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Dear Ran,
Thank you for your patience while your manuscript "Shared and disease-specific host gene-

microbiome interactions across human diseases" was under peer-review at Nature Microbiology. It has
now been seen by 3 referees, whose expertise and comments you will find at the end of this email.
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Although they find your work of some potential interest, they have raised a number of concerns that
will need to be addressed before we can consider publication of the work in Nature Microbiology.

In particular, referees #1 and #3 ask that you use “associate” rather than “interact”, and referee #2
asks that you tone down overstatements throughout. Referees #1 and #3 also note that sample size
and therefore statistical power varies across disease groups, and referee #2 notes that data
processing also varied across datasets. Please clarify how this was accounted for and add a discussion
to the text. Referee #1 has suggestions for alternative methods for some analyses, referee #2 asks
for additional code details including a tutorial for the provided scripts, which should be added to
GitHub, and referee #3 has several requests for more information regarding the datasets and cohorts
used, and suggests improvements for the figures, including figure 2, which we encourage.

We will overrule the request from referee #2 to include a proof of principle experiment to validate
your findings.

Should further experimental data allow you to address these criticisms, we would be happy to look at
a revised manuscript.

We are committed to providing a fair and constructive peer-review process. Please do not hesitate to
contact us if there are specific requests from the reviewers that you believe are technically impossible
or unlikely to yield a meaningful outcome.

We strongly support public availability of data. Please place the data used in your paper into a public
data repository, if one exists, or alternatively, present the data as Source Data or Supplementary
Information. If data can only be shared on request, please explain why in your Data Availability
Statement, and also in the correspondence with your editor. For some data types, deposition in a
public repository is mandatory - more information on our data deposition policies and available
repositories can be found at https://www.nature.com/nature-research/editorial-policies/reporting-
standards#availability-of-data.

Please include a data availability statement as a separate section after Methods but before references,
under the heading "Data Availability”. This section should inform readers about the availability of the
data used to support the conclusions of your study. This information includes accession codes to public
repositories (data banks for protein, DNA or RNA sequences, microarray, proteomics data etc...),
references to source data published alongside the paper, unique identifiers such as URLs to data
repository entries, or data set DOIs, and any other statement about data availability. At a minimum,
you should include the following statement: “The data that support the findings of this study are
available from the corresponding author upon request”, mentioning any restrictions on availability. If
DOIs are provided, we also strongly encourage including these in the Reference list (authors, title,
publisher (repository name), identifier, year). For more guidance on how to write this section please
see:

http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf

If revising your manuscript:
* Include a “Response to referees” document detailing, point-by-point, how you addressed each
referee comment. If no action was taken to address a point, you must provide a compelling argument.

This response will be sent back to the referees along with the revised manuscript.

* If you have not done so already we suggest that you begin to revise your manuscript so that it
conforms to our Article format instructions at http://www.nature.com/nmicrobiol/info/final-
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submission. Refer also to any guidelines provided in this letter.

* Include a revised version of any required reporting checklist. It will be available to referees (and,
potentially, statisticians) to aid in their evaluation if the manuscript goes back for peer review. A
revised checklist is essential for re-review of the paper.

When submitting the revised version of your manuscript, please pay close attention to our
href="https://www.nature.com/nature-research/editorial-policies/image-integrity">Digital Image
Integrity Guidelines.</a> and to the following points below:

-- that unprocessed scans are clearly labelled and match the gels and western blots presented in
figures.

-- that control panels for gels and western blots are appropriately described as loading on sample
processing controls

-- all images in the paper are checked for duplication of panels and for splicing of gel lanes.

Finally, please ensure that you retain unprocessed data and metadata files after publication, ideally
archiving data in perpetuity, as these may be requested during the peer review and production
process or after publication if any issues arise.

Please use the link below to submit a revised paper:
[Redacted]

<strong>Note: </strong> This url links to your confidential homepage and associated information
about manuscripts you may have submitted or be reviewing for us. If you wish to forward this e-mail
to co-authors, please delete this link to your homepage first.

Nature Microbiology is committed to improving transparency in authorship. As part of our efforts in
this direction, we are now requesting that all authors identified as ‘corresponding author’ on published
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on
the Manuscript Tracking System (MTS), prior to acceptance. This applies to primary research papers
only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly
contributions. You can create and link your ORCID from the home page of the MTS by clicking on
‘Modify my Springer Nature account’. For more information please visit please visit <a
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>.

If you wish to submit a suitably revised manuscript we would hope to receive it within 6 months. If
you cannot send it within this time, please let us know. We will be happy to consider your revision,
even if a similar study has been accepted for publication at Nature Microbiology or published
elsewhere (up to a maximum of 6 months).

In the meantime we hope that you find our referees' comments helpful.

With best wishes,

[Redacted]



natureresearch

3K 3K 3k 5K 5K 3k >k 3k 5k >k 3k 3k 5Kk 5K 3K 3k 5K 5k 5K >k 3k 3k 5k 5K >k 3k 5K 5K 3K 3k 5Kk 5K 3K K K 5K 5K K K Kk 5K 5K K %k >k >k Kk ko k >k k%

Reviewer Expertise:

Referee #1: gut microbiome, computational biology
Referee #2: gut microbiome, machine learning, GI disease
Referee #3: microbiome, computational biology

Reviewer Comments:
Reviewer #1 (Remarks to the Author):

Summary:

The authors present a well-written manuscript that brings together host gene expression (bulk RNA-
seq of gut biopsy tissue) and 16S amplicon sequencing of the gut microbiome. This data set is
exciting, in that it combines two types of data that are rarely integrated and it spans different case-
control cohorts that represent three distinct disease states: CRC, IBD, and IBS (i.e. results can be
compared across diseases for consistencies or differences). This work provides exciting new insights
into associations between host gene expression and the ecological composition of the gut across three
gut-relevant pathologies. The meta-analysis element of this work is especially cool, to see what
associations are shared or distinct across diseases.

While I'm enthusiastic about the data set and reported results, I have some methodological concerns
and concerns about interpretation that should be addressed. Specifically, the individual subgroups
analyzed vary in size and can be quite small (13 healthy controls in the case of IBS data set). I had
some concerns about statistical power and comparing 'significant' associations identified across groups
of varying sizes.

Specific Comments:

Throughout the manuscript, you use the term 'interact' when describing correlations/associations
between host genes and microbial abundances. I don't think this is semantically appropriate due to
the implicit causality inherent to this term. I know different fields can use terms differently. In ecology
or molecular genetics, 'interaction' usually implies a direct (and directed) interaction between entities
(e.g. predator+ prey or transcription factor/repressor + gene expression). In linear regression,
'interaction' implies something like: [y ~ beta_1(x) + beta_2(z) + beta_3(x*z) + intercept +
residuals], where beta3 is the 'interaction' term. I don't think you can claim any of these
interpretations. I'd suggest sticking to the term 'association' throughout.

lines 90-98: I understand the authors' point about having a multi-variate approach, but they might
overstate it a bit (seems somewhat unnecessary, and therefore a tad distracting). They are using
established methods (i.e. CCA & LASSO). Univariate tests with multi-test corrections, like Pearson or
Spearman, are valid ways to go (pros and cons to any approach). For example, LASSO has the
limitation of being a linear method (but it has a nice advantage in being fairly interpretable, compared
to other ML approaches). The authors mention statistical power, but they end up running separate
tests to assess the 'significance' of the various LASSO coefficients...so it probably ends up being
somewhat similar to univariate+correction for power (although you are getting rid of a lot of the
colinear stuff with the L1 penalty, so maybe it's a bit better). Anyway, I think the overall approach is
fine -- I'd just present it as it stands, without needing to justify it.

Line 147: Based on my own (anecdotal) experience, I've found that Procrustes can sometimes give
unreasonably low and less consistent p-values, when compared against a Mantel test. I think it's fine
here, but you may want to double-check against Mantel.
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lines 167-171: I have some concerns about how your control vs. case analysis was conducted. From
what I read, it seems like you identify your gene-microbe associations within the healthy cohort and
within the disease cohort separately, and then exclude associations found in the healthy cohort,
correct? My concern arises from the different sizes of these cohorts in IBD and IBS. Your statistical
power is changing across these groups, and if you're using some kind of p-value cutoff for picking
associations then you'll be comparing statistical apples to oranges. Did you account for this somehow?
Coefficients are usually much more robust to differences in sample sizes than p-values (e.g.
correlation coefficients). I'm not sure how exactly this relates to LASSO coefficients due to the
hyperparameter tuning and regularization steps... But this makes me a tad queasy. If I was doing this
in a classic GLM, I'd add an interaction term between the independent variable and disease status and
identify significant interaction effects (i.e. association is significant in one population but not in the
other, or the association reverses sign). How flexible is your LASSO framework? Can you add an
interaction term and model cases and controls together, rather than splitting them up? I feel like this
would be more robust.

I see that your FDR g-value thresholds vary throughout the manuscript. This makes the interpretation
of the results a bit harder. Why not stick to a consistent threshold?

lines 398-422: I found this section difficult to read. For good reason -- it's hard to intuitively explain
the 'shared microbes' and 'shared genes' stuff. But I think this section could be improved. For
example, the statement 'shared host genes' was initially confusing to me -- aren't all host genes
shared? Shared microbes made more sense to me because, I thought, we each maybe share ~30% of
the species in our guts. However, the things being shared are not the genes or the microbes, but their
membership in gene-microbe association pairs. Please try to smooth out the exposition here -- I think
it'll really help with the flow of the text.

line 441: Highlighting the use of the term 'interaction' again (it appears frequently, but making a point
here to repeat my prior comment). I think it has a causal implication here that isn't appropriate.
Please remove this term throughout.

lines 670-677: You included abundance info summarized at multiple taxonomic levels, all in the same
abundance matrix. I see that you CLR transformed these profiles? I'm not sure if this is totally
appropriate. These profiles can't really be considered relative abundances anymore, because you're
multi-counting reads from taxa (i.e. you have species abundances, but you also have the abundance
of the genus and the reads mapping to that species also contribute to the genus abundance). Why not
calculate relative abundances for each taxonomic rank (i.e. relative frequencies that all sum to 1.0)
and CLR transform each of these ranks separately, and then combine the profiles?

lines 738-743: I think I'm ok with this, but it's pretty ad hoc. And going back to my prior comment,
this kind of univariate p-value calculation kinda defeats your prior argument about the power of a
multi-variate approach (if by 'power' you are interested in identifying individual 'significant' features).

line 913: How exactly did you remove gender and disease sub-type associations?

line 939: How valuable is it to present more (potentially spurious) features by using a less stringent
0.2 cutoff? Why not just pick a consistent cutoff across the manuscript?
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Reviewer #2 (Remarks to the Author):

Priya et al. present a computational approach for analysing host-gene and microbiome interactions
and apply this approach to three datasets (CRC, IBD, IBS). While the underlying idea is interesting, I
have several concerns:

Major concerns:

e Data processing was not done with the same pipeline. Previously generated host transcript read
count files and OTU tables were used from the original publications of the data. Studies have shown
that the same dataset processed with different bioinformatic pipelines result in very different
outcomes. While the authors analyse the datasets separately to avoid batch affects (due to differences
in sample collection, DNA extraction, library preparation) this is a bias that could be avoided by
reprocessing the data. Also, the published datasets should be briefly described in the methods section
with details on sample collection and data processing.

e The authors state that their aim is to facilitate new insights into the molecular mechanisms for
different disease and that their analysis presents the power of integrating gut microbiome and host
gene expression data to provide disease insights. The authors did a very thorough comparison with
other published studies, but which specific novel hypotheses were generated? What type of validation
experiments would the authors suggest based on groups of microbes and groups of genes that
correlate in abundance/expression? Could a proof-of-principle experiment be added to validate their
approach?

