, or the association reverses sign). How flexible is your LASSO framework? Can you add an 
interaction term and model cases and controls together, rather than splitting them up? I feel like this 
would be more robust. 
 
I see that your FDR q-value thresholds vary throughout the manuscript. This makes the interpretation 
of the results a bit harder. Why not stick to a consistent threshold? 

 
lines 398-422: I found this section difficult to read. For good reason -- it's hard to intuitively explain 
the 'shared microbes' and 'shared genes' stuff. But I think this section could be improved. For 
example, the statement 'shared host genes' was initially confusing to me -- aren't all host genes 
shared? Shared microbes made more sense to me because, I thought, we each maybe share ~30% of 
the species in our guts. However, the things being shared are not the genes or the microbes, but their 
membership in gene-microbe association pairs. Please try to smooth out the exposition here -- I think 

it'll really help with the flow of the text. 
 

line 441: Highlighting the use of the term 'interaction' again (it appears frequently, but making a point 
here to repeat my prior comment). I think it has a causal implication here that isn't appropriate. 
Please remove this term throughout. 
 
lines 670-677: You included abundance info summarized at multiple taxonomic levels, all in the same 

abundance matrix. I see that you CLR transformed these profiles? I'm not sure if this is totally 
appropriate. These profiles can't really be considered relative abundances anymore, because you're 
multi-counting reads from taxa (i.e. you have species abundances, but you also have the abundance 
of the genus and the reads mapping to that species also contribute to the genus abundance). Why not 
calculate relative abundances for each taxonomic rank (i.e. relative frequencies that all sum to 1.0) 
and CLR transform each of these ranks separately, and then combine the profiles? 

 
lines 738-743: I think I'm ok with this, but it's pretty ad hoc. And going back to my prior comment, 
this kind of univariate p-value calculation kinda defeats your prior argument about the power of a 
multi-variate approach (if by 'power' you are interested in identifying individual 'significant' features). 

 
line 913: How exactly did you remove gender and disease sub-type associations? 
 

line 939: How valuable is it to present more (potentially spurious) features by using a less stringent 
0.2 cutoff? Why not just pick a consistent cutoff across the manuscript? 
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Reviewer #2 (Remarks to the Author): 
 

Priya et al. present a computational approach for analysing host-gene and microbiome interactions 
and apply this approach to three datasets (CRC, IBD, IBS). While the underlying idea is interesting, I 
have several concerns: 
 
Major concerns: 
• Data processing was not done with the same pipeline. Previously generated host transcript read 
count files and OTU tables were used from the original publications of the data. Studies have shown 

that the same dataset processed with different bioinformatic pipelines result in very different 
outcomes. While the authors analyse the datasets separately to avoid batch affects (due to differences 
in sample collection, DNA extraction, library preparation) this is a bias that could be avoided by 
reprocessing the data. Also, the published datasets should be briefly described in the methods section 
with details on sample collection and data processing. 
• The authors state that their aim is to facilitate new insights into the molecular mechanisms for 

different disease and that their analysis presents the power of integrating gut microbiome and host 
gene expression data to provide disease insights. The authors did a very thorough comparison with 
other published studies, but which specific novel hypotheses were generated? What type of validation 
experiments would the authors suggest based on groups of microbes and groups of genes that 
correlate in abundance/expression? Could a proof-of-principle experiment be added to validate their 
approach? 
• For the analysis they “considered only associations that were found in patients and not in controls”. 

What about loss of function in disease? 
• The identification of generalisable disease-specific characteristics is challenging on such small 

datasets with less than 100 participants per disease. The microbiome is highly variable making the 
replication of disease-associated species even across large cohort studies with hundreds of samples 
challenging. Hence investigating functional implications of microbial shifts may be a more promising 
avenue. Conclusions such as “these associations are not found in IBD or IBS, and are unique to CRC” 
are too general/overstating the findings and it should be clearly stated that this refers to this specific 

cohort analysis. 
• The authors describe the use of supercomputing nodes for their analysis. Did the analysis of these 
relatively small dataset require that much compute power? How will this be scaled to hundreds of 
samples? Or is the purely a feature provided as part of their method? Some information on how long 
the cohort analysis took should be provided. 
• It’s great that the authors made the code available on github, however, a description of the different 

scripts and a tutorial is missing. 
• What is their theory behind the disease-specific host-microbe crosstalk? Difference in host genetics? 
 
 

Minor concerns: 
• The authors should clarify in the manuscript (not just the methods section) that most of the 
presented data is published data and also compare their analysis to the original findings. 

• Different FDR threshold were used at various places. 
• Why did the IBD dataset only have 121 taxa? Both the CRC and IBS dataset had twice as many 
taxa. 
 
 
 
Reviewer #3 (Remarks to the Author): 
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In this manuscript by Priya et al., the relationship between microbiome composition and host gene 
expression is examined in colonic mucosal biopsy samples. In particular, case control studies of three 
separate diseases were conducted (colorectal cancer, inflammatory bowel disease, and irritable bowel 
syndrome), with RNA-seq being used to measure host gene expression and 16S rRNA gene 

sequencing being used to measure microbiome taxonomic composition. Sparse canonical correlation 
analysis and clr-lasso were applied to the data to identify microbe-host gene associations, and those 
were compared across diseases. Overall, this is a really impressive study: methods are suitable and 
very well described, results are informative, and the manuscript is very well-written, with many 
connections to previous literature to put results in context. A study like this can serve as a framework 
for others interested in combining these two types of datasets while conserving power to detect 
associations. 

 
Minor comments: 
 
1. Results are difficult to interpret when multiple levels of bacterial taxonomy are analyzed at the 
same time, rather than level by level. For example, in Figure 2, both Micrococcaceae and 
Micrococcales are highlighted under the IBD RAC1 pathway panel in B. Is this largely the same signal, 

as these groups are nested, or are there distinct signals at different taxonomic levels? It may be more 
interpretable for the reader to focus on one level for the main text (maybe OTU or genus level), with 
other levels falling to the supplement. 
2. Page 4, line 136/methods: More description of the case/control design for each of the three disease 
types listed would be beneficial for the reader. What were the criteria used to “match” case with 
control? For some of the diseases (IBD and IBS), patients and controls are described as “pairs”, but 
there are unequal case and control sample sizes. 

3. Are the sample characteristics largely the same across the disease cohorts, or are there differences 
that might be confounded with “disease-specific configurations” of the microbiome and host gene 

expression? For example, if there were age differences, sex biases, different sampling locations, or 
treatments that might also influence gene expression or the microbiome, those would be worth 
clarifying for the reader and/or mentioning as a caveat to interpretation of the study. 
4. Related to sample sizes mentioned above, the three diseases have different sample sizes, which 
seem to match with the number of associations detected in each individual disease and the overlaps 

between them (CRC and IBD have the most samples and the most identified associations (including 
overlap), while IBS has fewer (including fewer overlaps). Some discussion of this effect of sample size 
would be useful for the reader, as well as if the unbalanced case/control designs has any effect on the 
power of applying a lasso. 
5. In addition to sample size, the number of detected human genes and taxa differ between disease 
sets. For the comparisons of overlapping vs. disease specific taxa/genes, were “core” sets of taxa and 

gene examined that were held constant between disease set? 
6. p8, line 264: I suggest using “associate” rather than “interact”, as “interact” could be interpreted by 
some as a direct, physical interaction (which it might not be). 
7. p28: How many host pathways were filtered out for being too small, too large, or having not many 

genes that overlap? Are there potential pathways of interest that aren’t being examined here, but 
could be interesting? 
8. Figure 2/p50: Overall, I find the visualizations extremely effective for this manuscript, especially 

considering the many dimensions this data is explored in. The one exception is with the sCCA result 
visualizations in parts B/C of Figure 2 and the supplemental figure on page 50. It’s hard to tell which 
genes are shared across disease subtypes, because host genes are listed in a different orientation in 
each subtype. I suggest having the entire host pathway illustrated (maybe in gray) and then coloring 
in the significant host genes within disease-subtype. That would preserve the order, allowing for better 
highlighting of the similarities and differences for the reader. 
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Reviewer #1 (Remarks to the Author): 
 
Summary: 
The authors present a well-written manuscript that brings together host gene expression (bulk 
RNA-seq of gut biopsy tissue) and 16S amplicon sequencing of the gut microbiome. This data 
set is exciting, in that it combines two types of data that are rarely integrated and it spans 
different case-control cohorts that represent three distinct disease states: CRC, IBD, and IBS 
(i.e. results can be compared across diseases for consistencies or differences). This work 
provides exciting new insights into associations between host gene expression and the 
ecological composition of the gut across three gut-relevant pathologies. The meta-analysis 
element of this work is especially cool, to see what associations are shared or distinct across 
diseases. 
 
While I'm enthusiastic about the data set and reported results, I have some methodological 
concerns and concerns about interpretation that should be addressed. Specifically, the 
individual subgroups analyzed vary in size and can be quite small (13 healthy controls in the 
case of IBS data set). I had some concerns about statistical power and comparing 'significant' 
associations identified across groups of varying sizes. 
 
Response: 
 
We thank the reviewer for their positive feedback and appreciate the constructive suggestions 
and concerns regarding comparisons between case and control subgroups that vary in size. To 
address this, we have now included multiple new analyses and modifications in the manuscript. 
These new analyses are described in detail in response to Comment 4 (pages 5-9 of the 
current document), and edits in the revised manuscript are on pages 29, 33, and 34. 
 
Specific Comments: 
 
Reviewer 1, Comment 1 
 
Throughout the manuscript, you use the term 'interact' when describing 
correlations/associations between host genes and microbial abundances. I don't think this is 
semantically appropriate due to the implicit causality inherent to this term. I know different fields 
can use terms differently. In ecology or molecular genetics, 'interaction' usually implies a direct 
(and directed) interaction between entities (e.g. predator+ prey or transcription factor/repressor 
+ gene expression). In linear regression, 'interaction' implies something like: [y ~ beta_1(x) + 
beta_2(z) + beta_3(x*z) + intercept + residuals], where beta3 is the 'interaction' term. I don't 
think you can claim any of these interpretations. I'd suggest sticking to the term 'association' 
throughout. 
 
Response:  
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We thank the reviewer for this suggestion. We agree that the term “interaction” can be 
misleading, and, as suggested by the reviewer, we have replaced all occurrences of “interact” 
with “associate” throughout the manuscript. Similarly, we have replaced all occurrences of 
“interaction” with “association” everywhere, including in the title of the manuscript, which is now 
“Shared and disease-specific host gene-microbiome associations across human diseases”. This 
has resulted in a total of 83 changes throughout the manuscript. 
 
Reviewer 1, Comment 2 
 
lines 90-98: I understand the authors' point about having a multi-variate approach, but they 
might overstate it a bit (seems somewhat unnecessary, and therefore a tad distracting). They 
are using established methods (i.e. CCA & LASSO). Univariate tests with multi-test corrections, 
like Pearson or Spearman, are valid ways to go (pros and cons to any approach). For example, 
LASSO has the limitation of being a linear method (but it has a nice advantage in being fairly 
interpretable, compared to other ML approaches). The authors mention statistical power, but 
they end up running separate tests to assess the 'significance' of the various LASSO 
coefficients...so it probably ends up being somewhat similar to univariate+correction for power 
(although you are getting rid of a lot of the colinear stuff with the L1 penalty, so maybe it's a bit 
better). Anyway, I think the overall approach is fine -- I'd just present it as it stands, without 
needing to justify it. 
 
Response:  
 
This is an important comment. We agree; while our multivariate analysis using the lasso 
approach discards a number of collinear features using the L1 penalty, our approach for 
assessing the significance of lasso coefficients and correcting for multiple hypothesis testing is 
similar to univariate methods with respect to statistical power. To address this, we have now 
edited following statements about the statistical power of our approach (Introduction, page 3): 
  

“For example, to boost statistical power, most studies have examined interactions 
between a limited subset of host genes and gut microbes ...” changed to “For example, 
most studies have examined associations between a limited subset of host genes and 
gut microbes ...” 

 
We have also removed the following sentence from paper (Introduction, page 3): 
 

“This approach may also decrease statistical power to detect biologically meaningful 
associations due to the large number of statistical tests performed”.  

 
We have modified this sentence as well (Discussion, page 17): 
 

“... our approach does not require restricting the data to a predetermined subset of taxa 
or genes of interest to increase statistical power.” changed to “... our approach does not 
require restricting the data to a predetermined subset of taxa or genes of interest”. 
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Reviewer 1, Comment 3 
 
Line 147: Based on my own (anecdotal) experience, I've found that Procrustes can sometimes 
give unreasonably low and less consistent p-values, when compared against a Mantel test. I 
think it's fine here, but you may want to double-check against Mantel. 
 
Response: 
 
In addition to Procrustes analysis, we have now included a Mantel test to double-check the 
correlation between the dissimilarity matrices of host gene expression and gut microbiome data 
in each disease cohort. We find that the overall pattern of correspondence between paired data 
across the disease cohorts using the Mantel test remained the same as with Procrustes 
analysis. We have added the following in the manuscript: 
 
Results, page 5: 
 

“We also used the Mantel test to verify the overall correspondence between paired data 
for each disease cohort, and found a similar pattern of significance of agreement as 
Procrustes analysis for CRC (p-value = 0.0026), IBD (p-value = 0.2597), and IBS (p-
value = 0.9525, see Methods)”. 
 

Methods, page 26: 
 

“We also applied Mantel test to verify overall correlation between dissimilarity matrices of 
host gene expression (Aitchison’s distance) and gut microbiome abundance (Bray Curtis 
distance) in each disease cohort using the vegan package (version 2.4-5) in R. 
Significance was tested using 9,999 permutations”. 

 
Reviewer 1, Comment 4 
 
lines 167-171: I have some concerns about how your control vs. case analysis was conducted. 
From what I read, it seems like you identify your gene-microbe associations within the healthy 
cohort and within the disease cohort separately, and then exclude associations found in the 
healthy cohort, correct? My concern arises from the different sizes of these cohorts in IBD and 
IBS. Your statistical power is changing across these groups, and if you're using some kind of p-
value cutoff for picking associations then you'll be comparing statistical apples to oranges. Did 
you account for this somehow? Coefficients are usually much more robust to differences in 
sample sizes than p-values (e.g. correlation coefficients). I'm not sure how exactly this relates to 
LASSO coefficients due to the hyperparameter tuning and regularization steps... But this makes 
me a tad queasy. If I was doing this in a classic GLM, I'd add an interaction term between the 
independent variable and disease status and identify significant interaction effects (i.e. 
association is significant in one population but not in the other, or the association reverses sign). 
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How flexible is your LASSO framework? Can you add an interaction term and model cases and 
controls together, rather than splitting them up? I feel like this would be more robust. 
 