¢ For the analysis they “considered only associations that were found in patients and not in controls”.
What about loss of function in disease?

e The identification of generalisable disease-specific characteristics is challenging on such small
datasets with less than 100 participants per disease. The microbiome is highly variable making the
replication of disease-associated species even across large cohort studies with hundreds of samples
challenging. Hence investigating functional implications of microbial shifts may be a more promising
avenue. Conclusions such as “these associations are not found in IBD or IBS, and are unique to CRC”
are too general/overstating the findings and it should be clearly stated that this refers to this specific
cohort analysis.

e The authors describe the use of supercomputing nodes for their analysis. Did the analysis of these
relatively small dataset require that much compute power? How will this be scaled to hundreds of
samples? Or is the purely a feature provided as part of their method? Some information on how long
the cohort analysis took should be provided.

o It's great that the authors made the code available on github, however, a description of the different
scripts and a tutorial is missing.

e What is their theory behind the disease-specific host-microbe crosstalk? Difference in host genetics?

Minor concerns:

e The authors should clarify in the manuscript (not just the methods section) that most of the
presented data is published data and also compare their analysis to the original findings.

¢ Different FDR threshold were used at various places.

e Why did the IBD dataset only have 121 taxa? Both the CRC and IBS dataset had twice as many
taxa.

Reviewer #3 (Remarks to the Author):
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In this manuscript by Priya et al., the relationship between microbiome composition and host gene
expression is examined in colonic mucosal biopsy samples. In particular, case control studies of three
separate diseases were conducted (colorectal cancer, inflammatory bowel disease, and irritable bowel
syndrome), with RNA-seq being used to measure host gene expression and 16S rRNA gene
sequencing being used to measure microbiome taxonomic composition. Sparse canonical correlation
analysis and clr-lasso were applied to the data to identify microbe-host gene associations, and those
were compared across diseases. Overall, this is a really impressive study: methods are suitable and
very well described, results are informative, and the manuscript is very well-written, with many
connections to previous literature to put results in context. A study like this can serve as a framework
for others interested in combining these two types of datasets while conserving power to detect
associations.

Minor comments:

1. Results are difficult to interpret when multiple levels of bacterial taxonomy are analyzed at the
same time, rather than level by level. For example, in Figure 2, both Micrococcaceae and
Micrococcales are highlighted under the IBD RAC1 pathway panel in B. Is this largely the same signal,
as these groups are nested, or are there distinct signals at different taxonomic levels? It may be more
interpretable for the reader to focus on one level for the main text (maybe OTU or genus level), with
other levels falling to the supplement.

2. Page 4, line 136/methods: More description of the case/control design for each of the three disease
types listed would be beneficial for the reader. What were the criteria used to “match” case with
control? For some of the diseases (IBD and IBS), patients and controls are described as “pairs”, but
there are unequal case and control sample sizes.

3. Are the sample characteristics largely the same across the disease cohorts, or are there differences
that might be confounded with “disease-specific configurations” of the microbiome and host gene
expression? For example, if there were age differences, sex biases, different sampling locations, or
treatments that might also influence gene expression or the microbiome, those would be worth
clarifying for the reader and/or mentioning as a caveat to interpretation of the study.

4. Related to sample sizes mentioned above, the three diseases have different sample sizes, which
seem to match with the number of associations detected in each individual disease and the overlaps
between them (CRC and IBD have the most samples and the most identified associations (including
overlap), while IBS has fewer (including fewer overlaps). Some discussion of this effect of sample size
would be useful for the reader, as well as if the unbalanced case/control designs has any effect on the
power of applying a lasso.

5. In addition to sample size, the number of detected human genes and taxa differ between disease
sets. For the comparisons of overlapping vs. disease specific taxa/genes, were “core” sets of taxa and
gene examined that were held constant between disease set?

6. p8, line 264: I suggest using “associate” rather than “interact”, as “interact” could be interpreted by
some as a direct, physical interaction (which it might not be).

7. p28: How many host pathways were filtered out for being too small, too large, or having not many
genes that overlap? Are there potential pathways of interest that aren’t being examined here, but
could be interesting?

8. Figure 2/p50: Overall, I find the visualizations extremely effective for this manuscript, especially
considering the many dimensions this data is explored in. The one exception is with the sCCA result
visualizations in parts B/C of Figure 2 and the supplemental figure on page 50. It’s hard to tell which
genes are shared across disease subtypes, because host genes are listed in a different orientation in
each subtype. I suggest having the entire host pathway illustrated (maybe in gray) and then coloring
in the significant host genes within disease-subtype. That would preserve the order, allowing for better
highlighting of the similarities and differences for the reader.
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‘ Author Rebuttal to Initial comments




Reviewer #1 (Remarks to the Author):

Summary:

The authors present a well-written manuscript that brings together host gene expression (bulk
RNA-seq of gut biopsy tissue) and 16S amplicon sequencing of the gut microbiome. This data
set is exciting, in that it combines two types of data that are rarely integrated and it spans
different case-control cohorts that represent three distinct disease states: CRC, IBD, and IBS
(i.e. results can be compared across diseases for consistencies or differences). This work
provides exciting new insights into associations between host gene expression and the
ecological composition of the gut across three gut-relevant pathologies. The meta-analysis
element of this work is especially cool, to see what associations are shared or distinct across
diseases.

While I'm enthusiastic about the data set and reported results, | have some methodological
concerns and concerns about interpretation that should be addressed. Specifically, the
individual subgroups analyzed vary in size and can be quite small (13 healthy controls in the
case of IBS data set). | had some concerns about statistical power and comparing 'significant'
associations identified across groups of varying sizes.

Response:

We thank the reviewer for their positive feedback and appreciate the constructive suggestions
and concerns regarding comparisons between case and control subgroups that vary in size. To
address this, we have now included multiple new analyses and modifications in the manuscript.
These new analyses are described in detail in response to Comment 4 (pages 5-9 of the
current document), and edits in the revised manuscript are on pages 29, 33, and 34.

Specific Comments:
Reviewer 1, Comment 1

Throughout the manuscript, you use the term 'interact’ when describing
correlations/associations between host genes and microbial abundances. | don't think this is
semantically appropriate due to the implicit causality inherent to this term. | know different fields
can use terms differently. In ecology or molecular genetics, 'interaction' usually implies a direct
(and directed) interaction between entities (e.g. predator+ prey or transcription factor/repressor
+ gene expression). In linear regression, 'interaction' implies something like: [y ~ beta_1(x) +
beta_2(z) + beta_3(x*z) + intercept + residuals], where beta3 is the 'interaction' term. | don't
think you can claim any of these interpretations. I'd suggest sticking to the term 'association'’
throughout.

Response:



We thank the reviewer for this suggestion. We agree that the term “interaction” can be
misleading, and, as suggested by the reviewer, we have replaced all occurrences of “interact”
with “associate” throughout the manuscript. Similarly, we have replaced all occurrences of
“interaction” with “association” everywhere, including in the title of the manuscript, which is now
“Shared and disease-specific host gene-microbiome associations across human diseases”. This
has resulted in a total of 83 changes throughout the manuscript.

Reviewer 1, Comment 2

lines 90-98: | understand the authors' point about having a multi-variate approach, but they
might overstate it a bit (seems somewhat unnecessary, and therefore a tad distracting). They
are using established methods (i.e. CCA & LASSO). Univariate tests with multi-test corrections,
like Pearson or Spearman, are valid ways to go (pros and cons to any approach). For example,
LASSO has the limitation of being a linear method (but it has a nice advantage in being fairly
interpretable, compared to other ML approaches). The authors mention statistical power, but
they end up running separate tests to assess the 'significance' of the various LASSO
coefficients...so it probably ends up being somewhat similar to univariate+correction for power
(although you are getting rid of a lot of the colinear stuff with the L1 penalty, so maybe it's a bit
better). Anyway, | think the overall approach is fine -- I'd just present it as it stands, without
needing to justify it.

Response:

This is an important comment. We agree; while our multivariate analysis using the lasso
approach discards a number of collinear features using the L1 penalty, our approach for
assessing the significance of lasso coefficients and correcting for multiple hypothesis testing is
similar to univariate methods with respect to statistical power. To address this, we have now
edited following statements about the statistical power of our approach (Introduction, page 3):

“For example, to boost statistical power, most studies have examined interactions
between a limited subset of host genes and gut microbes ...” changed to “For example,
most studies have examined associations between a limited subset of host genes and
gut microbes ...”

We have also removed the following sentence from paper (Introduction, page 3):

“This approach may also decrease statistical power to detect biologically meaningful
associations due to the large number of statistical tests performed”.

We have modified this sentence as well (Discussion, page 17):
“... our approach does not require restricting the data to a predetermined subset of taxa

or genes of interest to increase statistical power.” changed to “... our approach does not
require restricting the data to a predetermined subset of taxa or genes of interest”.



Reviewer 1, Comment 3

Line 147: Based on my own (anecdotal) experience, I've found that Procrustes can sometimes
give unreasonably low and less consistent p-values, when compared against a Mantel test. |
think it's fine here, but you may want to double-check against Mantel.

Response:

In addition to Procrustes analysis, we have now included a Mantel test to double-check the
correlation between the dissimilarity matrices of host gene expression and gut microbiome data
in each disease cohort. We find that the overall pattern of correspondence between paired data
across the disease cohorts using the Mantel test remained the same as with Procrustes
analysis. We have added the following in the manuscript:

Results, page 5:

“We also used the Mantel test to verify the overall correspondence between paired data
for each disease cohort, and found a similar pattern of significance of agreement as
Procrustes analysis for CRC (p-value = 0.0026), IBD (p-value = 0.2597), and IBS (p-
value = 0.9525, see Methods)”.

Methods, page 26:

“We also applied Mantel test to verify overall correlation between dissimilarity matrices of
host gene expression (Aitchison’s distance) and gut microbiome abundance (Bray Curtis
distance) in each disease cohort using the vegan package (version 2.4-5) in R.
Significance was tested using 9,999 permutations”.

Reviewer 1, Comment 4

lines 167-171: | have some concerns about how your control vs. case analysis was conducted.
From what | read, it seems like you identify your gene-microbe associations within the healthy
cohort and within the disease cohort separately, and then exclude associations found in the
healthy cohort, correct? My concern arises from the different sizes of these cohorts in IBD and
IBS. Your statistical power is changing across these groups, and if you're using some kind of p-
value cutoff for picking associations then you'll be comparing statistical apples to oranges. Did
you account for this somehow? Coefficients are usually much more robust to differences in
sample sizes than p-values (e.g. correlation coefficients). I'm not sure how exactly this relates to
LASSO coefficients due to the hyperparameter tuning and regularization steps... But this makes
me a tad queasy. If | was doing this in a classic GLM, I'd add an interaction term between the
independent variable and disease status and identify significant interaction effects (i.e.
association is significant in one population but not in the other, or the association reverses sign).



How flexible is your LASSO framework? Can you add an interaction term and model cases and
controls together, rather than splitting them up? | feel like this would be more robust.

Response:

We thank the reviewer for this observation. This is an important issue, and we performed the
following analyses to address this:

(i) To identify any potential overlap between case and control associations, after lasso
regression and stability selection, we compared all identified case and control associations with
non-zero lasso regression coefficients without employing any significance cutoff (p-value or
FDR) within the CRC, IBD, and IBS cohorts. Reassuringly, we found no overlapping host gene-
microbe associations between cases and controls in any disease cohort. In addition,
downsampling the cases to match the size of the corresponding control group also did not yield
any overlapping associations. Thus, we conclude that the designation of host gene-microbe
associations as specific to cases and controls is robust to the significance cutoff and sample
size differences in our study cohort. We have now updated the manuscript to incorporate these
analyses in identification of patient-specific associations (Methods, page 33):

“Using lasso regression and stability selection, we identified associations for cases and
controls with non-zero lasso regression coefficients for each disease cohort. To identify
associations that were found only in cases and not in controls within a disease cohort,
we checked for any potential overlap between case and control associations, without
subsetting associations using any p-value or FDR cutoff. We found no overlapping host
gene-microbe associations between cases and controls in any disease cohort, which
could be driven by underlying biological differences between case and control conditions
within each cohort. In addition, downsampling the cases to match the controls also did
not yield any overlapping associations. Thus, we conclude that the designation of host
gene-microbe associations as specific to cases and controls is robust to the significance
cutoff and sample size differences in our study cohort”.

(ii) To further account for case versus control comparison in the lasso approach by using a
method that is more robust to different levels of power due to sample size, we did the following
analysis at the pathway level: a) first, from the results of our enrichment analysis, we retained
the set of host pathways that were tested for enrichment in both cases and controls within each
disease cohort without using any p-value or FDR cutoff, and, b) next, we tested for differential
enrichment of these pathways between case and control groups using a comparative log odds-
ratio approach 2. This assessment of differential enrichment is analogous to testing for an
interaction at the pathway level, because we are explicitly testing whether the levels of
enrichment differ between cases and controls. Moreover, because the associated standard error
accounts for the relative number of associated (or “significant”) genes in the case and control
cohorts, it is more robust to the different levels of power due to sample size. In the IBD and IBS
cohorts, we found no common pathways between both case and control groups in step (a)
above, implying that host pathways enriched in cases are indeed case-specific in these cohorts.



In CRC, we found two common host pathways in both cases and controls in step (a) above,
however their differential enrichment in step (b) was not significant at FDR < 0.1, implying that
they were not necessarily specific to cases. Hence, we filtered out these two pathways from the
list of case-specific pathways. Thus, we accounted for case versus control comparison at
pathway level. A full description of this analysis has been incorporated in the manuscript
(Methods, pages 29 and 34):

Methods, page 29:
“Differential enrichment analysis

We performed differential enrichment of pathways in cases versus controls by
implementing a comparative log odds-ratio approach in R 185186 To do so, we first
computed the z-score for the odds ratio for i-th pathway in cases:

Zicase = lOg (6i)/SE (61)

where, §;is the odds-ratio for i-th pathway in cases, and SE(8;)is the standard error for i-
th pathway in cases, which is computed using the four elements, n;to n,, of the 2x2
contingency table used in the enrichment analysis for the i-th pathway as follows:

SE(8) = J1/ni+1/ny +1/n3+ 1/n,

Similarly, we computed z; ., for the same pathway in the controls. Next, we compute a

comparative log odds-ratio for i-th pathway overlapping between cases and controls as
follows:

log((Si,case) - log(ai,ctrl)

Zj —ctrl =
peasemer SE(Si,Case,ctrl)

The greater the value of z; .45.—tr1, the greater the odds a pathway is differentially
enriched in case versus control than by chance. P-values were inferred assuming
normal approximations, and corrected for multiple hypothesis testing using Benjamini-
Hochberg (FDR) approach”.

Methods, page 34:

“Using enrichment analysis for host genes associated with specific gut microbes, we
identified host pathways for cases and controls in each disease cohort. To account for
case versus control comparison at the pathway level, we performed the following
analysis: 1) first, from the results of our enrichment analysis, we retained the set of host
pathways that were tested for enrichment in both cases and controls within each disease



cohort without using any p-value or FDR cutoff, and, 2) next, we tested for differential
enrichment of these pathways between case and control groups using a comparative log
odds-ratio approach (described above). For IBD and IBS cohorts, we found no pathways
enriched in both case and control groups in step 1 above, hence implying that host
pathways enriched in cases are indeed case-specific in these cohorts. In CRC, we found
two host pathways that were common in both cases and controls in step 1, however they
were not differentially enriched in cases versus controls at FDR < 0.1 (step 2), implying
that they were not necessarily specific to cases. Hence, we filtered out these two
pathways from consideration for case-specific pathways”.

(iii) In addition to accounting for overlaps between cases and controls at the association level
(asin i) and at the pathway level (as in ii), we also accounted for any overlaps between host
genes that were associated with microbes in cases and controls. To do so, we only used case-
specific host genes, i.e. host genes that were found to be associated with microbes in cases but
not in controls, to perform enrichment analysis to determine case-specific pathways in each
disease cohort. We have now updated the manuscript text to incorporate this (Methods, page
34):

“In addition to accounting for overlaps between cases and controls at the association
level and at the pathway level, we also accounted for any overlaps between host genes
that were associated with microbes in cases and controls. We only used case-specific
host genes, i.e. host genes that were found to be associated with microbes in cases but
not in controls, to perform enrichment analysis to determine case-specific pathways in
each disease cohort.”

(iv) We have looked into using an interaction term between the independent variables (i.e.
microbial taxa) and disease status in the lasso model. Incorporating such an interaction within
the lasso framework is not straightforward, and various approaches have been proposed (for an
overview, please see Lim and Hastie et al. ®). However, these approaches do not explicitly allow
for different sparsity structure in cases and controls (i.e., where an effect is present for cases
but not for controls, or present for controls but not for cases), which is crucial to our
interpretation and subsequent analyses. Moreover, this approach is computationally arduous for
our implementation of lasso analysis due to the following reason: for each disease cohort, we fit
over 12,300 gene-wise lasso models on average, where each model uses the expression for a
host gene as response and the abundance of about 200 microbial taxa on average as
predictors/independent variables. Adding an interaction term between each predictor (i.e.
microbial taxon) and disease status will lead to doubling the number of predictors in each gene’s
model, resulting in about 400 predictors per model, and including over 12,300 x 200 =
2,460,000 additional terms for assessment of model fit per disease cohort, which is
computationally challenging. Hence, we did not include interaction terms in our model. We have
now added this in manuscript text to clarify (Methods, page 33):

“Another potential approach to identify case-specific associations would be to use an
interaction term between the independent variable (i.e. microbial taxa) and disease



status in the lasso model, and determine associations that are significant in cases but
not in controls. Incorporating such an interaction within the lasso framework is not
straightforward, and various approaches have been proposed (for an overview, please
see Lim and Hastie et al. '*). However, these approaches do not explicitly allow for
different sparsity structure in cases and controls (i.e., where an effect is present for
cases but not for controls, or present for controls but not for cases), which is crucial to
our interpretation and subsequent analyses. Moreover, this approach is computationally
challenging for our implementation for the following reason: for each disease cohort, we
fit over 12,300 gene-wise lasso models on average, where each model uses the
expression for a host gene as response and the abundance of about 200 microbial taxa
on average as predictors/independent variables. Adding an interaction term between
each predictor (i.e. microbial taxon) and disease status will lead to doubling the number
of predictors in each gene’s model, resulting in about 400 predictors per model, and
including over 12,300 x 200 = 2,460,000 additional terms for assessment of model fit per
disease cohort. Hence, we did not include interaction terms in our model”.

Reviewer 1, Comment 5

| see that your FDR g-value thresholds vary throughout the manuscript. This makes the
interpretation of the results a bit harder. Why not stick to a consistent threshold?

Response:

We agree, and have now updated the manuscript to report all results at a consistent FDR g-
value threshold of 0.1. Specifically, we have now updated our results to report host pathways
enriched among genes that associate with unique gut microbes at FDR g-value cutoff of 0.1
(instead of the previously used FDR cutoff of 0.2). (Results, page 10):

“We identified 18 host pathways that are unique to each disease, including 4 CRC-
specific, 9 IBD-specific, and 5 IBS-specific pathways that associate with unique gut
bacteria (Figure 3B, Fisher’s exact test, Benjamini-Hochberg FDR < 0.1, Supplementary
Table S9, see Methods)”.

We have also updated Figure 3B to visualize host pathways at FDR < 0.1 (Results, page 9):



Interleukin 10 signaling

Regulation of MECP2 expression and activity

Signaling by NOTCH1 in cancer

lon transport by P-type ATPases

Thrombin signalling through proteinase activated receptors (PARS)
Melanoma

Signal transduction by L1

Glucagon type ligand receptors

ADP signalling through P2Y purinoceptor 1

Degradation of cysteine and homocysteine

Citrate cycle (TCA cycle)

Branched chain amino acid catabolism
Glycosaminoglycan biosynthesis chondroitin sulfate
Sumoylation of chromatin organization proteins

Transport of mature transcript to cytoplasm

Sumoylation of DNA damage response and repair proteins
Arachidonic acid metabolism

PPAR signaling pathway

Disease
pm CRC

am 1BD
B IBS

00051015
-logqo (g—value)

We have also modified the method section and Supplementary Table S9 accordingly (Methods,

page 34):

“Using this approach, we identified 18 host pathways that are unique to each disease,
including 4 CRC-specific, 9 IBD-specific, and 5 IBS-specific pathways that associate with

unique gut bacteria (FDR < 0.1, Supplementary Table S9)".

We have deleted the following sentence (Methods, previously page 28):

“Here, we used a more relaxed FDR threshold of 0.2 to present a larger number of

biologically relevant host pathways”.



Reviewer 1, Comment 6

lines 398-422: | found this section difficult to read. For good reason -- it's hard to intuitively
explain the 'shared microbes' and 'shared genes' stuff. But | think this section could be
improved. For example, the statement 'shared host genes' was initially confusing to me -- aren't
all host genes shared? Shared microbes made more sense to me because, | thought, we each
maybe share ~30% of the species in our guts. However, the things being shared are not the
genes or the microbes, but their membership in gene-microbe association pairs. Please try to
smooth out the exposition here -- | think it'll really help with the flow of the text.

Response:

We thank the reviewer for pointing this out, and agree that the usage of “shared” terminology is
confusing here. We have now replaced occurrences of this term with a more intuitive description
throughout this Results section to clarify that we are referring to host genes/gut microbes that
are common across host gene-microbe association pairs. Here are our edits for the specific
sentences highlighted by the reviewer:

Results, page 14:

Replaced “To elucidate potential host gene-microbe interactions for gut microbes shared
between diseases, we visualized ...” with “Next, we visualized the networks of host gene-
microbe associations for gut microbes that are associated with host genes in two
diseases ...”

“Conversely, to explore how the same host genes may associate with different gut
microbes across all diseases, we identified host genes that are associated with gut
microbes in at least two diseases, and visualized their networks of association across
diseases (Figure 4B, lasso regression, FDR < 0.1, Supplementary Table S11). We
identified 5 such host genes that associate with 4 gut microbes in CRC, 5 gut microbes
in IBS, and 4 gut microbes in IBD ...”

In addition, we made the following edits in the manuscript:
Results, page 13 (Legend for Figure 4):

“Figure 4. Disease-specific gut microbe-host gene crosstalk. A. Associations for shared
gut microbes, namely microbes that are associated with host genes in at least two
diseases; (center) Venn diagram showing overlap between gut microbes associated with
host genes in CRC, IBD and IBS, (counter-clockwise) networks showing host gene-
microbe associations for gut microbes shared across associations in CRC, IBD and IBS
(Network 1), in CRC and IBS (Network 2), in IBD and IBS (Network 3), and in CRC
and IBD (Network 4). B. Associations for shared host genes, i.e. genes that are
associated with microbes in at least two diseases; (center) Venn diagram showing
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overlap between host genes associated with gut microbes in CRC, IBD, and IBS,
(counter-clockwise) networks showing host gene-microbe associations for host genes
shared across associations in CRC, IBD and IBS (Network 1), in CRC and IBS
(Network 2), in IBD and IBS (Network 3), and in CRC and IBD (Network 4). Circular
nodes represent host genes, triangular nodes represent gut microbes. Colored nodes
represent specific diseases (purple: CRC, green: IBD, yellow: IBS), grey nodes
represent gut microbes (A) and host genes (B) shared between associations across
diseases. Edge color represents positive (blue) or negative (red) association, and edge
width represents strength of association (spearman rho). All associations were
determined at FDR < 0.1.”

Results, page 13:

“To understand how gut microbes may associate with specific host genes across
diseases, we explored the overlaps between host gene-microbe associations in CRC,
IBD, and IBS (Figure 4A, lasso regression, Benjamini-Hochberg FDR < 0.1,
Supplementary Table S10). We identified shared gut microbes, namely gut microbes
that associate with host genes in at least two diseases, and visualized their networks of
association with host genes across diseases. We found three gut microbes,
Peptostreptococcaceae, Streptococcus, and Staphylococcus, whose abundance is
correlated with host gene expression in all three diseases in our study cohorts ...”

Results, page 14:
Replaced “Some notable associations for these shared host genes include host genes
and taxa previously implicated in CRC and IBD” with “These host genes and the
microbial taxa they associate with have been previously implicated in CRC and IBD”.