Response: 
 
We thank the reviewer for this observation. This is an important issue, and we performed the 
following analyses to address this:  
 
(i) To identify any potential overlap between case and control associations, after lasso 
regression and stability selection, we compared all identified case and control associations with 
non-zero lasso regression coefficients without employing any significance cutoff (p-value or 
FDR) within the CRC, IBD, and IBS cohorts. Reassuringly, we found no overlapping host gene-
microbe associations between cases and controls in any disease cohort. In addition, 
downsampling the cases to match the size of the corresponding control group also did not yield 
any overlapping associations. Thus, we conclude that the designation of host gene-microbe 
associations as specific to cases and controls is robust to the significance cutoff and sample 
size differences in our study cohort. We have now updated the manuscript to incorporate these 
analyses in identification of patient-specific associations (Methods, page 33): 

 
“Using lasso regression and stability selection, we identified associations for cases and 
controls with non-zero lasso regression coefficients for each disease cohort. To identify 
associations that were found only in cases and not in controls within a disease cohort, 
we checked for any potential overlap between case and control associations, without 
subsetting associations using any p-value or FDR cutoff. We found no overlapping host 
gene-microbe associations between cases and controls in any disease cohort, which 
could be driven by underlying biological differences between case and control conditions 
within each cohort. In addition, downsampling the cases to match the controls also did 
not yield any overlapping associations. Thus, we conclude that the designation of host 
gene-microbe associations as specific to cases and controls is robust to the significance 
cutoff and sample size differences in our study cohort”. 
 

(ii) To further account for case versus control comparison in the lasso approach by using a 
method that is more robust to different levels of power due to sample size, we did the following 
analysis at the pathway level: a) first, from the results of our enrichment analysis, we retained 
the set of host pathways that were tested for enrichment in both cases and controls within each 
disease cohort without using any p-value or FDR cutoff, and, b) next, we tested for differential 
enrichment of these pathways between case and control groups using a comparative log odds-
ratio approach 1,2. This assessment of differential enrichment is analogous to testing for an 
interaction at the pathway level, because we are explicitly testing whether the levels of 
enrichment differ between cases and controls. Moreover, because the associated standard error 
accounts for the relative number of associated (or “significant”) genes in the case and control 
cohorts, it is more robust to the different levels of power due to sample size. In the IBD and IBS 
cohorts, we found no common pathways between both case and control groups in step (a) 
above, implying that host pathways enriched in cases are indeed case-specific in these cohorts. 
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In CRC, we found two common host pathways in both cases and controls in step (a) above, 
however their differential enrichment in step (b) was not significant at FDR < 0.1, implying that 
they were not necessarily specific to cases. Hence, we filtered out these two pathways from the 
list of case-specific pathways. Thus, we accounted for case versus control comparison at 
pathway level. A full description of this analysis has been incorporated in the manuscript 
(Methods, pages 29 and 34): 
 
Methods, page 29: 

 
“Differential enrichment analysis  
 
We performed differential enrichment of pathways in cases versus controls by 
implementing a comparative log odds-ratio approach in R 185,186. To do so, we first 
computed the z-score for the odds ratio for 𝑖-th pathway in cases: 
 

𝑧!,#$%& = 	𝑙𝑜𝑔(𝛿!)/𝑆𝐸(𝛿!) 
 
where, 𝛿! is the odds-ratio for 𝑖-th pathway in cases, and 𝑆𝐸(𝛿!)is the standard error for 𝑖-
th pathway in cases, which is computed using the four elements, 𝑛'to 𝑛(, of the 2x2 
contingency table used in the enrichment analysis for the 𝑖-th pathway as follows: 
  

𝑆𝐸(𝛿!) 	= 	/1/𝑛' + 1/𝑛) + 1/𝑛* + 1/𝑛(   
 
Similarly, we computed 𝑧!,#+,-for the same pathway in the controls. Next, we compute a 
comparative log odds-ratio for 𝑖-th pathway overlapping between cases and controls as 
follows: 
 

𝑧!,#$%&.#+,- =
𝑙𝑜𝑔(𝛿!,#$%&) 	− 	𝑙𝑜𝑔(𝛿!,#+,-)

𝑆𝐸(𝛿!,#$%&,#+,-)
 

 
 
The greater the value of 𝑧!,#$%&.#+,-, the greater the odds a pathway is differentially 
enriched in case versus control than by chance. P-values were inferred assuming 
normal approximations, and corrected for multiple hypothesis testing using Benjamini-
Hochberg (FDR) approach”. 
 

Methods, page 34:  
 
“Using enrichment analysis for host genes associated with specific gut microbes, we 
identified host pathways for cases and controls in each disease cohort. To account for 
case versus control comparison at the pathway level, we performed the following 
analysis: 1) first, from the results of our enrichment analysis, we retained the set of host 
pathways that were tested for enrichment in both cases and controls within each disease 
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cohort without using any p-value or FDR cutoff, and, 2) next, we tested for differential 
enrichment of these pathways between case and control groups using a comparative log 
odds-ratio approach (described above). For IBD and IBS cohorts, we found no pathways 
enriched in both case and control groups in step 1 above, hence implying that host 
pathways enriched in cases are indeed case-specific in these cohorts. In CRC, we found 
two host pathways that were common in both cases and controls in step 1, however they 
were not differentially enriched in cases versus controls at FDR < 0.1 (step 2), implying 
that they were not necessarily specific to cases. Hence, we filtered out these two 
pathways from consideration for case-specific pathways”. 

 
(iii) In addition to accounting for overlaps between cases and controls at the association level 
(as in i) and at the pathway level (as in ii), we also accounted for any overlaps between host 
genes that were associated with microbes in cases and controls. To do so, we only used case-
specific host genes, i.e. host genes that were found to be associated with microbes in cases but 
not in controls, to perform enrichment analysis to determine case-specific pathways in each 
disease cohort. We have now updated the manuscript text to incorporate this (Methods, page 
34): 
 

“In addition to accounting for overlaps between cases and controls at the association 
level and at the pathway level, we also accounted for any overlaps between host genes 
that were associated with microbes in cases and controls. We only used case-specific 
host genes, i.e. host genes that were found to be associated with microbes in cases but 
not in controls, to perform enrichment analysis to determine case-specific pathways in 
each disease cohort.” 

   
(iv) We have looked into using an interaction term between the independent variables (i.e. 
microbial taxa) and disease status in the lasso model. Incorporating such an interaction within 
the lasso framework is not straightforward, and various approaches have been proposed (for an 
overview, please see Lim and Hastie et al. 3). However, these approaches do not explicitly allow 
for different sparsity structure in cases and controls (i.e., where an effect is present for cases 
but not for controls, or present for controls but not for cases), which is crucial to our 
interpretation and subsequent analyses. Moreover, this approach is computationally arduous for 
our implementation of lasso analysis due to the following reason: for each disease cohort, we fit 
over 12,300 gene-wise lasso models on average, where each model uses the expression for a 
host gene as response and the abundance of about 200 microbial taxa on average as 
predictors/independent variables. Adding an interaction term between each predictor (i.e. 
microbial taxon) and disease status will lead to doubling the number of predictors in each gene’s 
model, resulting in about 400 predictors per model, and including over 12,300 x 200 = 
2,460,000 additional terms for assessment of model fit per disease cohort, which is 
computationally challenging. Hence, we did not include interaction terms in our model. We have 
now added this in manuscript text to clarify (Methods, page 33): 
 

“Another potential approach to identify case-specific associations would be to use an 
interaction term between the independent variable (i.e. microbial taxa) and disease 
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status in the lasso model, and determine associations that are significant in cases but 
not in controls. Incorporating such an interaction within the lasso framework is not 
straightforward, and various approaches have been proposed (for an overview, please 
see Lim and Hastie et al. 193). However, these approaches do not explicitly allow for 
different sparsity structure in cases and controls (i.e., where an effect is present for 
cases but not for controls, or present for controls but not for cases), which is crucial to 
our interpretation and subsequent analyses. Moreover, this approach is computationally 
challenging for our implementation for the following reason: for each disease cohort, we 
fit over 12,300 gene-wise lasso models on average, where each model uses the 
expression for a host gene as response and the abundance of about 200 microbial taxa 
on average as predictors/independent variables. Adding an interaction term between 
each predictor (i.e. microbial taxon) and disease status will lead to doubling the number 
of predictors in each gene’s model, resulting in about 400 predictors per model, and 
including over 12,300 x 200 = 2,460,000 additional terms for assessment of model fit per 
disease cohort. Hence, we did not include interaction terms in our model”.          

 
Reviewer 1, Comment 5 
 
I see that your FDR q-value thresholds vary throughout the manuscript. This makes the 
interpretation of the results a bit harder. Why not stick to a consistent threshold? 
 
Response:  
 
We agree, and have now updated the manuscript to report all results at a consistent FDR q-
value threshold of 0.1. Specifically, we have now updated our results to report host pathways 
enriched among genes that associate with unique gut microbes at FDR q-value cutoff of 0.1 
(instead of the previously used FDR cutoff of 0.2). (Results, page 10): 
 

“We identified 18 host pathways that are unique to each disease, including 4 CRC-
specific, 9 IBD-specific, and 5 IBS-specific pathways that associate with unique gut 
bacteria (Figure 3B, Fisher’s exact test, Benjamini-Hochberg FDR < 0.1, Supplementary 
Table S9, see Methods)”. 

 
We have also updated Figure 3B to visualize host pathways at FDR < 0.1 (Results, page 9): 
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We have also modified the method section and Supplementary Table S9 accordingly (Methods, 
page 34): 
 

“Using this approach, we identified 18 host pathways that are unique to each disease, 
including 4 CRC-specific, 9 IBD-specific, and 5 IBS-specific pathways that associate with 
unique gut bacteria (FDR < 0.1, Supplementary Table S9)”. 

  
We have deleted the following sentence (Methods, previously page 28): 
 

“Here, we used a more relaxed FDR threshold of 0.2 to present a larger number of 
biologically relevant host pathways”. 
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Reviewer 1, Comment 6 
 
lines 398-422: I found this section difficult to read. For good reason -- it's hard to intuitively 
explain the 'shared microbes' and 'shared genes' stuff. But I think this section could be 
improved. For example, the statement 'shared host genes' was initially confusing to me -- aren't 
all host genes shared? Shared microbes made more sense to me because, I thought, we each 
maybe share ~30% of the species in our guts. However, the things being shared are not the 
genes or the microbes, but their membership in gene-microbe association pairs. Please try to 
smooth out the exposition here -- I think it'll really help with the flow of the text. 
 
Response: 
 
We thank the reviewer for pointing this out, and agree that the usage of “shared” terminology is 
confusing here. We have now replaced occurrences of this term with a more intuitive description 
throughout this Results section to clarify that we are referring to host genes/gut microbes that 
are common across host gene-microbe association pairs. Here are our edits for the specific 
sentences highlighted by the reviewer: 

 
Results, page 14:  
 

Replaced “To elucidate potential host gene-microbe interactions for gut microbes shared 
between diseases, we visualized ...” with “Next, we visualized the networks of host gene-
microbe associations for gut microbes that are associated with host genes in two 
diseases …” 
 
“Conversely, to explore how the same host genes may associate with different gut 
microbes across all diseases, we identified host genes that are associated with gut 
microbes in at least two diseases, and visualized their networks of association across 
diseases (Figure 4B, lasso regression, FDR < 0.1, Supplementary Table S11). We 
identified 5 such host genes that associate with 4 gut microbes in CRC, 5 gut microbes 
in IBS, and 4 gut microbes in IBD …”  
 

In addition, we made the following edits in the manuscript: 
 
Results, page 13 (Legend for Figure 4): 
 

“Figure 4. Disease-specific gut microbe-host gene crosstalk. A. Associations for shared 
gut microbes, namely microbes that are associated with host genes in at least two 
diseases; (center) Venn diagram showing overlap between gut microbes associated with 
host genes in CRC, IBD and IBS, (counter-clockwise) networks showing host gene-
microbe associations for gut microbes shared across associations in CRC, IBD and IBS 
(Network 1), in CRC and IBS (Network 2), in IBD and IBS (Network 3), and in CRC 
and IBD (Network 4). B. Associations for shared host genes, i.e. genes that are 
associated with microbes in at least two diseases; (center) Venn diagram showing 
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overlap between host genes associated with gut microbes in CRC, IBD, and IBS, 
(counter-clockwise) networks showing host gene-microbe associations for host genes 
shared across associations in CRC, IBD and IBS (Network 1), in CRC and IBS 
(Network 2), in IBD and IBS (Network 3), and in CRC and IBD (Network 4). Circular 
nodes represent host genes, triangular nodes represent gut microbes. Colored nodes 
represent specific diseases (purple: CRC, green: IBD, yellow: IBS), grey nodes 
represent gut microbes (A) and host genes (B) shared between associations across 
diseases. Edge color represents positive (blue) or negative (red) association, and edge 
width represents strength of association (spearman rho). All associations were 
determined at FDR < 0.1.” 

 
Results, page 13: 
 

“To understand how gut microbes may associate with specific host genes across 
diseases, we explored the overlaps between host gene-microbe associations in CRC, 
IBD, and IBS (Figure 4A, lasso regression, Benjamini-Hochberg FDR < 0.1, 
Supplementary Table S10). We identified shared gut microbes, namely gut microbes 
that associate with host genes in at least two diseases, and visualized their networks of 
association with host genes across diseases. We found three gut microbes, 
Peptostreptococcaceae, Streptococcus, and Staphylococcus, whose abundance is 
correlated with host gene expression in all three diseases in our study cohorts ...” 
 

Results, page 14: 
 

Replaced “Some notable associations for these shared host genes include host genes 
and taxa previously implicated in CRC and IBD” with “These host genes and the 
microbial taxa they associate with have been previously implicated in CRC and IBD”. 
 

Results, page 15: 
 
Replaced “Overall, our analysis shows that shared gut microbial taxa and shared host 
genes depict disease-specific host-microbe crosstalk...” with “Overall, our analysis 
shows that gut microbial taxa and host genes that are shared between associations 
across diseases depict disease-specific host-microbe crosstalk…” 

 
Reviewer 1, Comment 7 
 
line 441: Highlighting the use of the term 'interaction' again (it appears frequently, but making a 
point here to repeat my prior comment). I think it has a causal implication here that isn't 
appropriate. Please remove this term throughout. 
 
Response: 
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We agree, and as described in response to Comment 1 above, we have replaced occurrences 
of “interact” and “interaction” with “associate” and “association”, respectively, throughout the 
manuscript, which resulted in a total of 83 replacements. Our edit for this specific sentence is as 
follows (Results, page 15): 
 

“whereas in IBD, it interacts with Acidaminococcaceae” changed to “whereas in IBD, it 
associates with Acidaminococcaceae”  

 
Reviewer 1, Comment 8 
 
lines 670-677: You included abundance info summarized at multiple taxonomic levels, all in the 
same abundance matrix. I see that you CLR transformed these profiles? I'm not sure if this is 
totally appropriate. These profiles can't really be considered relative abundances anymore, 
because you're multi-counting reads from taxa (i.e. you have species abundances, but you also 
have the abundance of the genus and the reads mapping to that species also contribute to the 
genus abundance). Why not calculate relative abundances for each taxonomic rank (i.e. relative 
frequencies that all sum to 1.0) and CLR transform each of these ranks separately, and then 
combine the profiles? 
 