Results, page 15:
Replaced “Overall, our analysis shows that shared gut microbial taxa and shared host
genes depict disease-specific host-microbe crosstalk...” with “Overall, our analysis
shows that gut microbial taxa and host genes that are shared between associations
across diseases depict disease-specific host-microbe crosstalk...”

Reviewer 1, Comment 7

line 441: Highlighting the use of the term 'interaction' again (it appears frequently, but making a

point here to repeat my prior comment). | think it has a causal implication here that isn't

appropriate. Please remove this term throughout.

Response:
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We agree, and as described in response to Comment 1 above, we have replaced occurrences
of “interact” and “interaction” with “associate” and “association”, respectively, throughout the
manuscript, which resulted in a total of 83 replacements. Our edit for this specific sentence is as
follows (Results, page 15):

changed to “whereas in IBD, it
associates with Acidaminococcaceae”

Reviewer 1, Comment 8

lines 670-677: You included abundance info summarized at multiple taxonomic levels, all in the
same abundance matrix. | see that you CLR transformed these profiles? I'm not sure if this is
totally appropriate. These profiles can't really be considered relative abundances anymore,
because you're multi-counting reads from taxa (i.e. you have species abundances, but you also
have the abundance of the genus and the reads mapping to that species also contribute to the
genus abundance). Why not calculate relative abundances for each taxonomic rank (i.e. relative
frequencies that all sum to 1.0) and CLR transform each of these ranks separately, and then
combine the profiles?

Response:

This is an important point. To clarify, for each disease dataset, we summarized taxa at different
taxonomic ranks by keeping read counts (not relative abundance)*®, concatenated these
summarized rank matrices into a combined taxa matrix, and applied CLR transform on the
combined matrix to obtain the taxa matrix used in our integration analyses. This approach of
applying CLR transformation on the combined taxa matrix results in a matrix that is
compositionally coherent and has a uniform transformation across taxa, whereas applying CLR
transform on each taxonomic rank separately and then combining them would result in a matrix
with multimodal distribution (corresponding to composition at each taxonomic rank) that can
potentially bias the variable selection by lasso approach. In addition, we hypothesize that the
choice of transformation approach would have little effect on the resulting taxa profiles. To test
this hypothesis, we examined the correlation between these two approaches of transformation.
We generated the taxa profiles based on the two transformation approaches: (i) CLR transform
on combined taxa matrix, and (ii) CLR transform each taxa rank separately and combine them.
We found that the profiles are significantly correlated (p-value < 0.05) with an average
Pearson’s correlation of 0.92, and an average Spearman correlation of 0.87 across samples in a
dataset. A new Figure S5 included below shows scatter plots depicting the correlation between
the taxa profiles resulting from these two transformation approaches on a few randomly
selected samples from the CRC microbiome dataset. This concordance between the taxa
profiles resulting from the two transformation approaches implies that the results from our
downstream analyses are unlikely to be affected by which of the two transformation approaches
is used. We have now updated the manuscript to clarify this as follows (Methods, page 24):
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“To account for compositionality effects in microbiome datasets, we tested two different
approaches for performing centered log ratio (CLR) transformation on our taxonomic
data for each disease: i) we concatenated the summarized taxa matrices (count data)
into a combined taxa matrix, and then applied CLR transform on the combined matrix, ii)
we CLR transformed each taxa rank, and then concatenated them into a combined
matrix. We verified whether these two transformation approaches are correlated with
each other. To do so, we compared the taxa abundance profiles resulting from the two
transformation approaches, and found that the two profiles are significantly correlated (p-
value < 0.05) with an average Pearson’s correlation of 0.92, and an average Spearman
correlation of 0.87 across samples in a dataset (see Figure S5 for example correlations
between the taxa profiles resulting from the two transformations on a few randomly
selected samples from the CRC microbiome dataset). This concordance between the
taxa profiles resulting from the two transformation approaches implies that the
transformation approach is unlikely to impact downstream results. The first approach
generates a taxa profile that is compositionally coherent and has a uniform
transformation across taxa in a dataset, whereas the second approach results in a taxa
profile with multimodal distribution (corresponding to composition at each taxonomic
rank) that might bias the variable selection by lasso approach. Hence, we adopted the
first approach for transforming our taxonomic data”.
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Supplementary Figure S5: Scatterplots showing correlation between taxa profiles
generated from two transformation approaches across three random samples from CRC
disease cohort. The x-axis shows taxa profile resulting from one approach, where we
summarize taxa ranks, combine summarized rank matrices, and CLR transform the
combined matrix (CLR_taxa_combined), and the y-axis represents taxa profiles resulting
from the second approach, where we summarize taxa ranks, CLR transform each taxa
rank, and combine the CLR-transformed taxa ranks (CLR_taxa_ranks).

Reviewer 1, Comment 9

lines 738-743: | think I'm ok with this, but it's pretty ad hoc. And going back to my prior
comment, this kind of univariate p-value calculation kinda defeats your prior argument about the
power of a multi-variate approach (if by 'power' you are interested in identifying individual
'significant' features).
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Response:

We thank the reviewer for this comment, and agree with the general statement. If we
understand correctly, the reviewer is referring to our approach of assessing the significance of
sparse CCA components. We have used a cross-validation approach to test for significance of
each pair of canonical variables (or a component). Witten et al., whose work is the basis of our
implementation of sparse CCA analysis, have used a similar approach using training set/test set
for assessing the robustness of penalized canonical variates ’. As mentioned in our response to
Comment 2 above, we agree with the reviewer’s point regarding statistical power of identifying
individual significant features (please see Comment 2 above for full details and updates to
manuscript text). We want to clarify that in the case of sparse CCA, we are testing significance
at component level, i.e. for a group of host genes correlated with a group of gut microbes. We
are not testing the significance of the individual features selected, which depends on the level of
sparsity penalization. Hence, when a component is selected, we cannot claim that every
individual gene/taxa belonging to that component is significant at FDR < 0.1. However, the
validity of results at the pathway level would be robust to how the gene sets were obtained; for
example, if they are all Type | errors, we would not expect significant enrichment of specific
pathways. We have now added the following text in the manuscript to clarify this (Methods,
page 28):

“Note that here we are testing for significance at the component level, i.e. for a group of
host genes correlated with a group of gut microbes, rather than the significance of the
individual features selected, which depends on the level of sparsity penalization”.

Reviewer 1, Comment 10
line 913: How exactly did you remove gender and disease sub-type associations?
Response:

Since our lasso model includes gender and disease-subtype as covariates along with gut
microbiome abundance in the predictor matrix (page 31), our model output includes host gene-
gender and host gene — disease-subtype associations, in addition to host gene-microbe
associations. We used this output to filter out any significant host gene-gender and host gene —
disease-subtype (applicable to IBD and IBS) associations (FDR < 0.1) to only retain host gene-
microbe associations for each disease cohort. We have modified the text in manuscript to clarify
this as follows (Methods, page 32):

“We filtered out any significant and stability-selected host gene-gender and host gene —
disease-subtype (applicable to IBD and IBS) associations from the output to retain

significant and stability-selected host gene-microbe associations at FDR < 0.1”.

Reviewer 1, Comment 11
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line 939: How valuable is it to present more (potentially spurious) features by using a less
stringent 0.2 cutoff? Why not just pick a consistent cutoff across the manuscript?

Response:

We thank the reviewer for pointing this out. We now adjusted this to report all results at a
consistent FDR g-value cutoff of 0.1 throughout the manuscript. Please see a full description of
these changes in our response to Comment 5; briefly, we have now updated our results to
report host pathways enriched at FDR < 0.1 (instead of FDR < 0.2). This resulted in updates in
Figure 3B, and multiple changes in Results and Methods sections. Specifically, we have now
deleted the sentence highlighted here by the reviewer in the Methods section (previously line
939):

Reviewer #2 (Remarks to the Author):

Priya et al. present a computational approach for analysing host-gene and microbiome
interactions and apply this approach to three datasets (CRC, IBD, IBS). While the underlying
idea is interesting, | have several concerns:

Major concerns:
Reviewer 2, Comment 1

Data processing was not done with the same pipeline. Previously generated host transcript read
count files and OTU tables were used from the original publications of the data. Studies have
shown that the same dataset processed with different bioinformatic pipelines result in very
different outcomes. While the authors analyse the datasets separately to avoid batch affects
(due to differences in sample collection, DNA extraction, library preparation) this is a bias that
could be avoided by reprocessing the data. Also, the published datasets should be briefly
described in the methods section with details on sample collection and data processing.

Response:

We thank the reviewer for this comment. We agree that processing by different bioinformatics
pipelines can lead to different results; however, it is important to note that our study included
data from three different disease cohorts -- data that was generated using different protocols for
sample collection, handling, preparation, and sequencing. Previous studies have shown that
batch effects introduced due to differences in data generation protocols, including sample
collection, storage, DNA/mRNA extraction, PCR amplification, and sequencing cannot be
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avoided by adopting a uniform data processing pipeline '°. Studies have shown that even
when using the same data curation pipeline, biases in the data generation pipeline and batch
effects still influence the assignment of taxonomic composition and gene expression profiles *".
Statistical approaches to correct for batch effects have been proposed for gene expression and
microbiome datasets, however most of these approaches are relevant to testing differences
between cases and controls, and do not apply to integrative analyses '°. One way to mitigate
batch effects across multiple datasets is to use meta-analyses techniques, where each dataset
is analysed separately followed by comparison across results from each analysis. While these
meta-analysis approaches have disadvantages, like reduced statistical power, they have been
extensively used to minimize batch effects when integrating genomic data from multiple
studies’®, and have recently been useful in microbiome studies '#'3. Therefore, we chose to
perform our data analysis within each disease cohort, and compare the results across cohorts at
the last analysis step. We have now incorporated these details in the manuscript to clarify our
approach further (Methods, page 25):

‘Integrating host gene expression and gut microbiome data across diseases

Our study includes three different disease cohorts with disparate protocols for sample
collection, handling, preparation, and sequencing. Previous studies have shown that
differences in data generation protocols, including sample collection, storage,
DNA/mRNA extraction, PCR amplification, and sequencing can lead to potential batch
effects regardless of the data processing pipeline used '**-'%2, Studies have shown that
even when using the same data curation pipeline, biases in the data generation pipeline
and batch effects still influence the assignment of taxonomic composition and gene
expression profiles '°17®, Statistical approaches to correct for batch effects have been
proposed for gene expression and microbiome datasets, however most of these
approaches are relevant to testing differences between cases and controls, and do not
apply to integrative analyses '°'%2, One way to mitigate batch effects across multiple
datasets is to use meta-analyses techniques, where each dataset is analyzed separately
followed by comparison across results from each analysis. While these meta-analysis
approaches have disadvantages, like reduced statistical power, they have been
extensively used to minimize batch effects when integrating genomic data from multiple
studies'®?, and have recently proven useful in microbiome studies '°**'%°. Therefore, we
chose to perform our data analysis within each disease cohort, and compare the results
across cohorts at the last analysis step”.