Response: 
 
This is an important point. To clarify, for each disease dataset, we summarized taxa at different 
taxonomic ranks by keeping read counts (not relative abundance)4–6, concatenated these 
summarized rank matrices into a combined taxa matrix, and applied CLR transform on the 
combined matrix to obtain the taxa matrix used in our integration analyses. This approach of 
applying CLR transformation on the combined taxa matrix results in a matrix that is 
compositionally coherent and has a uniform transformation across taxa, whereas applying CLR 
transform on each taxonomic rank separately and then combining them would result in a matrix 
with multimodal distribution (corresponding to composition at each taxonomic rank) that can 
potentially bias the variable selection by lasso approach. In addition, we hypothesize that the 
choice of transformation approach would have little effect on the resulting taxa profiles. To test 
this hypothesis, we examined the correlation between these two approaches of transformation. 
We generated the taxa profiles based on the two transformation approaches: (i) CLR transform 
on combined taxa matrix, and (ii) CLR transform each taxa rank separately and combine them. 
We found that the profiles are significantly correlated (p-value < 0.05) with an average 
Pearson’s correlation of 0.92, and an average Spearman correlation of 0.87 across samples in a 
dataset. A new Figure S5 included below shows scatter plots depicting the correlation between 
the taxa profiles resulting from these two transformation approaches on a few randomly 
selected samples from the CRC microbiome dataset. This concordance between the taxa 
profiles resulting from the two transformation approaches implies that the results from our 
downstream analyses are unlikely to be affected by which of the two transformation approaches 
is used. We have now updated the manuscript to clarify this as follows (Methods, page 24): 
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“To account for compositionality effects in microbiome datasets, we tested two different 
approaches for performing centered log ratio (CLR) transformation on our taxonomic 
data for each disease: i) we concatenated the summarized taxa matrices (count data) 
into a combined taxa matrix, and then applied CLR transform on the combined matrix, ii) 
we CLR transformed each taxa rank, and then concatenated them into a combined 
matrix. We verified whether these two transformation approaches are correlated with 
each other. To do so, we compared the taxa abundance profiles resulting from the two 
transformation approaches, and found that the two profiles are significantly correlated (p-
value < 0.05) with an average Pearson’s correlation of 0.92, and an average Spearman 
correlation of 0.87 across samples in a dataset (see Figure S5 for example correlations 
between the taxa profiles resulting from the two transformations on a few randomly 
selected samples from the CRC microbiome dataset). This concordance between the 
taxa profiles resulting from the two transformation approaches implies that the 
transformation approach is unlikely to impact downstream results. The first approach 
generates a taxa profile that is compositionally coherent and has a uniform 
transformation across taxa in a dataset, whereas the second approach results in a taxa 
profile with multimodal distribution (corresponding to composition at each taxonomic 
rank) that might bias the variable selection by lasso approach. Hence, we adopted the 
first approach for transforming our taxonomic data”. 
 

 
 

Supplementary Figure S5: Scatterplots showing correlation between taxa profiles 
generated from two transformation approaches across three random samples from CRC 
disease cohort. The x-axis shows taxa profile resulting from one approach, where we 
summarize taxa ranks, combine summarized rank matrices, and CLR transform the 
combined matrix (CLR_taxa_combined), and the y-axis represents taxa profiles resulting 
from the second approach, where we summarize taxa ranks, CLR transform each taxa 
rank, and combine the CLR-transformed taxa ranks (CLR_taxa_ranks). 

 
Reviewer 1, Comment 9 
 
lines 738-743: I think I'm ok with this, but it's pretty ad hoc. And going back to my prior 
comment, this kind of univariate p-value calculation kinda defeats your prior argument about the 
power of a multi-variate approach (if by 'power' you are interested in identifying individual 
'significant' features). 
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Response: 
 
We thank the reviewer for this comment, and agree with the general statement. If we 
understand correctly, the reviewer is referring to our approach of assessing the significance of 
sparse CCA components. We have used a cross-validation approach to test for significance of 
each pair of canonical variables (or a component). Witten et al., whose work is the basis of our 
implementation of sparse CCA analysis, have used a similar approach using training set/test set 
for assessing the robustness of penalized canonical variates 7. As mentioned in our response to 
Comment 2 above, we agree with the reviewer’s point regarding statistical power of identifying 
individual significant features (please see Comment 2 above for full details and updates to 
manuscript text). We want to clarify that in the case of sparse CCA, we are testing significance 
at component level, i.e. for a group of host genes correlated with a group of gut microbes. We 
are not testing the significance of the individual features selected, which depends on the level of 
sparsity penalization. Hence, when a component is selected, we cannot claim that every 
individual gene/taxa belonging to that component is significant at FDR < 0.1. However, the 
validity of results at the pathway level would be robust to how the gene sets were obtained; for 
example, if they are all Type I errors, we would not expect significant enrichment of specific 
pathways. We have now added the following text in the manuscript to clarify this (Methods, 
page 28): 
 

“Note that here we are testing for significance at the component level, i.e. for a group of 
host genes correlated with a group of gut microbes, rather than the significance of the 
individual features selected, which depends on the level of sparsity penalization”. 

 
Reviewer 1, Comment 10 
 
line 913: How exactly did you remove gender and disease sub-type associations? 
 
Response: 
 
Since our lasso model includes gender and disease-subtype as covariates along with gut 
microbiome abundance in the predictor matrix (page 31), our model output includes host gene-
gender and host gene – disease-subtype associations, in addition to host gene-microbe 
associations. We used this output to filter out any significant host gene-gender and host gene – 
disease-subtype (applicable to IBD and IBS) associations (FDR < 0.1) to only retain host gene-
microbe associations for each disease cohort. We have modified the text in manuscript to clarify 
this as follows (Methods, page 32):  
 

“We filtered out any significant and stability-selected host gene-gender and host gene – 
disease-subtype (applicable to IBD and IBS) associations from the output to retain 
significant and stability-selected host gene-microbe associations at FDR < 0.1”. 

 
Reviewer 1, Comment 11 
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line 939: How valuable is it to present more (potentially spurious) features by using a less 
stringent 0.2 cutoff? Why not just pick a consistent cutoff across the manuscript? 
 
Response: 
 
We thank the reviewer for pointing this out. We now adjusted this to report all results at a 
consistent FDR q-value cutoff of 0.1 throughout the manuscript. Please see a full description of 
these changes in our response to Comment 5; briefly, we have now updated our results to 
report host pathways enriched at FDR < 0.1 (instead of FDR < 0.2). This resulted in updates in 
Figure 3B, and multiple changes in Results and Methods sections. Specifically, we have now 
deleted the sentence highlighted here by the reviewer in the Methods section (previously line 
939):  

  
“Here, we used a more relaxed FDR threshold of 0.2 to present a larger number of 
biologically relevant host pathways”. 

 
 
Reviewer #2 (Remarks to the Author): 
 
Priya et al. present a computational approach for analysing host-gene and microbiome 
interactions and apply this approach to three datasets (CRC, IBD, IBS). While the underlying 
idea is interesting, I have several concerns: 
 
Major concerns: 
 
Reviewer 2, Comment 1 
 
Data processing was not done with the same pipeline. Previously generated host transcript read 
count files and OTU tables were used from the original publications of the data. Studies have 
shown that the same dataset processed with different bioinformatic pipelines result in very 
different outcomes. While the authors analyse the datasets separately to avoid batch affects 
(due to differences in sample collection, DNA extraction, library preparation) this is a bias that 
could be avoided by reprocessing the data. Also, the published datasets should be briefly 
described in the methods section with details on sample collection and data processing. 
 
Response: 
 
We thank the reviewer for this comment. We agree that processing by different bioinformatics 
pipelines can lead to different results; however, it is important to note that our study included 
data from three different disease cohorts -- data that was generated using different protocols for 
sample collection, handling, preparation, and sequencing. Previous studies have shown that 
batch effects introduced due to differences in data generation protocols, including sample 
collection, storage, DNA/mRNA extraction, PCR amplification, and sequencing cannot be 
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avoided by adopting a uniform data processing pipeline 8–10. Studies have shown that even 
when using the same data curation pipeline, biases in the data generation pipeline and batch 
effects still influence the assignment of taxonomic composition and gene expression profiles 9,11.  
Statistical approaches to correct for batch effects have been proposed for gene expression and 
microbiome datasets, however most of these approaches are relevant to testing differences 
between cases and controls, and do not apply to integrative analyses 8,10. One way to mitigate 
batch effects across multiple datasets is to use meta-analyses techniques, where each dataset 
is analysed separately followed by comparison across results from each analysis. While these 
meta-analysis approaches have disadvantages, like reduced statistical power, they have been 
extensively used to minimize batch effects when integrating genomic data from multiple 
studies10, and have recently been useful in microbiome studies 12,13. Therefore, we chose to 
perform our data analysis within each disease cohort, and compare the results across cohorts at 
the last analysis step. We have now incorporated these details in the manuscript to clarify our 
approach further (Methods, page 25): 

 
“Integrating host gene expression and gut microbiome data across diseases 
 
Our study includes three different disease cohorts with disparate protocols for sample 
collection, handling, preparation, and sequencing. Previous studies have shown that 
differences in data generation protocols, including sample collection, storage, 
DNA/mRNA extraction, PCR amplification, and sequencing can lead to potential batch 
effects regardless of the data processing pipeline used 150–152. Studies have shown that 
even when using the same data curation pipeline, biases in the data generation pipeline 
and batch effects still influence the assignment of taxonomic composition and gene 
expression profiles 151,176.  Statistical approaches to correct for batch effects have been 
proposed for gene expression and microbiome datasets, however most of these 
approaches are relevant to testing differences between cases and controls, and do not 
apply to integrative analyses 150,152. One way to mitigate batch effects across multiple 
datasets is to use meta-analyses techniques, where each dataset is analyzed separately 
followed by comparison across results from each analysis. While these meta-analysis 
approaches have disadvantages, like reduced statistical power, they have been 
extensively used to minimize batch effects when integrating genomic data from multiple 
studies152, and have recently proven useful in microbiome studies 154,155. Therefore, we 
chose to perform our data analysis within each disease cohort, and compare the results 
across cohorts at the last analysis step”. 

 
Previous studies have also shown that different clustering approaches, such as operational 
taxonomic units (OTUs), zero-radius OTUs ( zOTU), and amplicon sequence variants (ASVs), 
and specific pipeline settings have minor influences on taxonomic classification compared to 
experimental factors such as choice of sequencing primer 14. To check this in our dataset, we 
re-analyzed a few samples from some of our disease dataset using the DADA2 pipeline, which 
uses ASV clustering, and compared to the OTU clustering that was used to process the data 
used in our study. We found that the estimated taxa profiles are correlated between the two 
approaches at different taxonomic levels. For example, in a few CRC samples, we found that 
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taxa profiles obtained using OTU clustering and ASV clustering are significantly correlated at 
different taxonomic levels, including at phylum (Spearman rho = 0.89, p-value = 0.0068), class 
(Spearman rho = 0.68, p-value = 0.029), and genus (Spearman rho = 0.6, p-value = 0.088) 
levels. This implies that different processing pipelines may not alter the taxonomic composition 
drastically to influence the downstream analyses. We have now included the details of this 
analysis in the manuscript (Methods, Page 26), and also added a discussion in the manuscript 
about the effect of different processing pipelines and how we accounted for potential batch 
effects across disease cohorts (Discussion, Page 18): 
 
Methods, Page 25: 
 

“Previous studies have also shown that different clustering approaches, such as 
operational taxonomic units (OTUs), zero-radius OTUs ( zOTU), and amplicon sequence 
variants (ASVs), and specific pipeline settings have minor influences on taxonomic 
classification compared to experimental factors such as choice of sequencing primer153. 
To check this in our dataset, we re-analyzed a few samples from some of our disease 
dataset using the DADA2 pipeline177, which uses ASV clustering, and compared to the 
OTU clustering that was used to process the data used in our study. We found that the 
estimated taxa profiles are correlated between the two approaches at different 
taxonomic levels. For example, in a few CRC samples, we found that taxa profiles 
obtained using OTU clustering and ASV clustering are significantly correlated at different 
taxonomic levels, including at phylum (Spearman rho = 0.89, p-value = 0.0068), class 
(Spearman rho = 0.68, p-value = 0.029), and genus (Spearman rho = 0.6, p-value = 
0.088) levels. This implies that different processing pipelines may not alter the taxonomic 
composition drastically to influence the downstream analyses”. 

  
Discussion, Page 18: 
 

“Another caveat of our study is that it includes three different disease cohorts with 
disparate protocols for sample collection, preparation, sequencing, and data processing. 
Although this may lead to batch effects (see e.g.150–152), studies have shown that 
different clustering approaches, such as operational taxonomic units (OTUs), zero-radius 
OTUs ( zOTU), and amplicon sequence variants (ASVs), and specific pipeline settings 
have minor influences on taxonomic classification compared to experimental factors 
such as the choice of sequencing primer 153. Indeed, a re-analysis of representative 
samples in our dataset using a different pipeline found that the estimated taxonomic 
profiles are correlated between the two approaches at different taxonomic levels (see 
Methods). This implies that different processing pipelines may have a minor effect on the 
taxonomic composition and are unlikely to influence the downstream analyses. In 
addition, to mitigate overall batch effects across disease cohorts in our study, we 
adopted a meta-analysis approach, where we performed our integration analysis within 
each disease cohort separately, and compared the results across cohorts at the last 
analysis step. While meta-analysis approaches have disadvantages, like reduced 
statistical power, they have been extensively used to minimize batch effects when 
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integrating genomic data from multiple studies 152, and have recently proven useful in 
microbiome studies 154,155” 

 
As per reviewer’s suggestion, we have now updated the methods section in the manuscript to 
include additional descriptions for the published datasets used in our study, including details on 
sample collection and data processing for each dataset (Methods, pages 21–23): 
 
Methods, page 21 (CRC samples and data): 
 

“We used 88 pairs of gut microbiome and host gene expression samples from 44 
patients, with primary tumor and normal tissue samples taken from each individual. 
These samples were characterized and described in a previous study 3. Briefly, these 
de-identified samples were obtained from the University of Minnesota Biological 
Materials Procurement Network (Bionet). Tissue pairs were resected concurrently, 
rinsed with sterile water, flash frozen in liquid nitrogen, and characterized by staff 
pathologists. Detailed cohort characteristics for this dataset are included in 
Supplementary Table S1”.  