Previous studies have also shown that different clustering approaches, such as operational
taxonomic units (OTUs), zero-radius OTUs ( zOTU), and amplicon sequence variants (ASVs),
and specific pipeline settings have minor influences on taxonomic classification compared to
experimental factors such as choice of sequencing primer '*. To check this in our dataset, we
re-analyzed a few samples from some of our disease dataset using the DADA2 pipeline, which
uses ASV clustering, and compared to the OTU clustering that was used to process the data
used in our study. We found that the estimated taxa profiles are correlated between the two
approaches at different taxonomic levels. For example, in a few CRC samples, we found that
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taxa profiles obtained using OTU clustering and ASV clustering are significantly correlated at
different taxonomic levels, including at phylum (Spearman rho = 0.89, p-value = 0.0068), class
(Spearman rho = 0.68, p-value = 0.029), and genus (Spearman rho = 0.6, p-value = 0.088)
levels. This implies that different processing pipelines may not alter the taxonomic composition
drastically to influence the downstream analyses. We have now included the details of this
analysis in the manuscript (Methods, Page 26), and also added a discussion in the manuscript
about the effect of different processing pipelines and how we accounted for potential batch
effects across disease cohorts (Discussion, Page 18):

Methods, Page 25:

“Previous studies have also shown that different clustering approaches, such as
operational taxonomic units (OTUs), zero-radius OTUs ( zOTU), and amplicon sequence
variants (ASVs), and specific pipeline settings have minor influences on taxonomic
classification compared to experimental factors such as choice of sequencing primer'?3,
To check this in our dataset, we re-analyzed a few samples from some of our disease
dataset using the DADAZ2 pipeline'’”, which uses ASV clustering, and compared to the
OTU clustering that was used to process the data used in our study. We found that the
estimated taxa profiles are correlated between the two approaches at different
taxonomic levels. For example, in a few CRC samples, we found that taxa profiles
obtained using OTU clustering and ASV clustering are significantly correlated at different
taxonomic levels, including at phylum (Spearman rho = 0.89, p-value = 0.0068), class
(Spearman rho = 0.68, p-value = 0.029), and genus (Spearman rho = 0.6, p-value =
0.088) levels. This implies that different processing pipelines may not alter the taxonomic
composition drastically to influence the downstream analyses”.

Discussion, Page 18:

“Another caveat of our study is that it includes three different disease cohorts with
disparate protocols for sample collection, preparation, sequencing, and data processing.
Although this may lead to batch effects (see e.g."*"?), studies have shown that
different clustering approaches, such as operational taxonomic units (OTUs), zero-radius
OTUs (zOTU), and amplicon sequence variants (ASVs), and specific pipeline settings
have minor influences on taxonomic classification compared to experimental factors
such as the choice of sequencing primer '*3. Indeed, a re-analysis of representative
samples in our dataset using a different pipeline found that the estimated taxonomic
profiles are correlated between the two approaches at different taxonomic levels (see
Methods). This implies that different processing pipelines may have a minor effect on the
taxonomic composition and are unlikely to influence the downstream analyses. In
addition, to mitigate overall batch effects across disease cohorts in our study, we
adopted a meta-analysis approach, where we performed our integration analysis within
each disease cohort separately, and compared the results across cohorts at the last
analysis step. While meta-analysis approaches have disadvantages, like reduced
statistical power, they have been extensively used to minimize batch effects when
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integrating genomic data from multiple studies 2, and have recently proven useful in
microbiome studies '°*'5*

As per reviewer’s suggestion, we have now updated the methods section in the manuscript to
include additional descriptions for the published datasets used in our study, including details on
sample collection and data processing for each dataset (Methods, pages 21-23):

Methods, page 21 (CRC samples and data):

“We used 88 pairs of gut microbiome and host gene expression samples from 44
patients, with primary tumor and normal tissue samples taken from each individual.
These samples were characterized and described in a previous study >. Briefly, these
de-identified samples were obtained from the University of Minnesota Biological
Materials Procurement Network (Bionet). Tissue pairs were resected concurrently,
rinsed with sterile water, flash frozen in liquid nitrogen, and characterized by staff
pathologists. Detailed cohort characteristics for this dataset are included in
Supplementary Table S17.

Methods, page 22:

“16S rRNA sequencing data. The microbiome dataset used in this study was generated
and published previously *. Briefly, total DNA was isolated from the flash-frozen tissue
samples and their associated microbiomes by adapting an established nucleic acid
extraction protocol '°®. DNA isolated from colon samples was quantified by quantitative
PCR (qPCR), V5-V6 regions of the 16S rRNA gene were PCR amplified and sequenced
using the lllumina MiSeq (v3 Kit) with 2 x 250 bp paired-end protocol. The forward and
reverse reads were merged and trimmed using USEARCH v7 '®'. The merged and
filtered reads were used to pick operational taxonomic units (OTUs) with QIIME
v.1.7.0"%2, We used the unnormalized and unfiltered OTU table in tab-delimited format,
representing mucosal microbiome data from 44 tumor and 44 patient-matched colon
tissue samples. We describe the steps for preprocessing microbiome data for integration
analysis below”.

For the previously unpublished host gene expression data for CRC, we have extensively
described the RNA-seq protocol used, including details on mRNA extraction, library preparation,
sequencing, alignment, and quality control (see Methods, page 21).

Methods, page 22 (IBD samples and data):

“We used previously generated and published host gene expression (RNA-seq) and
mucosal gut microbiome (16S rRNA) data for the IBD cohort generated as part of the
HMP2 project 2>28, These include data from colonic biopsy samples collected from 78
individuals, including 56 individuals with IBD, and 22 individuals without IBD (“hon-IBD”
in HMP2). Out of 56 IBD patients, 34 patients had Crohn’s disease (CD) and 22 patients
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had ulcerative colitis (UC). Detailed protocol for sample collection and processing is
described at http://ibdmdb.org/protocols. Briefly, biopsies were collected during the initial
screening colonoscopy and stored in RNAlater for molecular data generation (host and
microbial, stored at —20 °C). DNA and RNA were extracted from RNAlater-preserved
biopsies using the AllPrep DNA/RNA Universal Kit from Qiagen. For microbiome
profiling, bacterial genomic DNA was extracted from the total mass of the biopsied
specimens using the MoBIO PowerLyzer Tissue and Cells DNA isolation kit, 16S rDNA
V4 region was PCR amplified and sequenced in the lllumina MiSeq platform using the 2
x 250 bp paired-end protocol. Read pairs were demultiplexed and merged using
USEARCH v7.0.1090 and clustered into OTUs using UPARSE algorithm'®"'®3, For host
gene expression data, mRNA was extracted from biopsy samples, followed by RNA-seq
library preparation using a variant of lllumina TruSeq Stranded mRNA Sample
Preparation Kit. Sequencing was performed according to the manufacturer’s protocols
using either the HiSeq 2000 or HiSeq 2500 with 101bp paired-end reads. Data was
analyzed using the Broad Picard Pipeline.

Detailed cohort characteristics for this dataset are included in Supplementary Table S1.
We downloaded metadata, host RNA-seq data, and microbiome data for these samples
from http://ibdmdb.org in July 2018. We downloaded the unnormalized and unfiltered

OTU table and host transcript read counts files in tab-delimited format. We describe the
filtering and preprocessing steps for host gene expression and microbiome data below”.

Methods, page 23 (IBS samples and data):

“We used previously generated and published host gene expression (RNA-seq) and
mucosal gut microbiome (16S rRNA) data for the IBS cohort 8. These include data from
colonic biopsy samples collected from 42 individuals, including 29 individuals with IBS,
and 13 healthy individuals (non-IBS). These samples were collected at Mayo Clinic
Rochester, and described in detail by Mars et al. 8. Briefly, for the microbiome data, DNA
was extracted from biopsy sections using the QIAGEN PowerSoil kit (QIAGEN,
Germantown, MD, USA). The V4 region of the 16S rRNA gene was amplified, followed
by paired-end 2x250 bp sequencing on an lllumina MiSeq. Trimming of adaptors, quality
control, and merging of reads was performed using Shi7 '®*. Amplicon sequences were
aligned to the 16S rRNA genes using BURST "®°. For host gene expression data, mRNA
was extracted from biopsy samples, followed by RNA-Seq library preparation using the
lllumina TruSeq RNA Library Prep Kit v2. Sequencing was performed on an lllumina
HiSeq-2000 with 101bp paired-end reads. Gene expression counts were obtained using
the MAP-RSeq v.2.0.0 that consists of alignment with TopHat 2.0.12 against the human
hg19 genome build, and gene counts with the Subread package 1.4.4 1867168,

Detailed cohort characteristics for this dataset are included in Supplementary Table S1.

We obtained the unnormalized and unfiltered OTU table and host transcript read count
files in tab-delimited format via personal communication with authors of the paper 8. For
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some individuals, samples were collected at two time points. For these cases, we
averaged the gene expression levels and microbiome abundance measurements across
the two time points. This is supported by a recent study showing that “omics” methods
are more accurate when using averages over multiple sampling time points '%°. We
describe the filtering and preprocessing steps for host gene expression and microbiome
data below”.

Reviewer 2, Comment 2

The authors state that their aim is to facilitate new insights into the molecular mechanisms for
different disease and that their analysis presents the power of integrating gut microbiome and
host gene expression data to provide disease insights. The authors did a very thorough
comparison with other published studies, but which specific novel hypotheses were generated?
What type of validation experiments would the authors suggest based on groups of microbes
and groups of genes that correlate in abundance/expression? Could a proof-of-principle
experiment be added to validate their approach?

Response:

This is an important point -- we agree that this was not described well in the previous version of
the manuscript, and have now edited the manuscript to clarify the novel hypotheses and
potential validation experiments. Briefly, we believe that many novel hypotheses, in the form of
specific host gene-microbe associations, are presented in the results. We have now added the
following text to the manuscript to clarify this (Discussion, page 19):

“Our study uncovered new insights at the systems level; for example, we found that gut
microbes that have been associated with all three diseases, such as Streptococcus,
associate with different host genes in each disease, suggesting that the same microbial
taxon can contribute to different health outcomes through potentially regulating the
expression of different host genes in the colon. We also identified numerous specific
hypotheses in the form of disease-specific associations; for example, we found that
Bacteroidales is associated with host genes CCR2 and FPR1 in IL-10 signaling host
pathway in colorectal cancer; that Peptostreptococcaceae is associated with MAPK3
and VIPR1 that are part of G protein-coupled receptors pathways in inflammatory bowel
disease; and that Bacteroides massiliensis is associated with the host gene PLA2G4A, a
member of prostaglandin biosynthesis pathway, in irritable bowel syndrome”.

Future validation experiments using cell cultures and animal models can be designed to test
these hypotheses to elucidate the causal role and mechanism of host gene-microbiome
interactions. For example, using human cell culture experiments ?°, one can spike-in specific
bacteria of interest and quantify whether change in abundance of said bacteria modulates gene
expression in host cells. In addition, in vivo studies can be used to assess the impact of specific
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bacteria on host gene expression in specific disease contexts *°. We have added the following
text in the manuscript to specify this (Discussion, page 18):

“For example, using human cell culture experiments #, it is possible to measure the
direct effect of change in abundance of specific bacteria on host gene regulation.
Moreover, in vivo studies using animal models of specific diseases can assess the
impact of specific bacteria on host gene expression and the effect of this association on
host health 9"

A proof-of-principle experiment is a good idea; however, we believe it is out of scope of our
current work. We believe that our work is of importance as it stands, comprising the first
systems-level characterization of host gene-microbe associations across gastrointestinal
diseases, and providing a machine learning framework that can be utilized by future studies for
joint analyses of multi-omic datasets. We expect that future studies, focused on specific
diseases, host genes, or bacterial taxa, will offer experimental validation of some of the
candidate associations presented here.

Reviewer 2, Comment 3

For the analysis they “considered only associations that were found in patients and not in
controls”. What about loss of function in disease?

Response:

We thank the reviewer for pointing this out. If we understand correctly, the reviewer is referring
to lasso results, describing associations between specific host genes and microbial taxa. To test
the effect of loss-of-function in disease (i.e., associations that are found in controls and not in
patients), we performed the following analysis using a two-step approach:

i) First, we identified host pathways that are enriched only in controls, and not in cases at FDR <
0.1.In IBD and IBS, no pathways were found to be enriched in controls at FDR < 0.1, so we
could not identify any functional trends in control associations for these two disease cohorts. In
CRC, the top 10 control-specific pathways at FDR < 0.1 are related to transcriptional regulation,
rRNA expression, DNA methylation, and other such general cellular function categories that did
not provide any useful insight on loss of function in disease.

ii) Next, we identified any host pathways that were enriched in both cases and controls, and
tested for differential enrichment of those pathways between cases and controls using a
comparative log-odds ratio approach . The full details of this approach are described in our
response to Reviewer 1, Comment 4, and updated text in the manuscript in the Methods
section, pages 29 and 34. As mentioned above, we did not find any host pathways enriched for
control associations in IBD and IBS, hence no overlapping pathways were found for cases and
controls for these two diseases. In CRC, we found two pathways that overlapped between
cases and controls, but the differential enrichment was not statistically significant at FDR < 0.1.
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Overall, these analyses did not yield any specific functional trends in the control associations in
CRC, IBD, and IBS cohorts. Hence, we only focused on case-specific associations and
pathways across diseases in this study. We have now updated the manuscript to incorporate
these analyses and findings (Methods, page 35):

“To identify any loss of function in disease (i.e., associations that are found in controls
and not in cases), we performed analysis at pathway level to determine functional trends
in control associations compared to case associations. To do so, we first determined any
host pathways that were found enriched only in controls, and not in cases at FDR < 0.1.
In IBD and IBS, no pathways were found to be enriched in controls at FDR < 0.1, so we
could not identify any functional trends in control associations for these two disease
cohorts. In CRC, top 10 control-specific pathways at FDR < 0.1 are related to
transcriptional regulation, rRNA expression, DNA methylation, and other such general
cellular function categories that did not provide any useful insight on loss of function in
disease. Additionally, as mentioned above, we did not find any pathways differentially
enriched in controls vs cases in any disease cohort. Hence, given that we did not find
any specific functional trends in the control associations in CRC, IBD, and IBS cohorts,
we only focused on case-specific associations and pathways across diseases in this
study”.

Reviewer 2, Comment 4

The identification of generalisable disease-specific characteristics is challenging on such small
datasets with less than 100 participants per disease. The microbiome is highly variable making
the replication of disease-associated species even across large cohort studies with hundreds of
samples challenging. Hence investigating functional implications of microbial shifts may be a
more promising avenue. Conclusions such as “these associations are not found in IBD or IBS,
and are unique to CRC” are too general/overstating the findings and it should be clearly stated
that this refers to this specific cohort analysis.

Response:

We thank the reviewer for this important point, and agree with the comment about challenges
associated with generalizability of disease-specific associations due to variability of microbial
composition across disease cohorts. We agree that investigating the functional repertoire of
microbial changes would be a promising future direction. We have now modified the statement
highlighted by the reviewer as well as other statements throughout the manuscript to clarify that
our conclusions are specific to the cohort used in this work:

Discussion, page 16:
“These associations are not found in IBD or IBS, and are unique to CRC in our study

cohort”.
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We also added a more general statement to the Discussion, stating that the results described
in the paper refer to this specific cohort analysis (page 19):

“We note that it might be challenging to generalize some of the results found here, as
microbiome profiles may vary across individuals and diseases. Hence, investigating the
functional repertoire of microbial changes, and its association with host genomic data,
would be a promising future direction”.

In addition, we added text in other locations clarifying this:
Discussion, page 16:

“For example, we found that the expression of host gene PINK1, which regulates the
PI3-kinase/AKT signaling pathway %, is associated with the abundance of Collinsella in
CRC, Peptostreptococcaceae in IBD, and Blautia in IBS in our study”.

Results, page 7:

“In addition, we identified 102 disease-specific host pathways that are associated with
gut microbes, including 52 CRC-specific, 25 IBD-specific, and 25 IBS-specific pathways
in our study cohorts”.

Results, page 13:

“Streptococcus also shows a disease-specific pattern of association with host gene
expression in our study cohort”.

Reviewer 2, Comment 5

The authors describe the use of supercomputing nodes for their analysis. Did the analysis of
these relatively small dataset require that much compute power? How will this be scaled to
hundreds of samples? Or is the purely a feature provided as part of their method? Some
information on how long the cohort analysis took should be provided.

Response:

Our parallel processing framework implemented on supercomputing nodes is built to overcome
computational bottlenecks posed by high dimensionality, i.e. the large number of features in
host transcriptome and microbiome data. We implemented a parallel framework to build gene-
wise lasso models for over 12,000 host genes, where each model includes hundreds of
microbial taxa as covariates. Thus, usage of supercomputing nodes here is mainly dictated by a
large number of features, not by the number of samples in such datasets (although this
framework can also improve scalability of models with larger sample sizes). We have clarified
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this in the manuscript, and also reported the time taken for analysis across the cohorts
(Methods, page 32):

“We leveraged supercomputing nodes to implement a parallel processing framework to
allow scalable computation for the high dimensional datasets included in this analysis.
We implemented a parallel framework for executing the gene-wise lasso analysis, where
we parallelized execution of lasso models on host genes across multiple nodes and
cores on a compute cluster from Minnesota Supercomputing Institute. Our framework
scalably computes gene-wise models for over 12,000 host genes, where each model
includes hundreds of microbial taxa as covariates. We used job arrays to parallelize our
analysis on multiple nodes on the cluster. Additionally, we used the R packages
doParallel (version 1.0.15) and foreach (version 1.4.7) to run parallel processes on
multiple cores of each compute node. Our parallel processing framework using 5
compute nodes took an average of 5 hours 30 minutes per disease cohort”.

Reviewer 2, Comment 6

It's great that the authors made the code available on github, however, a description of the
different scripts and a tutorial is missing.

Response:

We thank the reviewer for this suggestion. We have now added a tutorial for our pipeline in the
github repository that can be accessed here:

https://github.com/blekhmanlab/host_gene microbiome _interactions/tree/main/Tutorial. This
tutorial includes code that can be used to reproduce the integration analysis in our paper,
including the sparse CCA and lasso models, and will be useful for researchers interested in
running the integrative machine learning framework on their data. We have also added
descriptions of the different scripts.

Reviewer 2, Comment 7

What is their theory behind the disease-specific host-microbe crosstalk? Difference in host
genetics?

Response:

This is an important point. A potential theory for the disease-specific pattern of host-microbe
crosstalk is that gut microbes, either through direct interaction with colonic epithelium, or
through indirect interaction (e.g. via production of specific metabolites), could regulate host gene
expression differently in specific disease contexts. Host genetics, diet, pharmaceuticals, inter-
microbial interactions, and microbial interactions with the host immune system could all
potentially play a role in shaping this disease-specific host gene-microbe crosstalk. We have
now added the following text to the manuscript to clarify this (Discussion, page 16):
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“The disease-specific pattern of host gene-microbe crosstalk suggests that gut microbes,
either through direct interaction with host cells, or through indirect interaction (e.g. via
production of specific metabolites), may regulate host gene expression differently in
specific disease contexts. Host genetics, diet, pharmaceuticals, inter-microbial
interactions, and microbial interactions with the host immune system could all potentially
play a role in shaping this disease-specific host gene-microbe crosstalk”.

Minor concerns:
Reviewer 2, Comment 8

The authors should clarify in the manuscript (not just the methods section) that most of the
presented data is published data and also compare their analysis to the original findings.

Response:

We thank the reviewer for pointing this out, and we agree that this should have been more
explicitly mentioned. Indeed, all datasets, except the host gene expression data for colorectal
cancer, have been published. In addition to citing the original studies when describing the study
cohorts, (Results, page 4, lines 136—140), we now also included a sentence to clarify this
further (Results, page 4):

“All datasets, except the host gene expression data for CRC, have been previously
published as individual studies *2°?8_Qur study performed an integrative analysis to
identify host gene-microbiome associations across these datasets using a novel
machine learning-based framework”.

To compare our analysis and findings with those described in the previous studies that
published these datasets, we have added the following statements to the manuscript
(Discussion, page 17):

“While the disease cohorts used in our study have been previously published 3822 to
the best of our knowledge, our study is the first to perform a comprehensive
characterization of host gene-microbiome crosstalk within and across these disease
cohorts. In the previous study that described the CRC cohort, Burns et al. characterized
the tumor-associated microbiome, and how it varies in composition compared to the
microbiome of adjacent matched normal colon tissue *. For example, they reported loss
in abundance of multiple taxa within the order Bacteroidales in tumor-associated
microbiota compared to normal samples. Here, we found that Bacteroidales is
associated with host genes CCR2 and FPR1, which are part of the tumor-associated IL-
10 signaling pathway. The previous study that described the IBD cohort compared IBD
versus non-IBD samples and found differences in transcriptional activity and abundance
among taxa belonging to class Clostridia, and dysregulation of immune-related host
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pathways in disease state 22, Our integrative analysis for the same cohort revealed
associations between immunoinflammatory pathways and members within class
Clostridia, including Peptostreptococcaceae and Clostridium sensu stricto 1. In the
original study describing the IBS cohort, Mars et al. found overrepresentation of
Streptococcus species in patients with IBS compared to healthy individuals, and
identified associations between fecal microbes, such as Peptostreptococcaceae, with
host genes implicated in peptidoglycan binding 8. Our analyses revealed several novel
associations between closely interacting, tissue-adherent microbiome and host genes
and pathways in IBS, including associations between Streptococcus and host genes that
modulate macrophage inflammatory response, and between Peptostreptococcaceae
and host pathways that regulate intestinal homeostasis and inflammation”.

Reviewer 2, Comment 9
Different FDR threshold were used at various places.
Response:

We thank the reviewer for pointing this out. We have now fixed this to report all results at a
considentent FDR threshold of 0.1 throughout the manuscript. This issue was also raised by
Reviewer 1 - please see our full description of the changes above in response to Reviewer 1,
Comment 5. Briefly, we have now updated our analysis to use a consistent cutoff of FDR = 0.1
throughout the manuscript. This has resulted in the multiple modifications throughout the
manuscript, including an updated Figure 3B, and several edits in Methods and Result sections.
We highlight a few changes below; please refer to the response to Reviewer 1, Comment 5 to
see all the changes.

Results, page 10:
“We identified 18 host pathways that are unique to each disease, including 4 CRC-
specific, 9 IBD-specific, and 5 IBS-specific pathways that associate with unique gut
bacteria (Figure 3B, Fisher’s exact test, Benjamini-Hochberg FDR < 0.1, Supplementary
Table S9, see Methods)”.

We have modified the method section and Supplementary Table S9 accordingly (Methods,

page 34):

“Using this approach, we identified 18 host pathways that are unique to each disease,
including 4 CRC-specific, 9 IBD-specific, and 5 IBS-specific pathways that associate with
unique gut bacteria (FDR < 0.1, Supplementary Table S9)”.

We have deleted the following sentence from the manuscript (Methods, previously page 28):
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“Here, we used a more relaxed FDR threshold of 0.2 to present a larger number of
biologically relevant host pathways”.

Reviewer 2, Comment 10

Why did the IBD dataset only have 121 taxa? Both the CRC and IBS dataset had twice as many
taxa.

Response:

We thank the reviewer for pointing this out. Indeed, we found that the number of unique
taxonomic groups found in the IBD dataset was 40% of those found in CRC and IBS datasets.
This implies that the IBD dataset has lower bacterial diversity than the other two disease
datasets. Previous studies have reported reduced bacterial diversity in gut mucosal microbiome
in patients with IBD compared to individuals without this disease*'", including the HMP2 study
that generated and described the IBD dataset used in our study'®?°. On the other hand,
previous studies that generated and characterized the CRC and IBS datasets used in our work
have reported increased microbial diversity in these conditions'>??. We have now added the
following to the manuscript to clarify this (Methods, page 25):

“We observed that the number of unique taxonomic groups found in the IBD dataset was
40% of those found in CRC and IBS datasets, thus implying that the IBD dataset has
lower bacterial diversity than other two disease datasets. This observation is consistent
with previous studies that have shown reduced bacterial diversity in gut mucosal
microbiome in patients with IBD compared to individuals without this disease 7*7°,
including the HMP2 study that generated and described the IBD dataset used in our
study %28, In addition, previous studies that generated and characterized the CRC and
IBS datasets used in our work have reported increased microbial diversity in these
conditions 38",

Reviewer #3 (Remarks to the Author):

In this manuscript by Priya et al., the relationship between microbiome composition and host
gene expression is examined in colonic mucosal biopsy samples. In particular, case control
studies of three separate diseases were conducted (colorectal cancer, inflammatory bowel
disease, and irritable bowel syndrome), with RNA-seq being used to measure host gene
expression and 16S rRNA gene sequencing being used to measure microbiome taxonomic
composition. Sparse canonical correlation analysis and clr-lasso were applied to the data to
identify microbe-host gene associations, and those were compared across diseases. Overall,
this is a really impressive study: methods are suitable and very well described, results are
informative, and the manuscript is very well-written, with many connections to previous literature
to put results in context. A study like this can serve as a framework for others interested in
combining these two types of datasets while conserving power to detect associations.
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Minor comments:
Reviewer 3, Comment 1

1. Results are difficult to interpret when multiple levels of bacterial taxonomy are analyzed at the
same time, rather than level by level. For example, in Figure 2, both Micrococcaceae and
Micrococcales are highlighted under the IBD RAC1 pathway panel in B. Is this largely the same
signal, as these groups are nested, or are there distinct signals at different taxonomic levels? It
may be more interpretable for the reader to focus on one level for the main text (maybe OTU or
genus level), with other levels falling to the supplement.