 
Methods, page 22: 

 
“16S rRNA sequencing data. The microbiome dataset used in this study was generated 
and published previously 3. Briefly, total DNA was isolated from the flash-frozen tissue 
samples and their associated microbiomes by adapting an established nucleic acid 
extraction protocol 156. DNA isolated from colon samples was quantified by quantitative 
PCR (qPCR), V5-V6 regions of the 16S rRNA gene were PCR amplified and sequenced 
using the Illumina MiSeq (v3 Kit) with 2 × 250 bp paired-end protocol. The forward and 
reverse reads were merged and trimmed using USEARCH v7 161. The merged and 
filtered reads were used to pick operational taxonomic units (OTUs) with QIIME 
v.1.7.0162. We used the unnormalized and unfiltered OTU table in tab-delimited format, 
representing mucosal microbiome data from 44 tumor and 44 patient-matched colon 
tissue samples. We describe the steps for preprocessing microbiome data for integration 
analysis below”. 

 
For the previously unpublished host gene expression data for CRC, we have extensively 
described the RNA-seq protocol used, including details on mRNA extraction, library preparation, 
sequencing, alignment, and quality control (see Methods, page 21). 
 
Methods, page 22 (IBD samples and data): 
       

“We used previously generated and published host gene expression (RNA-seq) and 
mucosal gut microbiome (16S rRNA) data for the IBD cohort generated as part of the 
HMP2 project 25,28.  These include data from colonic biopsy samples collected from 78 
individuals, including 56 individuals with IBD, and 22 individuals without IBD (“non-IBD” 
in HMP2). Out of 56 IBD patients, 34 patients had Crohn’s disease (CD) and 22 patients 
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had ulcerative colitis (UC).  Detailed protocol for sample collection and processing is 
described at http://ibdmdb.org/protocols. Briefly, biopsies were collected during the initial 
screening colonoscopy and stored in RNAlater for molecular data generation (host and 
microbial, stored at –20 °C). DNA and RNA were extracted from RNAlater-preserved 
biopsies using the AllPrep DNA/RNA Universal Kit from Qiagen. For microbiome 
profiling, bacterial genomic DNA was extracted from the total mass of the biopsied 
specimens using the MoBIO PowerLyzer Tissue and Cells DNA isolation kit, 16S rDNA 
V4 region was PCR amplified and sequenced in the Illumina MiSeq platform using the 2 
× 250 bp paired-end protocol. Read pairs were demultiplexed and merged using 
USEARCH v7.0.1090 and clustered into OTUs using UPARSE algorithm161,163. For host 
gene expression data, mRNA was extracted from biopsy samples, followed by RNA-seq 
library preparation using a variant of Illumina TruSeq Stranded mRNA Sample 
Preparation Kit. Sequencing was performed according to the manufacturer’s protocols 
using either the HiSeq 2000 or HiSeq 2500 with 101bp paired-end reads. Data was 
analyzed using the Broad Picard Pipeline. 
 
Detailed cohort characteristics for this dataset are included in Supplementary Table S1. 
We downloaded metadata, host RNA-seq data, and microbiome data for these samples 
from http://ibdmdb.org in July 2018. We downloaded the unnormalized and unfiltered 
OTU table and host transcript read counts files in tab-delimited format. We describe the 
filtering and preprocessing steps for host gene expression and microbiome data below”. 

 
 
Methods, page 23 (IBS samples and data):  
 

“We used previously generated and published host gene expression (RNA-seq) and 
mucosal gut microbiome (16S rRNA) data for the IBS cohort 8. These include data from 
colonic biopsy samples collected from 42 individuals, including 29 individuals with IBS, 
and 13 healthy individuals (non-IBS). These samples were collected at Mayo Clinic 
Rochester, and described in detail by Mars et al. 8. Briefly, for the microbiome data, DNA 
was extracted from biopsy sections using the QIAGEN PowerSoil kit (QIAGEN, 
Germantown, MD, USA). The V4 region of the 16S rRNA gene was amplified, followed 
by paired-end 2x250 bp sequencing on an Illumina MiSeq. Trimming of adaptors, quality 
control, and merging of reads was performed using Shi7 164. Amplicon sequences were 
aligned to the 16S rRNA genes using BURST 165. For host gene expression data, mRNA 
was extracted from biopsy samples, followed by RNA-Seq library preparation using the 
Illumina TruSeq RNA Library Prep Kit v2. Sequencing was performed on an Illumina 
HiSeq-2000 with 101bp paired-end reads. Gene expression counts were obtained using 
the MAP-RSeq v.2.0.0 that consists of alignment with TopHat 2.0.12 against the human 
hg19 genome build, and gene counts with the Subread package 1.4.4 166–168. 
 
Detailed cohort characteristics for this dataset are included in Supplementary Table S1. 
We obtained the unnormalized and unfiltered OTU table and host transcript read count 
files in tab-delimited format via personal communication with authors of the paper 8. For 
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some individuals, samples were collected at two time points. For these cases, we 
averaged the gene expression levels and microbiome abundance measurements across 
the two time points. This is supported by a recent study showing that “omics” methods 
are more accurate when using averages over multiple sampling time points 169. We 
describe the filtering and preprocessing steps for host gene expression and microbiome 
data below”.        

 
 
Reviewer 2, Comment 2 
 
The authors state that their aim is to facilitate new insights into the molecular mechanisms for 
different disease and that their analysis presents the power of integrating gut microbiome and 
host gene expression data to provide disease insights. The authors did a very thorough 
comparison with other published studies, but which specific novel hypotheses were generated? 
What type of validation experiments would the authors suggest based on groups of microbes 
and groups of genes that correlate in abundance/expression? Could a proof-of-principle 
experiment be added to validate their approach? 
 
Response: 
 
This is an important point -- we agree that this was not described well in the previous version of 
the manuscript, and have now edited the manuscript to clarify the novel hypotheses and 
potential validation experiments. Briefly, we believe that many novel hypotheses, in the form of 
specific host gene-microbe associations, are presented in the results. We have now added the 
following text to the manuscript to clarify this (Discussion, page 19): 
  

“Our study uncovered new insights at the systems level; for example, we found that gut 
microbes that have been associated with all three diseases, such as Streptococcus, 
associate with different host genes in each disease, suggesting that the same microbial 
taxon can contribute to different health outcomes through potentially regulating the 
expression of different host genes in the colon. We also identified numerous specific 
hypotheses in the form of disease-specific associations; for example, we found that 
Bacteroidales is associated with host genes CCR2 and FPR1 in IL-10 signaling host 
pathway in colorectal cancer; that Peptostreptococcaceae is associated with MAPK3 
and VIPR1 that are part of G protein-coupled receptors pathways in inflammatory bowel 
disease; and that Bacteroides massiliensis is associated with the host gene PLA2G4A, a 
member of prostaglandin biosynthesis pathway, in irritable bowel syndrome”.  

 
Future validation experiments using cell cultures and animal models can be designed to test 
these hypotheses to elucidate the causal role and mechanism of host gene-microbiome 
interactions. For example, using human cell culture experiments 29, one can spike-in specific 
bacteria of interest and quantify whether change in abundance of said bacteria modulates gene 
expression in host cells. In addition, in vivo studies can be used to assess the impact of specific 
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bacteria on host gene expression in specific disease contexts 30. We have added the following 
text in the manuscript to specify this (Discussion, page 18): 

 
“For example, using human cell culture experiments 22, it is possible to measure the 
direct effect of change in abundance of specific bacteria on host gene regulation. 
Moreover, in vivo studies using animal models of specific diseases can assess the 
impact of specific bacteria on host gene expression and the effect of this association on 
host health 149”. 

 
A proof-of-principle experiment is a good idea; however, we believe it is out of scope of our 
current work. We believe that our work is of importance as it stands, comprising the first 
systems-level characterization of host gene-microbe associations across gastrointestinal 
diseases, and providing a machine learning framework that can be utilized by future studies for 
joint analyses of multi-omic datasets. We expect that future studies, focused on specific 
diseases, host genes, or bacterial taxa, will offer experimental validation of some of the 
candidate associations presented here. 
 
Reviewer 2, Comment 3 
 
For the analysis they “considered only associations that were found in patients and not in 
controls”. What about loss of function in disease? 
 
Response: 
 
We thank the reviewer for pointing this out. If we understand correctly, the reviewer is referring 
to lasso results, describing associations between specific host genes and microbial taxa. To test 
the effect of loss-of-function in disease (i.e., associations that are found in controls and not in 
patients), we performed the following analysis using a two-step approach: 
 
i) First, we identified host pathways that are enriched only in controls, and not in cases at FDR < 
0.1. In IBD and IBS, no pathways were found to be enriched in controls at FDR < 0.1, so we 
could not identify any functional trends in control associations for these two disease cohorts. In 
CRC, the top 10 control-specific pathways at FDR < 0.1 are related to transcriptional regulation, 
rRNA expression, DNA methylation, and other such general cellular function categories that did 
not provide any useful insight on loss of function in disease. 
 
ii) Next, we identified any host pathways that were enriched in both cases and controls, and 
tested for differential enrichment of those pathways between cases and controls using a 
comparative log-odds ratio approach 1. The full details of this approach are described in our 
response to Reviewer 1, Comment 4, and updated text in the manuscript in the Methods 
section, pages 29 and 34. As mentioned above, we did not find any host pathways enriched for 
control associations in IBD and IBS, hence no overlapping pathways were found for cases and 
controls for these two diseases. In CRC, we found two pathways that overlapped between 
cases and controls, but the differential enrichment was not statistically significant at FDR < 0.1.  
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Overall, these analyses did not yield any specific functional trends in the control associations in 
CRC, IBD, and IBS cohorts. Hence, we only focused on case-specific associations and 
pathways across diseases in this study. We have now updated the manuscript to incorporate 
these analyses and findings (Methods, page 35): 
 

“To identify any loss of function in disease (i.e., associations that are found in controls 
and not in cases), we performed analysis at pathway level to determine functional trends 
in control associations compared to case associations. To do so, we first determined any 
host pathways that were found enriched only in controls, and not in cases at FDR < 0.1. 
In IBD and IBS, no pathways were found to be enriched in controls at FDR < 0.1, so we 
could not identify any functional trends in control associations for these two disease 
cohorts. In CRC, top 10 control-specific pathways at FDR < 0.1 are related to 
transcriptional regulation, rRNA expression, DNA methylation, and other such general 
cellular function categories that did not provide any useful insight on loss of function in 
disease. Additionally, as mentioned above, we did not find any pathways differentially 
enriched in controls vs cases in any disease cohort. Hence, given that we did not find 
any specific functional trends in the control associations in CRC, IBD, and IBS cohorts, 
we only focused on case-specific associations and pathways across diseases in this 
study”.                

 
Reviewer 2, Comment 4 
 
The identification of generalisable disease-specific characteristics is challenging on such small 
datasets with less than 100 participants per disease. The microbiome is highly variable making 
the replication of disease-associated species even across large cohort studies with hundreds of 
samples challenging. Hence investigating functional implications of microbial shifts may be a 
more promising avenue. Conclusions such as “these associations are not found in IBD or IBS, 
and are unique to CRC” are too general/overstating the findings and it should be clearly stated 
that this refers to this specific cohort analysis. 
 
Response: 
 
We thank the reviewer for this important point, and agree with the comment about challenges 
associated with generalizability of disease-specific associations due to variability of microbial 
composition across disease cohorts. We agree that investigating the functional repertoire of 
microbial changes would be a promising future direction. We have now modified the statement 
highlighted by the reviewer as well as other statements throughout the manuscript to clarify that 
our conclusions are specific to the cohort used in this work:  
 
Discussion, page 16: 

 
“These associations are not found in IBD or IBS, and are unique to CRC in our study 
cohort”. 
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We also added a more general statement to the Discussion, stating that the results described 
in the paper refer to this specific cohort analysis (page 19):  

 
“We note that it might be challenging to generalize some of the results found here, as 
microbiome profiles may vary across individuals and diseases. Hence, investigating the 
functional repertoire of microbial changes, and its association with host genomic data, 
would be a promising future direction”.   

 
In addition, we added text in other locations clarifying this: 
 
Discussion, page 16: 
 

“For example, we found that the expression of host gene PINK1, which regulates the 
PI3-kinase/AKT signaling pathway 125, is associated with the abundance of Collinsella in 
CRC, Peptostreptococcaceae in IBD, and Blautia in IBS in our study”. 
 

Results, page 7: 
 

“In addition, we identified 102 disease-specific host pathways that are associated with 
gut microbes, including 52 CRC-specific, 25 IBD-specific, and 25 IBS-specific pathways 
in our study cohorts”. 
 

Results, page 13: 
 

“Streptococcus also shows a disease-specific pattern of association with host gene 
expression in our study cohort”. 

       
Reviewer 2, Comment 5 
 
The authors describe the use of supercomputing nodes for their analysis. Did the analysis of 
these relatively small dataset require that much compute power? How will this be scaled to 
hundreds of samples? Or is the purely a feature provided as part of their method? Some 
information on how long the cohort analysis took should be provided. 
 
Response:  
 
Our parallel processing framework implemented on supercomputing nodes is built to overcome 
computational bottlenecks posed by high dimensionality, i.e. the large number of features in 
host transcriptome and microbiome data. We implemented a parallel framework to build gene-
wise lasso models for over 12,000 host genes, where each model includes hundreds of 
microbial taxa as covariates. Thus, usage of supercomputing nodes here is mainly dictated by a 
large number of features, not by the number of samples in such datasets (although this 
framework can also improve scalability of models with larger sample sizes). We have clarified 
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this in the manuscript, and also reported the time taken for analysis across the cohorts 
(Methods, page 32): 
 

“We leveraged supercomputing nodes to implement a parallel processing framework to 
allow scalable computation for the high dimensional datasets included in this analysis. 
We implemented a parallel framework for executing the gene-wise lasso analysis, where 
we parallelized execution of lasso models on host genes across multiple nodes and 
cores on a compute cluster from Minnesota Supercomputing Institute. Our framework 
scalably computes gene-wise models for over 12,000 host genes, where each model 
includes hundreds of microbial taxa as covariates. We used job arrays to parallelize our 
analysis on multiple nodes on the cluster. Additionally, we used the R packages 
doParallel (version 1.0.15) and foreach (version 1.4.7) to run parallel processes on 
multiple cores of each compute node. Our parallel processing framework using 5 
compute nodes took an average of 5 hours 30 minutes per disease cohort”.        

 
Reviewer 2, Comment 6 
 
It’s great that the authors made the code available on github, however, a description of the 
different scripts and a tutorial is missing. 
 
Response: 
 
We thank the reviewer for this suggestion. We have now added a tutorial for our pipeline in the 
github repository that can be accessed here: 
https://github.com/blekhmanlab/host_gene_microbiome_interactions/tree/main/Tutorial. This 
tutorial includes code that can be used to reproduce the integration analysis in our paper, 
including the sparse CCA and lasso models, and will be useful for researchers interested in 
running the integrative machine learning framework on their data. We have also added 
descriptions of the different scripts. 
 
Reviewer 2, Comment 7 
 
What is their theory behind the disease-specific host-microbe crosstalk? Difference in host 
genetics? 
 
Response: 
 
This is an important point. A potential theory for the disease-specific pattern of host-microbe 
crosstalk is that gut microbes, either through direct interaction with colonic epithelium, or 
through indirect interaction (e.g. via production of specific metabolites), could regulate host gene 
expression differently in specific disease contexts. Host genetics, diet, pharmaceuticals, inter-
microbial interactions, and microbial interactions with the host immune system could all 
potentially play a role in shaping this disease-specific host gene-microbe crosstalk. We have 
now added the following text to the manuscript to clarify this (Discussion, page 16): 
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“The disease-specific pattern of host gene-microbe crosstalk suggests that gut microbes, 
either through direct interaction with host cells, or through indirect interaction (e.g. via 
production of specific metabolites), may regulate host gene expression differently in 
specific disease contexts. Host genetics, diet, pharmaceuticals, inter-microbial 
interactions, and microbial interactions with the host immune system could all potentially 
play a role in shaping this disease-specific host gene-microbe crosstalk”.    

 
Minor concerns: 
 
Reviewer 2, Comment 8 
 
The authors should clarify in the manuscript (not just the methods section) that most of the 
presented data is published data and also compare their analysis to the original findings. 
 
Response:  
 
We thank the reviewer for pointing this out, and we agree that this should have been more 
explicitly mentioned. Indeed, all datasets, except the host gene expression data for colorectal 
cancer, have been published. In addition to citing the original studies when describing the study 
cohorts, (Results, page 4, lines 136–140), we now also included a sentence to clarify this 
further (Results, page 4): 
 

“All datasets, except the host gene expression data for CRC, have been previously 
published as individual studies 3,8,25,28. Our study performed an integrative analysis to 
identify host gene-microbiome associations across these datasets using a novel 
machine learning-based framework”.  

 
To compare our analysis and findings with those described in the previous studies that 
published these datasets, we have added the following statements to the manuscript 
(Discussion, page 17): 
 

“While the disease cohorts used in our study have been previously published 3,8,25,28, to 
the best of our knowledge, our study is the first to perform a comprehensive 
characterization of host gene-microbiome crosstalk within and across these disease 
cohorts. In the previous study that described the CRC cohort, Burns et al. characterized 
the tumor-associated microbiome, and how it varies in composition compared to the 
microbiome of adjacent matched normal colon tissue 3. For example, they reported loss 
in abundance of multiple taxa within the order Bacteroidales in tumor-associated 
microbiota compared to normal samples. Here, we found that Bacteroidales is 
associated with host genes CCR2 and FPR1, which are part of the tumor-associated IL-
10 signaling pathway. The previous study that described the IBD cohort compared IBD 
versus non-IBD samples and found differences in transcriptional activity and abundance 
among taxa belonging to class Clostridia, and dysregulation of immune-related host 
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pathways in disease state 25,28. Our integrative analysis for the same cohort revealed 
associations between immunoinflammatory pathways and members within class 
Clostridia, including Peptostreptococcaceae and Clostridium sensu stricto 1. In the 
original study describing the IBS cohort, Mars et al. found overrepresentation of 
Streptococcus species in patients with IBS compared to healthy individuals, and 
identified associations between fecal microbes, such as Peptostreptococcaceae, with 
host genes implicated in peptidoglycan binding 8. Our analyses revealed several novel 
associations between closely interacting, tissue-adherent microbiome and host genes 
and pathways in IBS, including associations between Streptococcus and host genes that 
modulate macrophage inflammatory response, and between Peptostreptococcaceae 
and host pathways that regulate intestinal homeostasis and inflammation”. 

                     
 
Reviewer 2, Comment 9 
 
Different FDR threshold were used at various places. 
 
Response: 
 
We thank the reviewer for pointing this out. We have now fixed this to report all results at a 
considentent FDR threshold of 0.1 throughout the manuscript. This issue was also raised by 
Reviewer 1 - please see our full description of the changes above in response to Reviewer 1, 
Comment 5. Briefly, we have now updated our analysis to use a consistent cutoff of FDR = 0.1 
throughout the manuscript. This has resulted in the multiple modifications throughout the 
manuscript, including an updated Figure 3B, and several edits in Methods and Result sections. 
We highlight a few changes below; please refer to the response to Reviewer 1, Comment 5 to 
see all the changes. 
 
 Results, page 10: 
 

“We identified 18 host pathways that are unique to each disease, including 4 CRC-
specific, 9 IBD-specific, and 5 IBS-specific pathways that associate with unique gut 
bacteria (Figure 3B, Fisher’s exact test, Benjamini-Hochberg FDR < 0.1, Supplementary 
Table S9, see Methods)”. 

 
We have modified the method section and Supplementary Table S9 accordingly (Methods, 
page 34): 
 

 
“Using this approach, we identified 18 host pathways that are unique to each disease, 
including 4 CRC-specific, 9 IBD-specific, and 5 IBS-specific pathways that associate with 
unique gut bacteria (FDR < 0.1, Supplementary Table S9)”. 

  
We have deleted the following sentence from the manuscript (Methods, previously page 28): 
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“Here, we used a more relaxed FDR threshold of 0.2 to present a larger number of 
biologically relevant host pathways”. 

 
Reviewer 2, Comment 10 
 
Why did the IBD dataset only have 121 taxa? Both the CRC and IBS dataset had twice as many 
taxa. 
 
Response: 
 
We thank the reviewer for pointing this out. Indeed, we found that the number of unique 
taxonomic groups found in the IBD dataset was 40% of those found in CRC and IBS datasets. 
This implies that the IBD dataset has lower bacterial diversity than the other two disease 
datasets. Previous studies have reported reduced bacterial diversity in gut mucosal microbiome 
in patients with IBD compared to individuals without this disease31–33, including the HMP2 study 
that generated and described the IBD dataset used in our study19,20. On the other hand, 
previous studies that generated and characterized the CRC and IBS datasets used in our work 
have reported increased microbial diversity in these conditions15,22. We have now added the 
following to the manuscript to clarify this (Methods, page 25): 
 

“We observed that the number of unique taxonomic groups found in the IBD dataset was 
40% of those found in CRC and IBS datasets, thus implying that the IBD dataset has 
lower bacterial diversity than other two disease datasets. This observation is consistent 
with previous studies that have shown reduced bacterial diversity in gut mucosal 
microbiome in patients with IBD compared to individuals without this disease 173–175, 
including the HMP2 study that generated and described the IBD dataset used in our 
study 25,28. In addition, previous studies that generated and characterized the CRC and 
IBS datasets used in our work have reported increased microbial diversity in these 
conditions 3,8”. 

 
Reviewer #3 (Remarks to the Author): 
 
In this manuscript by Priya et al., the relationship between microbiome composition and host 
gene expression is examined in colonic mucosal biopsy samples. In particular, case control 
studies of three separate diseases were conducted (colorectal cancer, inflammatory bowel 
disease, and irritable bowel syndrome), with RNA-seq being used to measure host gene 
expression and 16S rRNA gene sequencing being used to measure microbiome taxonomic 
composition. Sparse canonical correlation analysis and clr-lasso were applied to the data to 
identify microbe-host gene associations, and those were compared across diseases. Overall, 
this is a really impressive study: methods are suitable and very well described, results are 
informative, and the manuscript is very well-written, with many connections to previous literature 
to put results in context. A study like this can serve as a framework for others interested in 
combining these two types of datasets while conserving power to detect associations. 
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Minor comments: 
 
Reviewer 3, Comment 1 
 
1. Results are difficult to interpret when multiple levels of bacterial taxonomy are analyzed at the 
same time, rather than level by level. For example, in Figure 2, both Micrococcaceae and 
Micrococcales are highlighted under the IBD RAC1 pathway panel in B. Is this largely the same 
signal, as these groups are nested, or are there distinct signals at different taxonomic levels? It 
may be more interpretable for the reader to focus on one level for the main text (maybe OTU or 
genus level), with other levels falling to the supplement. 
 
Response: 
 
We thank the reviewer for pointing this out. While our approach identifies distinct signals at 
different taxonomic levels, we agree that highlighting multiple levels of taxa at the same time 
can be difficult to interpret. To address this, we have now completely updated Figures 2B, 2C, 
and 2D to visually distinguish microbial taxa that are at different taxonomic levels. Specifically, 
taxa that belong to the same taxonomic order are now displayed as overlapping clusters in the 
image (see below). For example, in the CRC component for RAC1 pathway (Figure 2B), 
Streptococcus, Leuconostoc, and Lactococcus, which belong to a common taxonomic order, 
Lactobacillales, are shown in an overlapping cluster. Similarly, in the IBD component for RAC1 
pathway, Micrococcales and Micrococcaceae, which belong to the clade Micrococcales, are 
shown clustered together (Figure 2, Results, page 6).         
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We have also updated the legend for Figure 2 to indicate this modification (Results, page 7): 
 

“Microbial taxa belonging to a common taxonomic order are shown as overlapping 
triangles”. 

 
To explain our reasoning for performing our analysis by combining all taxonomic levels: we 
believe this approach allows us to identify signals found at any taxonomic level and avoid 
missing potentially relevant associations. At the same time, given the large number of features 
in high-dimensional datasets like gene expression and microbiome data, this approach 
circumvents the computationally time-intensive analysis that would be required if each 
taxonomic level was analyzed separately. Using this approach, we found that our penalized 
approaches using sparse CCA and lasso do not select all taxonomic levels from a given clade, 
rather they identify one or more microbial taxa for which abundance is associated with 
expression of host gene(s), thus depicting that our approach captures distinct signals at different 
taxonomic ranks. In theory, if we repeated our integration analyses separately at different 
taxonomic levels, we would likely identify the same set of taxa as our current approach that 
uses a combined taxonomic profile. Hence, the results would be effectively the same whether 
we analyze each taxonomic level separately or use multiple levels together. To clarify this in the 
paper, we added the following to the Methods (page 27): 
 

“We chose to combine all taxonomic levels in a single model, rather than run a separate 
model for each taxonomic level. Given the large number of features in high-dimensional 
datasets like gene expression and microbiome data, this approach circumvents the 
computationally time-intensive analysis that would be required if each taxonomic level 
was analyzed separately. Our approach allows us to identify signals found at any 
taxonomic level and avoid missing potentially relevant associations”.        

 
Reviewer 3, Comment 2 
 
2. page 4, line 136/methods: More description of the case/control design for each of the three 
disease types listed would be beneficial for the reader. What were the criteria used to “match” 
case with control? For some of the diseases (IBD and IBS), patients and controls are described 
as “pairs”, but there are unequal case and control sample sizes. 
 
Response:  
 
We agree that this description was lacking, and have now edited the text to better describe the 
case/control design. To clarify, we use the term “pairs” to refer to a set of two samples -- a 
microbiome sample and host gene expression sample -- obtained from the same individual. Our 
study includes 208 such pairs of microbiome and host gene expression samples (416 samples 
in total). These 208 paired microbiome and host gene expression samples include 88 pairs of 
samples in CRC, 78 pairs of samples in IBD, and 42 pairs of samples in IBS. Our usage of the 
term “match” is specifically with respect to the CRC cohort, where we have patient-matched 
tumor and normal biopsies (i.e., matched case (tumor) and control samples from the same 
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individual). Such patient-matched samples only exist for our CRC cohort, and not for IBD and 
IBS, where case and control samples were collected from different individuals. We have now 
modified the statement in text to clarify this and provide more description of case/control design 
for each disease cohort (Results, page 4): 
 

“For each individual in our study, we obtained a pair of samples -- a microbiome sample 
and a host gene expression sample. In total, across the three disease cohorts, our study 
included 208 such pairs of microbiome and host gene expression samples (416 samples 
in total). These 208 paired microbiome and host gene expression samples include 88 
pairs of samples in the CRC cohort (44 tumor and 44 patient-matched normal)3, 78 pairs 
of samples in the IBD cohort (56 patients and 22 controls)25,28, and 42 pairs of samples 
in the IBS cohort (29 patients and 13 controls; see Supplementary Table S1)8”. 

 
We have also edited the sentence in methods section to clarify this (Methods, page 21): 
 

“We used 88 pairs of gut microbiome and host gene expression samples from 44 
patients, with primary tumor and normal tissue samples taken from each individual”. 

 
We have replaced another occurrence of the term “matched” to avoid potential confusion 
(Results, page 5): 
 

Line 166: “matched host gene expression data and gut microbiome data” replaced with 
“paired host gene expression data and gut microbiome data”       

 
Reviewer 3, Comment 3 
 
3. Are the sample characteristics largely the same across the disease cohorts, or are there 
differences that might be confounded with “disease-specific configurations” of the microbiome 
and host gene expression? For example, if there were age differences, sex biases, different 
sampling locations, or treatments that might also influence gene expression or the microbiome, 
those would be worth clarifying for the reader and/or mentioning as a caveat to interpretation of 
the study. 
 
Response:  
 
This is an important point. We agree that some factors can be potential confounders that might 
influence host gene expression and/or the microbiome composition. In our lasso regression 
analysis, we accounted for some potential confounders, including sex and disease-subtypes, by 
including them as covariates in the model (Methods, page 30). However, some important 
potential confounding factors were not available for the samples used in our study; these 
include, for example, medication history and diet. To clarify this, as suggested by the reviewer, 
we now include this in the discussion of potential limitations of our study (Discussion, page 
19): 
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“Lastly, there are several host and environmental variables that could potentially 
influence the microbiome and/or host gene expression, including age differences, 
sampling locations, diet, treatment, and medication history, which are not available 
across our disease cohorts. Thus, these factors are potential confounders that might 
influence our results”. 

 
Reviewer 3, Comment 4 
 
4. Related to sample sizes mentioned above, the three diseases have different sample sizes, 
which seem to match with the number of associations detected in each individual disease and 
the overlaps between them (CRC and IBD have the most samples and the most identified 
associations (including overlap), while IBS has fewer (including fewer overlaps). Some 
discussion of this effect of sample size would be useful for the reader, as well as if the 
unbalanced case/control designs has any effect on the power of applying a lasso. 
 
Response: 
 
We thank the reviewer for this important observation. Indeed, the number of host gene-microbe 
associations identified in each disease cohort is correlated with the number of samples in that 
cohort, which also influences the number of overlaps identified between associations across 
disease cohorts. One option to test for the effect of sample size is downsampling; however, 
since we found no overlapping associations across diseases, downsampling cohorts to a 
common sample size did not change the outcome of overlapping associations across cohorts. 
We have now included these details in the manuscript (Methods, page 37): 
 

“For each disease cohort, we found that the number of host gene-microbe associations 
identified is correlated with the number of samples in that cohort. This also influences 
the number of overlaps identified across disease cohorts. One option to test for the 
effect of sample size is downsampling; however, since we found no overlapping 
associations across diseases, downsampling cohorts to a common sample size did not 
change the outcome of overlapping associations across diseases in our study cohort”. 