Response:

We thank the reviewer for pointing this out. While our approach identifies distinct signals at
different taxonomic levels, we agree that highlighting multiple levels of taxa at the same time
can be difficult to interpret. To address this, we have now completely updated Figures 2B, 2C,
and 2D to visually distinguish microbial taxa that are at different taxonomic levels. Specifically,
taxa that belong to the same taxonomic order are now displayed as overlapping clusters in the
image (see below). For example, in the CRC component for RAC1 pathway (Figure 2B),
Streptococcus, Leuconostoc, and Lactococcus, which belong to a common taxonomic order,
Lactobacillales, are shown in an overlapping cluster. Similarly, in the IBD component for RAC1
pathway, Micrococcales and Micrococcaceae, which belong to the clade Micrococcales, are
shown clustered together (Figure 2, Results, page 6).
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We have also updated the legend for Figure 2 to indicate this modification (Results, page 7):

“Microbial taxa belonging to a common taxonomic order are shown as overlapping
triangles”.

To explain our reasoning for performing our analysis by combining all taxonomic levels: we
believe this approach allows us to identify signals found at any taxonomic level and avoid
missing potentially relevant associations. At the same time, given the large number of features
in high-dimensional datasets like gene expression and microbiome data, this approach
circumvents the computationally time-intensive analysis that would be required if each
taxonomic level was analyzed separately. Using this approach, we found that our penalized
approaches using sparse CCA and lasso do not select all taxonomic levels from a given clade,
rather they identify one or more microbial taxa for which abundance is associated with
expression of host gene(s), thus depicting that our approach captures distinct signals at different
taxonomic ranks. In theory, if we repeated our integration analyses separately at different
taxonomic levels, we would likely identify the same set of taxa as our current approach that
uses a combined taxonomic profile. Hence, the results would be effectively the same whether
we analyze each taxonomic level separately or use multiple levels together. To clarify this in the
paper, we added the following to the Methods (page 27):

“We chose to combine all taxonomic levels in a single model, rather than run a separate
model for each taxonomic level. Given the large number of features in high-dimensional
datasets like gene expression and microbiome data, this approach circumvents the
computationally time-intensive analysis that would be required if each taxonomic level
was analyzed separately. Our approach allows us to identify signals found at any
taxonomic level and avoid missing potentially relevant associations”.

Reviewer 3, Comment 2

2. page 4, line 136/methods: More description of the case/control design for each of the three
disease types listed would be beneficial for the reader. What were the criteria used to “match”
case with control? For some of the diseases (IBD and IBS), patients and controls are described
as “pairs”, but there are unequal case and control sample sizes.

Response:

We agree that this description was lacking, and have now edited the text to better describe the
case/control design. To clarify, we use the term “pairs” to refer to a set of two samples -- a
microbiome sample and host gene expression sample -- obtained from the same individual. Our
study includes 208 such pairs of microbiome and host gene expression samples (416 samples
in total). These 208 paired microbiome and host gene expression samples include 88 pairs of
samples in CRC, 78 pairs of samples in IBD, and 42 pairs of samples in IBS. Our usage of the
term “match” is specifically with respect to the CRC cohort, where we have patient-matched
tumor and normal biopsies (i.e., matched case (tumor) and control samples from the same
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individual). Such patient-matched samples only exist for our CRC cohort, and not for IBD and
IBS, where case and control samples were collected from different individuals. We have now
modified the statement in text to clarify this and provide more description of case/control design
for each disease cohort (Results, page 4):

“For each individual in our study, we obtained a pair of samples -- a microbiome sample
and a host gene expression sample. In total, across the three disease cohorts, our study
included 208 such pairs of microbiome and host gene expression samples (416 samples
in total). These 208 paired microbiome and host gene expression samples include 88
pairs of samples in the CRC cohort (44 tumor and 44 patient-matched normal)?, 78 pairs
of samples in the IBD cohort (56 patients and 22 controls)®>%, and 42 pairs of samples
in the IBS cohort (29 patients and 13 controls; see Supplementary Table S1)¥”.

We have also edited the sentence in methods section to clarify this (Methods, page 21):

“We used 88 pairs of gut microbiome and host gene expression samples from 44
patients, with primary tumor and normal tissue samples taken from each individual”.

We have replaced another occurrence of the term “matched” to avoid potential confusion
(Results, page 5):

Line 166: “matched host gene expression data and gut microbiome data” replaced with
“paired host gene expression data and gut microbiome data”

Reviewer 3, Comment 3

3. Are the sample characteristics largely the same across the disease cohorts, or are there
differences that might be confounded with “disease-specific configurations” of the microbiome
and host gene expression? For example, if there were age differences, sex biases, different
sampling locations, or treatments that might also influence gene expression or the microbiome,
those would be worth clarifying for the reader and/or mentioning as a caveat to interpretation of
the study.

Response:

This is an important point. We agree that some factors can be potential confounders that might
influence host gene expression and/or the microbiome composition. In our lasso regression
analysis, we accounted for some potential confounders, including sex and disease-subtypes, by
including them as covariates in the model (Methods, page 30). However, some important
potential confounding factors were not available for the samples used in our study; these
include, for example, medication history and diet. To clarify this, as suggested by the reviewer,
we now include this in the discussion of potential limitations of our study (Discussion, page
19):
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“Lastly, there are several host and environmental variables that could potentially
influence the microbiome and/or host gene expression, including age differences,
sampling locations, diet, treatment, and medication history, which are not available
across our disease cohorts. Thus, these factors are potential confounders that might
influence our results”.

Reviewer 3, Comment 4

4. Related to sample sizes mentioned above, the three diseases have different sample sizes,
which seem to match with the number of associations detected in each individual disease and
the overlaps between them (CRC and IBD have the most samples and the most identified
associations (including overlap), while IBS has fewer (including fewer overlaps). Some
discussion of this effect of sample size would be useful for the reader, as well as if the
unbalanced case/control designs has any effect on the power of applying a lasso.

Response:

We thank the reviewer for this important observation. Indeed, the number of host gene-microbe
associations identified in each disease cohort is correlated with the number of samples in that
cohort, which also influences the number of overlaps identified between associations across
disease cohorts. One option to test for the effect of sample size is downsampling; however,
since we found no overlapping associations across diseases, downsampling cohorts to a
common sample size did not change the outcome of overlapping associations across cohorts.
We have now included these details in the manuscript (Methods, page 37):

“For each disease cohort, we found that the number of host gene-microbe associations
identified is correlated with the number of samples in that cohort. This also influences
the number of overlaps identified across disease cohorts. One option to test for the
effect of sample size is downsampling; however, since we found no overlapping
associations across diseases, downsampling cohorts to a common sample size did not
change the outcome of overlapping associations across diseases in our study cohort”.

To address the unevenness in case and control sample size in our study cohorts, an issue that
was also raised by Reviewer 1, we have now included multiple new analyses and modifications
in the manuscript. These new analyses are described in detail in response to Reviewer 1,
Comment 4, and edits in the manuscript are on pages 29, 33, and 34. Briefly, to identify
associations that were found only in cases and not in controls within a disease cohort, we first
checked for any potential overlap between case and control host gene-microbe associations
without using any p-value or FDR cutoff. We found no overlapping host gene-microbe
associations between cases and controls in CRC, IBD, and IBS cohorts. Next, we accounted for
this imbalance between cases and controls at the pathway level by applying a differential
enrichment analysis that is more robust to the different power due to sample size. We found that
most host pathways are specific to case and control groups within each disease cohort. Please
refer to the response to Reviewer 1, Comment 4 to see full details on analyses and
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modifications to the text in the manuscript to address this. In addition, we have also added a
discussion in the manuscript about the effect of different sample sizes across different cohorts
and uneven case/control groups within each cohort (Discussion, page 18).

“Another potential issue is the difference in sample size across disease cohorts and
between the case and control groups within each cohort. These sample size differences
can result in differences in statistical power when applying lasso regression. This can
impact the number of host gene-microbe associations identified in each disease group,
and the number of overlapping associations identified across cohorts. We attempted to
minimize this effect by applying a differential enrichment analysis that is more robust to
different levels of statistical power due to sample size (see Methods)”.

Reviewer 3, Comment 5

5. In addition to sample size, the number of detected human genes and taxa differ between
disease sets. For the comparisons of overlapping vs. disease specific taxa/genes, were “core”
sets of taxa and gene examined that were held constant between disease set?

Response:

This is an important point. To examine this issue further, we have now added to the manuscript
extensive analyses that explore whether it is possible to use “core” sets of taxa and genes in our
integrative analysis. The full details of the analysis and additions to the manuscript are
described below; in brief, our results indicate that although many host genes are expressed in
all three disease cohorts, microbial taxa are mostly unique to each disease cohort. More
specifically, we found that approximately 80% of host genes are expressed in all disease
cohorts, while the remaining 20% of host genes are expressed in one or two of the disease
cohorts. However, we found that only about 25% of gut microbial taxa on average are found in
all three, thus indicating that a majority of taxa are specific to each disease cohort. This is
consistent with previous research that has shown dissimilarity between disease-associated
microbial taxa'?3*. Given these patterns, using “core” sets of taxa and host genes that are found
in all disease cohorts may lead to missing a large number of disease-specific host gene-taxa
associations. Therefore, we maintained our approach of using all the host genes and taxa that
were identified after preprocessing the input dataset, which allowed us to identify disease-
specific as well as overlapping host gene/taxa between associations across diseases. We have
added to the manuscript a discussion of the rationale behind this approach, as well as full
details of this analysis:

Overlap analysis and corresponding updates to the manuscript:
i) To examine common and distinct features in input datasets, we considered the host genes
and taxa that were used as input to the lasso integration pipeline, and calculated the overlap in

these host genes and taxa across cohorts. Tables S13 and S14 included below show pairwise
overlaps for input host genes and input taxa across diseases, respectively. We computed the
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pairwise overlap as an overlap coefficient, which is a measure of similarity between two sets,
and is defined here as the number of common genes (or taxa) between the two disease
datasets divided by the number of genes (or taxa) in the dataset with fewer genes (or taxa).
Overall, we found that an average of 84% of host genes are commonly expressed between
diseases (Table S13), while the remaining 16% of host genes might be expressed in only one
disease cohort, but not in the other two. These disease-specific genes in the input datasets
might have disease-specific association patterns with gut microbes, hence we used all the host
genes identified after preprocessing for determining associations in each disease cohort.

On the other hand, only about 37% of input gut microbial taxa overlapped between diseases
(Table S14), thus indicating that a majority of taxa were specific to each disease cohort. This is
consistent with previous research that have shown high dissimilarity between disease-
associated microbial communities 2%, Similar to the above, we retained all gut microbial taxa
identified after preprocessing and filtering in each disease cohort to allow identification of
associations between gut microbes and host genes that might be specific to a given disease.

Supplementary Table S13: Overlap between input sets of host genes across CRC, IBD, and
IBS. Each cell denotes an overlap coefficient between sets of genes from two diseases.

CRC IBD IBS
CRC 1 0.8317063 0.8001448
IBD 0.8317063 1 0.8739257
IBS 0.8001448 0.8739257 1

Supplementary Table S14: Overlap between input sets of gut microbial taxa across CRC, IBD,
and IBS. Each cell denotes an overlap coefficient between sets of taxa from two diseases.