 
To address the unevenness in case and control sample size in our study cohorts, an issue that 
was also raised by Reviewer 1, we have now included multiple new analyses and modifications 
in the manuscript. These new analyses are described in detail in response to Reviewer 1, 
Comment 4, and edits in the manuscript are on pages 29, 33, and 34. Briefly, to identify 
associations that were found only in cases and not in controls within a disease cohort, we first 
checked for any potential overlap between case and control host gene-microbe associations 
without using any p-value or FDR cutoff. We found no overlapping host gene-microbe 
associations between cases and controls in CRC, IBD, and IBS cohorts. Next, we accounted for 
this imbalance between cases and controls at the pathway level by applying a differential 
enrichment analysis that is more robust to the different power due to sample size. We found that 
most host pathways are specific to case and control groups within each disease cohort. Please 
refer to the response to Reviewer 1, Comment 4 to see full details on analyses and 
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modifications to the text in the manuscript to address this. In addition, we have also added a 
discussion in the manuscript about the effect of different sample sizes across different cohorts 
and uneven case/control groups within each cohort (Discussion, page 18). 
 

“Another potential issue is the difference in sample size across disease cohorts and 
between the case and control groups within each cohort. These sample size differences 
can result in differences in statistical power when applying lasso regression. This can 
impact the number of host gene-microbe associations identified in each disease group, 
and the number of overlapping associations identified across cohorts. We attempted to 
minimize this effect by applying a differential enrichment analysis that is more robust to 
different levels of statistical power due to sample size (see Methods)”. 
 

Reviewer 3, Comment 5 
 
5. In addition to sample size, the number of detected human genes and taxa differ between 
disease sets. For the comparisons of overlapping vs. disease specific taxa/genes, were “core” 
sets of taxa and gene examined that were held constant between disease set? 
 
Response:  
 
This is an important point. To examine this issue further, we have now added to the manuscript 
extensive analyses that explore whether it is possible to use “core” sets of taxa and genes in our 
integrative analysis. The full details of the analysis and additions to the manuscript are 
described below; in brief, our results indicate that although many host genes are expressed in 
all three disease cohorts, microbial taxa are mostly unique to each disease cohort. More 
specifically, we found that approximately 80% of host genes are expressed in all disease 
cohorts, while the remaining 20% of host genes are expressed in one or two of the disease 
cohorts. However, we found that only about 25% of gut microbial taxa on average are found in 
all three, thus indicating that a majority of taxa are specific to each disease cohort. This is 
consistent with previous research that has shown dissimilarity between disease-associated 
microbial taxa12,34. Given these patterns, using “core” sets of taxa and host genes that are found 
in all  disease cohorts may lead to missing a large number of disease-specific host gene-taxa 
associations. Therefore, we maintained our approach of using all the host genes and taxa that 
were identified after preprocessing the input dataset, which allowed us to identify disease-
specific as well as overlapping host gene/taxa between associations across diseases. We have 
added to the manuscript a discussion of the rationale behind this approach, as well as full 
details of this analysis: 
 
Overlap analysis and corresponding updates to the manuscript:  
 
i) To examine common and distinct features in input datasets, we considered the host genes 
and taxa that were used as input to the lasso integration pipeline, and calculated the overlap in 
these host genes and taxa across cohorts. Tables S13 and S14 included below show pairwise 
overlaps for input host genes and input taxa across diseases, respectively. We computed the 
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pairwise overlap as an overlap coefficient, which is a measure of similarity between two sets, 
and is defined here as the number of common genes (or taxa) between the two disease 
datasets divided by the number of genes (or taxa) in the dataset with fewer genes (or taxa). 
Overall, we found that an average of 84% of host genes are commonly expressed between 
diseases (Table S13), while the remaining 16% of host genes might be expressed in only one 
disease cohort, but not in the other two. These disease-specific genes in the input datasets 
might have disease-specific association patterns with gut microbes, hence we used all the host 
genes identified after preprocessing for determining associations in each disease cohort.   
 
On the other hand, only about 37% of input gut microbial taxa overlapped between diseases 
(Table S14), thus indicating that a majority of taxa were specific to each disease cohort. This is 
consistent with previous research that have shown high dissimilarity between disease-
associated microbial communities 12,34. Similar to the above, we retained all gut microbial taxa 
identified after preprocessing and filtering in each disease cohort to allow identification of 
associations between gut microbes and host genes that might be specific to a given disease. 
 
Supplementary Table S13: Overlap between input sets of host genes across CRC, IBD, and 
IBS. Each cell denotes an overlap coefficient between sets of genes from two diseases. 
 
 CRC IBD IBS 

CRC 1 0.8317063 0.8001448 

IBD 0.8317063 1 0.8739257 

IBS 0.8001448 0.8739257 1 
 
Supplementary Table S14: Overlap between input sets of gut microbial taxa across CRC, IBD, 
and IBS. Each cell denotes an overlap coefficient between sets of taxa from two diseases. 
 
 CRC IBD IBS 

CRC 1 0.4214876 0.2340426 

IBD 0.4214876 1 0.446281 

IBS 0.2340426 0.446281 1 
 
ii) Next, we calculated the overlap between the set of host genes found associated with gut 
microbes only in one of the disease cohorts (i.e. disease-specific genes in our identified 
associations), and the set of host genes used as input in other two diseases (Table S15). 
Similarly, we calculated the overlap between gut microbial taxa found associated with host 
genes only in one disease (i.e. disease-specific taxa in our identified associations), and the set 
of taxa used as input in other two diseases (Table S16). Overall, we found similar trends as 
described above. We found that an average of 80% of disease-specific host genes in the 
identified associations were also included as input in the other two diseases (Table S15). The 
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remaining 20% of disease-specific host genes were likely not expressed in the other two 
conditions. 
 
On the contrary, we found that, on average, only 12% of disease-specific taxa in the identified 
associations were included as input taxa in the other two diseases (Table S16). This is in line 
with our observation of disease-specific trends for gut microbial taxa used as input to the 
integration pipeline, as described above.     
 
Supplementary Table S15: Overlap between genes found associated with microbes in specific 
disease (i.e. disease-specific genes in output; rows) and input sets of host genes in other two 
diseases (i.e. input genes; columns). Each cell denotes an overlap coefficient between sets of 
genes from two diseases. 
 
  Input host genes  

  CRC IBD IBS 

Disease-
specific host 

genes in 
output 

associations 

CRC 1 0.7871363 0.7656968 

IBD 0.8238434 1 0.8656584 

IBS 0.7733333 0.7946667 1 

 
Supplementary Table S16: Overlap between microbial taxa found associated with host genes 
in specific disease (i.e. disease-specific taxa in output; rows) and input sets of taxa in other two 
diseases (i.e. input taxa; columns). Each cell denotes an overlap coefficient between sets of 
taxa from two diseases. 
 
  Input taxa 

  CRC IBD IBS 

Disease-
specific taxa in 

output 
associations 

CRC 1 0.09615385 0.1057692 

IBD 0.1666667 1 0.1904762 

IBS 0.1011236 0.06741573 1 

 
In addition to including the above supplementary tables in the manuscript, we have also added 
the following text to Methods section to add clarification regarding overlapping and disease-
specific features across diseases (Methods, page 35): 
 

“Given the difference between number of host genes and gut microbial taxa identified 
across diseases, we first determined overlaps in host genes and microbial taxa in input 
datasets and gene-taxa associations identified across disease cohorts. To do this, we 
used a two-step process:  
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i) To examine common and distinct features in input datasets, we considered the host 
genes and taxa that were used as input to the lasso integration pipeline, and calculated 
the overlap in these host genes and taxa across cohorts (Supplementary Tables S13 
and S14). We computed the pairwise overlap as an overlap coefficient, which is a 
measure of similarity between two sets, and is defined here as the number of common 
genes (or taxa) between the two disease datasets divided by the number of genes (or 
taxa) in the dataset with fewer genes (or taxa). Overall, we found that an average of 84% 
of host genes are commonly expressed between diseases (Supplementary Table S13), 
while the remaining 16% of host genes might be expressed in one disease cohort, but 
not in the other two. On the other hand, only about 37% of input gut microbial taxa 
overlapped between diseases (Supplementary Table S14), thus indicating that a majority 
of taxa were specific to each disease cohort. This is consistent with previous research 
that have shown high dissimilarity between disease-associated microbial 
communities154,194.  
 
ii) Next, we calculated the overlap between the set of host genes found associated with 
gut microbes only in one of the disease cohorts (i.e. disease-specific genes in our 
identified associations), and the set of host genes used as input in other two diseases 
(Supplementary Table S15). Similarly, we calculated the overlap between gut microbial 
taxa found associated with host genes only in one disease (i.e. disease-specific taxa in 
our identified associations), and the set of taxa used as input in other two diseases 
(Supplementary Table S16). Overall, we found similar trends as described above. We 
found that an average of 80% of disease-specific host genes in the identified 
associations were also included as input in the other two diseases (Supplementary 
Table S15). The remaining 20% of disease-specific host genes were likely not 
expressed in the other two conditions. On the contrary, we found that, on average, only 
12% of disease-specific taxa in the identified associations were included as input taxa in 
the other two diseases (Supplementary Table S16). This is in line with our observation of 
disease-specific trends for gut microbial taxa used as input to the integration pipeline, as 
described above. 
 
Given these patterns, we considered all the host genes and taxa that were identified 
after preprocessing the input dataset, which allowed us to identify disease-specific as 
well as overlapping host gene/taxa between associations across diseases”. 

 
Reviewer 3, Comment 6 
 
6. p8, line 264: I suggest using “associate” rather than “interact”, as “interact” could be 
interpreted by some as a direct, physical interaction (which it might not be). 
 
Response:  
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We thank the reviewer for this suggestion. We agree that the term “interact” or “interaction” can 
be misleading, and hence we have replaced the usage of these terms with “associate” and 
“association”, respectively, throughout the manuscript. As mentioned previously in responses to 
Reviewer 1, Comment 1, and Reviewer 1, Comment 7, this resulted in a total of 83 changes 
throughout the manuscript. Our edit for this specific sentence is as follows (Results, page 9): 
 

“Specific gut microbes interact with individual host genes ...” changed to “Specific gut 
microbes associate with individual host genes ...” 

 
Reviewer 3, Comment 7 
 
7. p28: How many host pathways were filtered out for being too small, too large, or having not 
many genes that overlap? Are there potential pathways of interest that aren’t being examined 
here, but could be interesting? 
 
Response: 
 
This is an important point. To avoid pathways that were too large to provide any specific 
biological insights or too small to provide adequate statistical power, we excluded from our 
analysis any pathway that included more than 85 genes, fewer than 10 genes, or fewer than 5 
genes that overlapped between the pathway and the list of genes identified by our analysis. Out 
of 1881 host pathways, this criteria filtered out 297 pathways for being too large, 299 pathways 
for being too small, and an average of 1186 pathways for not having sufficient overlap with the 
genes of interest in each disease cohort. This resulted in an average of 99 pathways that were 
tested for enrichment in each disease cohort. We are aware that this approach may filter out 
some potential pathways of interest from our analysis. However, even if included, these 
pathways are unlikely to yield significant associations due to lack of statistical power. Thus, we 
only examine pathways for which associations can be detected as described above. We have 
now added these details to the manuscript (Methods, page 33): 
 

“To avoid pathways that were too large to provide any specific biological insights or too 
small to provide adequate statistical power, we excluded any pathways from our analysis 
with more than 85 genes, fewer than 10 genes, or fewer than 5 genes that overlapped 
between the pathway and the genes of interest. Out of 1881 host pathways, these 
criteria filtered out 297 pathways for being too large, 299 pathways for being too small, 
and an average of 1186 pathways for not having sufficient overlap with the genes of 
interest, resulting in an average of 99 pathways that were tested for enrichment in each 
disease cohort. We are aware that this approach may filter out some potential pathways 
of interest from our analysis. However, even if included, these pathways are unlikely to 
yield significant associations due to lack of statistical power”. 

 
 
Reviewer 3, Comment 8 
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8. Figure 2/p50: Overall, I find the visualizations extremely effective for this manuscript, 
especially considering the many dimensions this data is explored in. The one exception is with 
the sCCA result visualizations in parts B/C of Figure 2 and the supplemental figure on page 50. 
It’s hard to tell which genes are shared across disease subtypes, because host genes are listed 
in a different orientation in each subtype. I suggest having the entire host pathway illustrated 
(maybe in gray) and then coloring in the significant host genes within disease-subtype. That 
would preserve the order, allowing for better highlighting of the similarities and differences for 
the reader. 
 
Response:  
 
We thank the reviewer for their positive feedback on the visualizations in our paper. We agree 
with the suggestion regarding the visualization in Figure 2 to distinguish host genes that are 
common or distinct across diseases, and have now updated figures 2B and 2C to depict this. 
In our updated figure, we show genes that are common between pathways or components 
across at least two diseases in grey, and the disease-specific genes are shown in the color 
corresponding to the disease (see Figures 2B and 2D below). In Figure 2C, we focused on 
three separate, disease-specific host pathways (i.e. host pathways for which gene expression 
correlates with gut microbes in only one of the disease cohorts), where by definition, the top 10 
genes representing each disease-specific pathway do not have any overlaps, and hence are 
depicted in disease-specific colors. We have edited the legend for Figure 2 to clarify the updates 
to the figure (Results, page 7): 
 

“Genes that are common between pathways or components across at least two disease 
cohorts are shown in grey”.  
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*Please ensure you delete the link to your author homepage in this e-mail if you wish to forward it to 
your co-authors. 
 

Dear Ran, 
 

Thank you for your patience while your manuscript "Shared and disease-specific host gene-
microbiome associations across human diseases" was under peer-review at Nature Microbiology. It has 
now been seen by 3 referees, whose expertise and comments you will find at the of this email. You 
will see from their comments below that while they find your work of interest, some important points 
are raised. We are very interested in the possibility of publishing your study in Nature Microbiology, 
but would like to consider your response to these concerns in the form of a revised manuscript before 
we make a final decision on publication. 

 
In particular, you will see that referees #2 and #3 both have ongoing concerns with the fact that the 
datasets have been processed using different computational pipelines. In line with referee #3's 
suggestion, please add a clear discussion of the limitations of this approach to the discussion section. 
Please also clarify the remaining concerns from the referees, which are clear and the remaining issues 
should be straightforward to address. 
 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
If you have not done so already please begin to revise your manuscript so that it conforms to our 
Article format instructions at http://www.nature.com/nmicrobiol/info/final-submission/ 

 
The usual length limit for a Nature Microbiology Article is six display items (figures or tables) and 
3,000 words. We have some flexibility, and can allow a revised manuscript at 3,500 words, but please 
consider this a firm upper limit. There is a trade-off of ~250 words per display item, so if you need 
more space, you could move a Figure or Table to Supplementary Information. 
 
Some reduction could be achieved by focusing any introductory material and moving it to the start of 

your opening ‘bold’ paragraph, whose function is to outline the background to your work, describe in a 
sentence your new observations, and explain your main conclusions. The discussion should also be 

limited. Methods should be described in a separate section following the discussion, we do not place a 
word limit on Methods. 
 
Nature Microbiology titles should give a sense of the main new findings of a manuscript, and should 
not contain punctuation. Please keep in mind that we strongly discourage active verbs in titles, and 

that they should ideally fit within 90 characters each (including spaces). 
 
We strongly support public availability of data. Please place the data used in your paper into a public 
data repository, if one exists, or alternatively, present the data as Source Data or Supplementary 
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Information. If data can only be shared on request, please explain why in your Data Availability 
Statement, and also in the correspondence with your editor. For some data types, deposition in a 
public repository is mandatory - more information on our data deposition policies and available 
repositories can be found at https://www.nature.com/nature-research/editorial-policies/reporting-
standards#availability-of-data. 

 
Please include a data availability statement as a separate section after Methods but before references, 
under the heading "Data Availability”. This section should inform readers about the availability of the 
data used to support the conclusions of your study. This information includes accession codes to public 
repositories (data banks for protein, DNA or RNA sequences, microarray, proteomics data etc…), 
references to source data published alongside the paper, unique identifiers such as URLs to data 
repository entries, or data set DOIs, and any other statement about data availability. At a minimum, 

you should include the following statement: “The data that support the findings of this study are 
available from the corresponding author upon request”, mentioning any restrictions on availability. If 
DOIs are provided, we also strongly encourage including these in the Reference list (authors, title, 
publisher (repository name), identifier, year). For more guidance on how to write this section please 
see: 
http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf 

 
To improve the accessibility of your paper to readers from other research areas, please pay particular 
attention to the wording of the paper’s opening bold paragraph, which serves both as an introduction 
and as a brief, non-technical summary in about 150 words. If, however, you require one or two extra 
sentences to explain your work clearly, please include them even if the paragraph is over-length as a 
result. The opening paragraph should not contain references. Because scientists from other sub-
disciplines will be interested in your results and their implications, it is important to explain essential 

but specialised terms concisely. We suggest you show your summary paragraph to colleagues in other 
fields to uncover any problematic concepts. 

 
If your paper is accepted for publication, we will edit your display items electronically so they conform 
to our house style and will reproduce clearly in print. If necessary, we will re-size figures to fit single 
or double column width. If your figures contain several parts, the parts should form a neat rectangle 
when assembled. Choosing the right electronic format at this stage will speed up the processing of 

your paper and give the best possible results in print. We would like the figures to be supplied as 
vector files - EPS, PDF, AI or postscript (PS) file formats (not raster or bitmap files), preferably 
generated with vector-graphics software (Adobe Illustrator for example). Please try to ensure that all 
figures are non-flattened and fully editable. All images should be at least 300 dpi resolution (when 
figures are scaled to approximately the size that they are to be printed at) and in RGB colour format. 
Please do not submit Jpeg or flattened TIFF files. Please see also 'Guidelines for Electronic Submission 

of Figures' at the end of this letter for further detail. 
 
Figure legends must provide a brief description of the figure and the symbols used, within 350 words, 
including definitions of any error bars employed in the figures. 

 
When submitting the revised version of your manuscript, please pay close attention to our 
href="https://www.nature.com/nature-research/editorial-policies/image-integrity">Digital Image 

Integrity Guidelines.</a> and to the following points below: 
 
-- that unprocessed scans are clearly labelled and match the gels and western blots presented in 
figures. 
-- that control panels for gels and western blots are appropriately described as loading on sample 
processing controls 
-- all images in the paper are checked for duplication of panels and for splicing of gel lanes. 
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Finally, please ensure that you retain unprocessed data and metadata files after publication, ideally 
archiving data in perpetuity, as these may be requested during the peer review and production 
process or after publication if any issues arise. 

 
 
Please include a statement before the acknowledgements naming the author to whom correspondence 
and requests for materials should be addressed. 
 
Finally, we require authors to include a statement of their individual contributions to the paper -- such 
as experimental work, project planning, data analysis, etc. -- immediately after the 

acknowledgements. The statement should be short, and refer to authors by their initials. For details 
please see the Authorship section of our joint Editorial policies at 
http://www.nature.com/authors/editorial_policies/authorship.html 
 
When revising your paper: 
 

* include a point-by-point response to any editorial suggestions and to our referees. Please include 
your response to the editorial suggestions in your cover letter, and please upload your response to the 
referees as a separate document. 
 
* ensure it complies with our format requirements for Letters as set out in our guide to authors at 
www.nature.com/nmicrobiol/info/gta/ 
 

* state in a cover note the length of the text, methods and legends; the number of references; 
number and estimated final size of figures and tables 

 
* resubmit electronically if possible using the link below to access your home page: 
 
[Redacted] 
 

*This url links to your confidential homepage and associated information about manuscripts you may 
have submitted or be reviewing for us. If you wish to forward this e-mail to co-authors, please delete 
this link to your homepage first. 
 
Please ensure that all correspondence is marked with your Nature Microbiology reference number in 
the subject line. 

 
Nature Microbiology is committed to improving transparency in authorship. As part of our efforts in 
this direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. This applies to primary research papers 
only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly 
contributions. You can create and link your ORCID from the home page of the MTS by clicking on 

‘Modify my Springer Nature account’. For more information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
We hope to receive your revised paper within three weeks. If you cannot send it within this time, 
please let us know. 
 
We look forward to hearing from you soon. 
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Yours sincerely, 
 
[Redacted] 
 

******************* 
 
Reviewer Expertise: 
 
Referee #1: gut microbiome, computational biology 
Referee #2: gut microbiome, machine learning, GI disease 
Referee #3: microbiome, computational biology 

 
 
Reviewers Comments: 
 
Reviewer #1 (Remarks to the Author): 
 

The authors have done a thorough job of addressing reviewer comments and concerns. 
 
I only have a minor point to bring up about the authors' response to my 8th comment on CLR 
transforms. I agree with the authors that it's not a great idea to CLR each taxonomic rank profile first 
and then combine across ranks. Now that I think about it, my main point was that the combining of 
different taxonomic ranks gives rise to a multiple-counting problem. That is, read abundances that 
contribute to the relative abundance of the genus Bacteroides will also contribute to the family-level 

relative abundance of Bacteroidaceae. I have a feeling that this kind of multi-counting could introduce 
artifacts, where certain taxonomic groups with a large number of clades (e.g. the Bacteroides genus 

has a much larger number of species in it than the Prevotella genus) swamp the abundance matrix 
with quasi-redundant count data (i.e. a bunch of correlated features that are non-independent due to 
taxonomic binning of counts). I doubt this will have a huge impact on the results, but I have a feeling 
that restricting your analysis to a particular taxonomic stratum (i.e. OTU/ASV, species, or genus) 
might be most appropriate. This kind of restriction in the number of features might actually help you 

see more hits, as it might reduce the multi-test correction penalty. 
 
Anyway, this is just a minor point, which I think is partially addressed by the additional analyses the 
authors outline in their revision. I commend them on a highly responsive revision and a great paper. 
 
 

Reviewer #2 (Remarks to the Author): 
 
While I agree with the authors that uniform bioinformatic processing won't counteract the 
experimental biases introduced by different in sample collection, DNA extraction, etc, there is really 

not need to introduce additional biases with different bioinformatic processing pipelines. It's fine to 
analyse each dataset separately, rather than combining the data, but again this should be done after 
uniformly processing the reads. The two microbiome studies cited, did employ the same bioinformatic 

pipeline for data processing in each study, respectively. The study by Duvallet et al. used an in-house 
pipeline to re-process the reads, while Tierney et al. used profiles generated by the package 
curatedMetagenomicData which supplies microbiome profiles of datasets which were all re-processed 
using their pipeline. So, my concerns (previous comment 1) remain. 
 
All other concerns were sufficiently addressed. 
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Reviewer #3 (Remarks to the Author): 
 
The authors should be commended for their extensive revisions based on the previous reviewer 

comments. I remain highly enthusiastic about this work, as I think it serves as a novel framework for 
the integration of -omics data in the microbiome context. 
 
Most of my comments have been completely addressed, but two remain: 
 
1. The analysis comparing taxa calling methodology raised more questions in my mind than it did to 
quell them. A spearman rho of 0.6 at the genus does seem drastic when comparing compositional 

differences between the same data processed different ways. A more robust analysis would be to 
process the data as similarly as possible, even though there will be batch effects due to primer choice, 
facility, etc. Barring that (which would require a complete redo of the whole paper), I think the 
wording around the extent this could influence results should be strengthened in the discussion on 
page 18. It’s not appropriate to say the different analysis methodologies play a minor role compared 
to other technical variables, given those variables can’t be quantified here. 

2. I still have concerns about un-equal sample sizes raised in my original Comment 4. The response 
from the authors is confusing to me, as they state there weren’t overlaps across diseases in the study. 
In my original comment I was referring to the overlaps of shared pathways in the CCA (lines 212, 
figure 2A) and lasso results (figure 4A), where there do appear to be pathways and associations 
shared between diseases (and in such a way that lines up with sample size). I find the addition of the 
paragraph on lines 1292 – 1297 to be confusing, as it’s not clear what this is referring to. This should 
be clarified for the reader. 

 
 

 
 
 
******************* 

 

  

 

Author Rebuttal, first revision: 
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Shared and disease-specific host gene-microbiome associations across human diseases 
 
Editor comments: 
 
Thank you for your patience while your manuscript "Shared and disease-specific host gene-
microbiome associations across human diseases" was under peer-review at Nature 
Microbiology. It has now been seen by 3 referees, whose expertise and comments you will find 
at the of this email. You will see from their comments below that while they find your work of 
interest, some important points are raised. We are very interested in the possibility of publishing 
your study in Nature Microbiology, but would like to consider your response to these concerns in 
the form of a revised manuscript before we make a final decision on publication. 
 
In particular, you will see that referees #2 and #3 both have ongoing concerns with the fact that 
the datasets have been processed using different computational pipelines. In line with referee 
#3's suggestion, please add a clear discussion of the limitations of this approach to the 
discussion section. Please also clarify the remaining concerns from the referees, which are 
clear and the remaining issues should be straightforward to address. 
 
Response to editor: 
 
We thank the editor and reviewers for these important comments and suggestions. We agree 
that differences in data processing pipelines could potentially contribute to differences across 
disease cohorts, and we have now updated the manuscript with a discussion on the limitations 
of this approach and potential impact on downstream results. Specifically, we acknowledge that 
it is hard to disentangle and compare the bias due to differences in data processing pipelines 
with those due to differences in experimental factors, and that these biases could potentially 
affect the integrative analysis of taxonomic composition and gene expression profiles across 
disease cohorts.  
 
Additionally, to address the comment from Reviewer 1 regarding the issue of multi-counting 
reads when using combined taxa matrix, we have updated the manuscript to clarify how our 
approach overcomes this issue and allows us to identify signals found at any taxonomic level 
without missing potentially relevant associations. We have also addressed the comment from 
Reviewer 3 regarding unequal sample sizes across cohorts by updating discussion text to clarify 
the potential impact of sample size on identification of associations and their overlaps across 
diseases.       
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Reviewer #1 (Remarks to the Author): 
 
The authors have done a thorough job of addressing reviewer comments and concerns. 
 
Reviewer 1, Comment 1 
 
I only have a minor point to bring up about the authors' response to my 8th comment on CLR 
transforms. I agree with the authors that it's not a great idea to CLR each taxonomic rank profile 
first and then combine across ranks. Now that I think about it, my main point was that the 
combining of different taxonomic ranks gives rise to a multiple-counting problem. That is, read 
abundances that contribute to the relative abundance of the genus Bacteroides will also 
contribute to the family-level relative abundance of Bacteroidaceae. I have a feeling that this 
kind of multi-counting could introduce artifacts, where certain taxonomic groups with a large 
number of clades (e.g. the Bacteroides genus has a much larger number of species in it than 
the Prevotella genus) swamp the abundance matrix with quasi-redundant count data (i.e. a 
bunch of correlated features that are non-independent due to taxonomic binning of counts). I 
doubt this will have a huge impact on the results, but I have a feeling that restricting your 
analysis to a particular taxonomic stratum (i.e. OTU/ASV, species, or genus) might be most 
appropriate. This kind of restriction in the number of features might actually help you see more 
hits, as it might reduce the multi-test correction penalty. 
 
Anyway, this is just a minor point, which I think is partially addressed by the additional analyses 
the authors outline in their revision. I commend them on a highly responsive revision and a great 
paper. 
 
Response:  
 
We thank the reviewer for their positive feedback and constructive suggestions. We agree that 
combining taxonomic ranks introduces the issue of multi-counting reads within a taxonomic 
group, leading to addition of correlated features in the taxa abundance matrix. We note that this 
issue is mitigated by our penalization approach using lasso with stability selection, which, 
instead of picking multiple correlated taxa from a given taxonomic clade, only selects the 
microbial taxon from a group of correlated taxa for which the abundance is most robustly 
associated with the expression of a host gene 1,2. This approach allows us to identify signals 
found at any taxonomic level and avoid missing potentially relevant associations by limiting the 
analysis to a single taxonomic level. At the same time, given the large number of features in 
high-dimensional datasets like gene expression and microbiome data, this approach 
circumvents the computationally intensive analysis that would be required if each taxonomic 
level was analyzed separately. Our assumption is that if we repeated our integration analyses 
separately at different taxonomic levels, we would likely identify the same set of taxa as our 
current approach that uses a combined taxonomic profile. We have added a new paragraph that 
clarifies this in the manuscript (Methods, page 24): 
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“To allow for identification of associations at any taxonomic level without repeating the 
analyses at each taxonomic rank, we combined summarized taxa matrices at different 
ranks into a combined taxa matrix. This approach could potentially lead to multi-counting 
of reads within a taxonomic group, leading to addition of correlated features in the taxa 
abundance matrix. This issue is mitigated by our penalization approach using lasso with 
stability selection (see Method sections on “Lasso regression analysis” and “Stability 
selection for lasso model”). Specifically, instead of picking multiple correlated microbial 
taxa from a given taxonomic clade, this approach only selects the microbial taxon out of 
a group of correlated taxa for which the abundance is most robustly associated with the 
expression of a host gene 31,172. This approach allows us to identify signals found at any 
taxonomic level and avoid missing potentially relevant associations by limiting the 
analysis to a single taxonomic level. At the same time, given the large number of 
features in high-dimensional datasets like gene expression and microbiome data, our 
approach circumvents the computationally intensive analysis that would be required if 
each taxonomic level was analyzed separately.” 

 
Reviewer #2 (Remarks to the Author): 
 
Reviewer 2, Comment 1 
 
While I agree with the authors that uniform bioinformatic processing won't counteract the 
experimental biases introduced by different in sample collection, DNA extraction, etc, there is 
really not need to introduce additional biases with different bioinformatic processing pipelines. 
It's fine to analyse each dataset separately, rather than combining the data, but again this 
should be done after uniformly processing the reads. The two microbiome studies cited, did 
employ the same bioinformatic pipeline for data processing in each study, respectively. The 
study by Duvallet et al. used an in-house pipeline to re-process the reads, while Tierney et al. 
used profiles generated by the package curatedMetagenomicData which supplies microbiome 
profiles of datasets which were all re-processed using their pipeline. So, my concerns (previous 
comment 1) remain. 
 
All other concerns were sufficiently addressed. 
 
Response: 
 
We agree with the reviewer that differences in data processing pipelines could potentially add to 
the biases introduced by differences in experimental protocols across the disease cohorts. 
While a re-analysis of a few representative samples in our dataset using different processing 
pipelines showed correlated taxonomic profiles (Methods, page 26), it is hard to quantify the 
overall influence of these differences on downstream analyses and disentangle these biases 
from batch effects due to experimental factors. We have now updated our manuscript with 
discussion on limitations of our approach (Discussion, page 18; new and edited text in green): 
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“Another caveat of our study is that it includes three different disease cohorts with 
disparate protocols for sample collection, preparation, sequencing, and data processing, 
which may lead to batch effects 150–152. While a re-analysis of a few representative 
samples in our dataset using different data processing pipelines showed fairly correlated 
taxonomic profiles (see Methods), it is hard to assess the overall bias due to differences 
in data processing on the downstream analyses. Additionally, it is difficult to disentangle 
the biases introduced due to differences in data analysis factors from those introduced 
due to differences in experimental factors, as the latter variables cannot be quantified in 
our study. These combined differences could potentially influence the assignment of 
taxonomic composition and gene expression profiles across disease cohorts, which, in 
turn, may impact downstream integration analyses. While it is difficult to fully eliminate 
these biases, we tried to minimize the overall batch effect across disease cohorts in our 
study by adopting a meta-analysis approach, where we performed our integration 
analysis and compared disease to control samples within each cohort separately, and 
combined the results across cohorts at the last analysis step. While meta-analysis 
approaches have disadvantages, like reduced statistical power, they have been 
extensively used to minimize batch effects when integrating genomic data from multiple 
studies 152, and have recently proven useful in microbiome studies 153,154 ”. 

 
Reviewer #3 (Remarks to the Author): 
 
The authors should be commended for their extensive revisions based on the previous reviewer 
comments. I remain highly enthusiastic about this work, as I think it serves as a novel 
framework for the integration of -omics data in the microbiome context. 
 
Most of my comments have been completely addressed, but two remain: 
 
Reviewer 3, Comment 1 
 
1. The analysis comparing taxa calling methodology raised more questions in my mind than it 
did to quell them. A spearman rho of 0.6 at the genus does seem drastic when comparing 
compositional differences between the same data processed different ways. A more robust 
analysis would be to process the data as similarly as possible, even though there will be batch 
effects due to primer choice, facility, etc. Barring that (which would require a complete redo of 
the whole paper), I think the wording around the extent this could influence results should be 
strengthened in the discussion on page 18. It’s not appropriate to say the different analysis 
methodologies play a minor role compared to other technical variables, given those variables 
can’t be quantified here. 
 
Response: 
 
We thank the reviewer for their positive feedback and constructive comments. We agree that 
differences in data processing pipelines could potentially introduce additional biases contributing 
to batch effects due to differences in experimental protocols. We also agree that it is hard to 
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disentangle and compare the bias due to differences in data processing pipelines with those 
due to differences in experimental factors, as the latter cannot be quantified in our study. Thus, 
these combined differences could potentially influence the assignment of taxonomic 
composition and gene expression profiles across disease cohorts, which in turn may impact 
downstream integration analyses. We have now updated our discussion text to clarify these 
limitations of our approach and how it impacts our results – please refer to our response to 
Reviewer 2’s comment above to see the updated text (Discussion, page 18). We have also 
edited the wording in the section in Methods describing correlations between different 
processing pipelines to reflect this potential issue (Methods, page 26). 
 
Reviewer 3, Comment 2 
 
2. I still have concerns about un-equal sample sizes raised in my original Comment 4. The 
response from the authors is confusing to me, as they state there weren’t overlaps across 
diseases in the study. In my original comment I was referring to the overlaps of shared 
pathways in the CCA (lines 212, figure 2A) and lasso results (figure 4A), where there do appear 
to be pathways and associations shared between diseases (and in such a way that lines up with 
sample size). I find the addition of the paragraph on lines 1292 – 1297 to be confusing, as it’s 
not clear what this is referring to. This should be clarified for the reader. 
 
Response: 
 
We apologize for the confusion, which stemmed from our misunderstanding of the reviewer’s 
original comment. Indeed, the differences in sample size across disease cohorts could 
potentially influence the overlapping associations and pathways we identified across diseases 
using the sparse CCA and lasso approaches. We have now removed the text in lines 1292 – 
1297 from the manuscript, which was added as a result of our misunderstanding of the 
reviewer’s original comment. The discussion section already included a discussion on unequal 
sample sizes, which we edited further to address this comment and clarify this as a limitation of 
our study (Discussion, page 18): 
 

“Another potential issue is the difference in sample size across disease cohorts and 
between the case and control groups within each cohort. These sample size differences 
can result in differences in statistical power when applying sparse CCA and lasso 
regression. This can impact the number of host gene-microbe associations and 
pathways identified in each disease cohort, and the number of overlapping associations 
and pathways identified across cohorts. We attempted to minimize this effect by applying 
a differential enrichment analysis that is more robust to different levels of statistical 
power due to sample size (see Methods)”. 

 
 
References: 

1. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Series B 
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Stat. Methodol. 58, 267–288 (1996). 

2. Meinshausen, N. & Bühlmann, P. Stability selection. J. R. Stat. Soc. Series B Stat. 

Methodol. 72, 417–473 (2010). 
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Decision Letter, second revision:   

 
 Our ref: NMICROBIOL-21030565B 

 

16th February 2022 

 

Dear Ran, 

 

Thank you for submitting your revised manuscript "Shared and disease-specific host gene-microbiome 

associations across human diseases" (NMICROBIOL-21030565B). It has now been seen by the original 

referees and their comments are below. The reviewers find that the paper has improved in revision, 

and therefore we'll be happy in principle to publish it in Nature Microbiology, pending minor revisions 

to satisfy the referees' final requests and to comply with our editorial and formatting guidelines. 

 

If the current version of your manuscript is in a PDF format, please email us a copy of the file in an 

editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 

editorial and formatting requirements in about a week. Please do not upload the final materials and 

make any revisions until you receive this additional information from us. 

 

Thank you again for your interest in Nature Microbiology Please do not hesitate to contact me if you 

have any questions. 

 

Sincerely, 

 

[Redacted] 
 

Decision Letter, final checks: 

 
Our ref: NMICROBIOL-21030565B 

 

8th March 2022 

 

Dear Ran, 

 

Thank you for your patience as we’ve prepared the guidelines for final submission of your Nature 

Microbiology manuscript, "Shared and disease-specific host gene-microbiome associations across 

human diseases" (NMICROBIOL-21030565B). Please carefully follow the step-by-step instructions 

provided in the attached file, and add a response in each row of the table to indicate the changes that 

you have made. Please also check and comment on any additional marked-up edits we have proposed 

within the text. Ensuring that each point is addressed will help to ensure that your revised manuscript 

can be swiftly handed over to our production team. 
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We would like to start working on your revised paper, with all of the requested files and forms, as 

soon as possible (preferably within two weeks). Please get in contact with us if you anticipate delays. 

 

When you upload your final materials, please include a point-by-point response to any remaining 

reviewer comments. 

 

If you have not done so already, please alert us to any related manuscripts from your group that are 

under consideration or in press at other journals, or are being written up for submission to other 

journals (see: https://www.nature.com/nature-research/editorial-policies/plagiarism#policy-on-

duplicate-publication for details). 

 

In recognition of the time and expertise our reviewers provide to Nature Microbiology’s editorial 

process, we would like to formally acknowledge their contribution to the external peer review of your 

manuscript entitled "Shared and disease-specific host gene-microbiome associations across human 

diseases". For those reviewers who give their assent, we will be publishing their names alongside the 

published article. 

 

Nature Microbiology offers a Transparent Peer Review option for new original research manuscripts 

submitted after December 1st, 2019. As part of this initiative, we encourage our authors to support 

increased transparency into the peer review process by agreeing to have the reviewer comments, 

author rebuttal letters, and editorial decision letters published as a Supplementary item. When you 

submit your final files please clearly state in your cover letter whether or not you would like to 

participate in this initiative. Please note that failure to state your preference will result in delays in 

accepting your manuscript for publication. 

 

Cover suggestions 

 

As you prepare your final files we encourage you to consider whether you have any images or 

illustrations that may be appropriate for use on the cover of Nature Microbiology. 

 

Covers should be both aesthetically appealing and scientifically relevant, and should be supplied at the 

best quality available. Due to the prominence of these images, we do not generally select images 

featuring faces, children, text, graphs, schematic drawings, or collages on our covers. 

 

We accept TIFF, JPEG, PNG or PSD file formats (a layered PSD file would be ideal), and the image 

should be at least 300ppi resolution (preferably 600-1200 ppi), in CMYK colour mode. 

 

If your image is selected, we may also use it on the journal website as a banner image, and may need 

to make artistic alterations to fit our journal style. 

 

Please submit your suggestions, clearly labeled, along with your final files. We’ll be in touch if more 

information is needed. 

 

 

Nature Microbiology has now transitioned to a unified Rights Collection system which will allow our 

Author Services team to quickly and easily collect the rights and permissions required to publish your 

work. Approximately 10 days after your paper is formally accepted, you will receive an email in 

providing you with a link to complete the grant of rights. If your paper is eligible for Open Access, our 
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Author Services team will also be in touch regarding any additional information that may be required 

to arrange payment for your article. 

 

Please note that you will not receive your proofs until the publishing agreement has been received 

through our system. 

 

Please note that <i>Nature Microbiology</i> is a Transformative Journal (TJ). Authors may publish 

their research with us through the traditional subscription access route or make their paper 

immediately open access through payment of an article-processing charge (APC). Authors will not be 

required to make a final decision about access to their article until it has been accepted. <a 

href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 

about Transformative Journals</a> 

 

Authors may need to take specific actions to achieve <a 

href="https://www.springernature.com/gp/open-research/funding/policy-compliance-

faqs"> compliance</a> with funder and institutional open access mandates. If your research 

is supported by a funder that requires immediate open access (e.g. according to <a 

href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) 

then you should select the gold OA route, and we will direct you to the compliant route where 

possible. For authors selecting the subscription publication route, the journal’s standard licensing 

terms will need to be accepted, including <a href="https://www.springernature.com/gp/open-

research/policies/journal-policies">self-archiving policies</a>. Those licensing terms will supersede 

any other terms that the author or any third party may assert apply to any version of the manuscript. 

 

 

For information regarding our different publishing models please see our <a 

href="https://www.springernature.com/gp/open-research/transformative-journals"> Transformative 

Journals </a> page. If you have any questions about costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com. 

 

Please use the following link for uploading these materials: 

[Redacted] 

If you have any further questions, please feel free to contact me. 

 

 

With best wishes, 

[Redacted] 
 

Final Decision Letter: 

 
6th April 2022 

 

Dear Ran, 

 

I am pleased to accept your Article "Identification of shared and disease-specific host gene-

microbiome associations across human diseases using multi-omic integration" for publication in Nature 

Microbiology. Thank you for having chosen to submit your work to us and many congratulations. 
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Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature 

Microbiology style. We look particularly carefully at the titles of all papers to ensure that they are 

relatively brief and understandable. 

 

Once your paper is typeset, you will receive an email with a link to choose the appropriate publishing 

options for your paper and our Author Services team will be in touch regarding any additional 

information that may be required. Once your paper has been scheduled for online publication, the 

Nature press office will be in touch to confirm the details. 

 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 

request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 

this deadline, please inform us at rjsproduction@springernature.com immediately. You will not receive 

your proofs until the publishing agreement has been received through our system 

 

Due to the importance of these deadlines, we ask you please us know now whether you will be difficult 

to contact over the next month. If this is the case, we ask you provide us with the contact information 

(email, phone and fax) of someone who will be able to check the proofs on your behalf, and who will 

be available to address any last-minute problems. 

 

Acceptance of your manuscript is conditional on all authors' agreement with our publication policies 

(see https://www.nature.com/nmicrobiol/editorial-policies). In particular your manuscript must not be 

published elsewhere and there must be no announcement of the work to any media outlet until the 

publication date (the day on which it is uploaded onto our website). 

 

Please note that <i>Nature Microbiology</i> is a Transformative Journal (TJ). Authors may publish 

their research with us through the traditional subscription access route or make their paper 

immediately open access through payment of an article-processing charge (APC). Authors will not be 

required to make a final decision about access to their article until it has been accepted. <a 

href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 

about Transformative Journals</a> 

 

Authors may need to take specific actions to achieve <a 

href="https://www.springernature.com/gp/open-research/funding/policy-compliance-

faqs"> compliance</a> with funder and institutional open access mandates. If your research 

is supported by a funder that requires immediate open access (e.g. according to <a 

href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) 

then you should select the gold OA route, and we will direct you to the compliant route where 

possible. For authors selecting the subscription publication route, the journal’s standard licensing 

terms will need to be accepted, including <a href="https://www.springernature.com/gp/open-

research/policies/journal-policies">self-archiving policies</a>. Those licensing terms will supersede 

any other terms that the author or any third party may assert apply to any version of the manuscript. 

 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

An online order form for reprints of your paper is available at <a 
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href="https://www.nature.com/reprints/author-

reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. All co-authors, authors' 

institutions and authors' funding agencies can order reprints using the form appropriate to their 

geographical region. 

 

We welcome the submission of potential cover material (including a short caption of around 40 words) 

related to your manuscript; suggestions should be sent to Nature Microbiology as electronic files (the 

image should be 300 dpi at 210 x 297 mm in either TIFF or JPEG format). Please note that such 

pictures should be selected more for their aesthetic appeal than for their scientific content, and that 

colour images work better than black and white or grayscale images. Please do not try to design a 

cover with the Nature Microbiology logo etc., and please do not submit composites of images related 

to your work. I am sure you will understand that we cannot make any promise as to whether any of 

your suggestions might be selected for the cover of the journal. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to 

read the published article. Recipients of the link with a subscription will also be able to download and 

print the PDF. 

 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

 

With kind regards, 

 

[Redacted] 

 

 

P.S. Click on the following link if you would like to recommend Nature Microbiology to your librarian 

http://www.nature.com/subscriptions/recommend.html#forms 

 

 

** Visit the Springer Nature Editorial and Publishing website at <a href="http://editorial-

jobs.springernature.com?utm_source=ejP_NMicro_email&utm_medium=ejP_NMicro_email&utm_camp

aign=ejp_NMicro">www.springernature.com/editorial-and-publishing-jobs</a> for more information 

about our career opportunities. If you have any questions please click <a 

href="mailto:editorial.publishing.jobs@springernature.com">here</a>.** 