CRC IBD IBS
CRC 1 0.4214876 0.2340426
IBD 0.4214876 1 0.446281
IBS 0.2340426 0.446281 1

ii) Next, we calculated the overlap between the set of host genes found associated with gut
microbes only in one of the disease cohorts (i.e. disease-specific genes in our identified
associations), and the set of host genes used as input in other two diseases (Table S15).
Similarly, we calculated the overlap between gut microbial taxa found associated with host
genes only in one disease (i.e. disease-specific taxa in our identified associations), and the set
of taxa used as input in other two diseases (Table S16). Overall, we found similar trends as
described above. We found that an average of 80% of disease-specific host genes in the
identified associations were also included as input in the other two diseases (Table S15). The
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remaining 20% of disease-specific host genes were likely not expressed in the other two
conditions.

On the contrary, we found that, on average, only 12% of disease-specific taxa in the identified
associations were included as input taxa in the other two diseases (Table S16). This is in line
with our observation of disease-specific trends for gut microbial taxa used as input to the
integration pipeline, as described above.

Supplementary Table S15: Overlap between genes found associated with microbes in specific
disease (i.e. disease-specific genes in output; rows) and input sets of host genes in other two
diseases (i.e. input genes; columns). Each cell denotes an overlap coefficient between sets of
genes from two diseases.

Input host genes
CRC IBD IBS
Disease- CRC 1 0.7871363 0.7656968
specific host
genes in IBD 0.8238434 1 0.8656584
output
associations IBS 0.7733333 0.7946667 1

Supplementary Table S16: Overlap between microbial taxa found associated with host genes
in specific disease (i.e. disease-specific taxa in output; rows) and input sets of taxa in other two
diseases (i.e. input taxa; columns). Each cell denotes an overlap coefficient between sets of
taxa from two diseases.

Input taxa
CRC IBD IBS
Disease- CRC 1 0.09615385 0.1057692
specific taxa in IBD 0.1666667 1 0.1904762
output
associations IBS 0.1011236 | 0.06741573 1

In addition to including the above supplementary tables in the manuscript, we have also added
the following text to Methods section to add clarification regarding overlapping and disease-
specific features across diseases (Methods, page 35):

“Given the difference between number of host genes and gut microbial taxa identified
across diseases, we first determined overlaps in host genes and microbial taxa in input
datasets and gene-taxa associations identified across disease cohorts. To do this, we
used a two-step process:
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i) To examine common and distinct features in input datasets, we considered the host
genes and taxa that were used as input to the lasso integration pipeline, and calculated
the overlap in these host genes and taxa across cohorts (Supplementary Tables S13
and S14). We computed the pairwise overlap as an overlap coefficient, which is a
measure of similarity between two sets, and is defined here as the number of common
genes (or taxa) between the two disease datasets divided by the number of genes (or
taxa) in the dataset with fewer genes (or taxa). Overall, we found that an average of 84%
of host genes are commonly expressed between diseases (Supplementary Table S13),
while the remaining 16% of host genes might be expressed in one disease cohort, but
not in the other two. On the other hand, only about 37% of input gut microbial taxa
overlapped between diseases (Supplementary Table S14), thus indicating that a majority
of taxa were specific to each disease cohort. This is consistent with previous research
that have shown high dissimilarity between disease-associated microbial
communities'>*1%4,

i) Next, we calculated the overlap between the set of host genes found associated with
gut microbes only in one of the disease cohorts (i.e. disease-specific genes in our
identified associations), and the set of host genes used as input in other two diseases
(Supplementary Table S15). Similarly, we calculated the overlap between gut microbial
taxa found associated with host genes only in one disease (i.e. disease-specific taxa in
our identified associations), and the set of taxa used as input in other two diseases
(Supplementary Table S16). Overall, we found similar trends as described above. We
found that an average of 80% of disease-specific host genes in the identified
associations were also included as input in the other two diseases (Supplementary
Table S15). The remaining 20% of disease-specific host genes were likely not
expressed in the other two conditions. On the contrary, we found that, on average, only
12% of disease-specific taxa in the identified associations were included as input taxa in
the other two diseases (Supplementary Table S16). This is in line with our observation of
disease-specific trends for gut microbial taxa used as input to the integration pipeline, as
described above.

Given these patterns, we considered all the host genes and taxa that were identified
after preprocessing the input dataset, which allowed us to identify disease-specific as
well as overlapping host gene/taxa between associations across diseases”.

Reviewer 3, Comment 6

6. p8, line 264: | suggest using “associate” rather than “interact”, as “interact” could be
interpreted by some as a direct, physical interaction (which it might not be).

Response:
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We thank the reviewer for this suggestion. We agree that the term “interact” or “interaction” can
be misleading, and hence we have replaced the usage of these terms with “associate” and
“association”, respectively, throughout the manuscript. As mentioned previously in responses to
Reviewer 1, Comment 1, and Reviewer 1, Comment 7, this resulted in a total of 83 changes
throughout the manuscript. Our edit for this specific sentence is as follows (Results, page 9):

“Specific gut microbes interact with individual host genes ...” changed to “Specific gut
microbes associate with individual host genes ...”

Reviewer 3, Comment 7

7. p28: How many host pathways were filtered out for being too small, too large, or having not
many genes that overlap? Are there potential pathways of interest that aren’t being examined
here, but could be interesting?

Response:

This is an important point. To avoid pathways that were too large to provide any specific
biological insights or too small to provide adequate statistical power, we excluded from our
analysis any pathway that included more than 85 genes, fewer than 10 genes, or fewer than 5
genes that overlapped between the pathway and the list of genes identified by our analysis. Out
of 1881 host pathways, this criteria filtered out 297 pathways for being too large, 299 pathways
for being too small, and an average of 1186 pathways for not having sufficient overlap with the
genes of interest in each disease cohort. This resulted in an average of 99 pathways that were
tested for enrichment in each disease cohort. We are aware that this approach may filter out
some potential pathways of interest from our analysis. However, even if included, these
pathways are unlikely to yield significant associations due to lack of statistical power. Thus, we
only examine pathways for which associations can be detected as described above. We have
now added these details to the manuscript (Methods, page 33):

“To avoid pathways that were too large to provide any specific biological insights or too
small to provide adequate statistical power, we excluded any pathways from our analysis
with more than 85 genes, fewer than 10 genes, or fewer than 5 genes that overlapped
between the pathway and the genes of interest. Out of 1881 host pathways, these
criteria filtered out 297 pathways for being too large, 299 pathways for being too small,
and an average of 1186 pathways for not having sufficient overlap with the genes of
interest, resulting in an average of 99 pathways that were tested for enrichment in each
disease cohort. We are aware that this approach may filter out some potential pathways
of interest from our analysis. However, even if included, these pathways are unlikely to
yield significant associations due to lack of statistical power”.

Reviewer 3, Comment 8
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8. Figure 2/p50: Overall, | find the visualizations extremely effective for this manuscript,
especially considering the many dimensions this data is explored in. The one exception is with
the sCCA result visualizations in parts B/C of Figure 2 and the supplemental figure on page 50.
I's hard to tell which genes are shared across disease subtypes, because host genes are listed
in a different orientation in each subtype. | suggest having the entire host pathway illustrated
(maybe in gray) and then coloring in the significant host genes within disease-subtype. That
would preserve the order, allowing for better highlighting of the similarities and differences for
the reader.

Response:

We thank the reviewer for their positive feedback on the visualizations in our paper. We agree
with the suggestion regarding the visualization in Figure 2 to distinguish host genes that are
common or distinct across diseases, and have now updated figures 2B and 2C to depict this.
In our updated figure, we show genes that are common between pathways or components
across at least two diseases in grey, and the disease-specific genes are shown in the color
corresponding to the disease (see Figures 2B and 2D below). In Figure 2C, we focused on
three separate, disease-specific host pathways (i.e. host pathways for which gene expression
correlates with gut microbes in only one of the disease cohorts), where by definition, the top 10
genes representing each disease-specific pathway do not have any overlaps, and hence are
depicted in disease-specific colors. We have edited the legend for Figure 2 to clarify the updates
to the figure (Results, page 7):

“Genes that are common between pathways or components across at least two disease
cohorts are shown in grey”.
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Decision Letter, first revision:

19th January 2022

*Please ensure you delete the link to your author homepage in this e-mail if you wish to forward it to
your co-authors.

Dear Ran,

Thank you for your patience while your manuscript "Shared and disease-specific host gene-
microbiome associations across human diseases" was under peer-review at Nature Microbiology. It has
now been seen by 3 referees, whose expertise and comments you will find at the of this email. You
will see from their comments below that while they find your work of interest, some important points
are raised. We are very interested in the possibility of publishing your study in Nature Microbiology,
but would like to consider your response to these concerns in the form of a revised manuscript before
we make a final decision on publication.

In particular, you will see that referees #2 and #3 both have ongoing concerns with the fact that the
datasets have been processed using different computational pipelines. In line with referee #3's
suggestion, please add a clear discussion of the limitations of this approach to the discussion section.
Please also clarify the remaining concerns from the referees, which are clear and the remaining issues
should be straightforward to address.

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact
us if there are specific requests from the reviewers that you believe are technically impossible or
unlikely to yield a meaningful outcome.

If you have not done so already please begin to revise your manuscript so that it conforms to our
Article format instructions at http://www.nature.com/nmicrobiol/info/final-submission/

The usual length limit for a Nature Microbiology Article is six display items (figures or tables) and
3,000 words. We have some flexibility, and can allow a revised manuscript at 3,500 words, but please
consider this a firm upper limit. There is a trade-off of ~250 words per display item, so if you need
more space, you could move a Figure or Table to Supplementary Information.

Some reduction could be achieved by focusing any introductory material and moving it to the start of
your opening ‘bold’ paragraph, whose function is to outline the background to your work, describe in a
sentence your new observations, and explain your main conclusions. The discussion should also be
limited. Methods should be described in a separate section following the discussion, we do not place a
word limit on Methods.

Nature Microbiology titles should give a sense of the main new findings of a manuscript, and should
not contain punctuation. Please keep in mind that we strongly discourage active verbs in titles, and
that they should ideally fit within 90 characters each (including spaces).

We strongly support public availability of data. Please place the data used in your paper into a public
data repository, if one exists, or alternatively, present the data as Source Data or Supplementary



natureresearch

Information. If data can only be shared on request, please explain why in your Data Availability
Statement, and also in the correspondence with your editor. For some data types, deposition in a
public repository is mandatory - more information on our data deposition policies and available
repositories can be found at https://www.nature.com/nature-research/editorial-policies/reporting-
standards#availability-of-data.

Please include a data availability statement as a separate section after Methods but before references,
under the heading "Data Availability”. This section should inform readers about the availability of the
data used to support the conclusions of your study. This information includes accession codes to public
repositories (data banks for protein, DNA or RNA sequences, microarray, proteomics data etc...),
references to source data published alongside the paper, unique identifiers such as URLs to data
repository entries, or data set DOIs, and any other statement about data availability. At a minimum,
you should include the following statement: “The data that support the findings of this study are
available from the corresponding author upon request”, mentioning any restrictions on availability. If
DOIs are provided, we also strongly encourage including these in the Reference list (authors, title,
publisher (repository name), identifier, year). For more guidance on how to write this section please
see:

http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf

To improve the accessibility of your paper to readers from other research areas, please pay particular
attention to the wording of the paper’s opening bold paragraph, which serves both as an introduction
and as a brief, non-technical summary in about 150 words. If, however, you require one or two extra
sentences to explain your work clearly, please include them even if the paragraph is over-length as a
result. The opening paragraph should not contain references. Because scientists from other sub-
disciplines will be interested in your results and their implications, it is important to explain essential
but specialised terms concisely. We suggest you show your summary paragraph to colleagues in other
fields to uncover any problematic concepts.

If your paper is accepted for publication, we will edit your display items electronically so they conform
to our house style and will reproduce clearly in print. If necessary, we will re-size figures to fit single
or double column width. If your figures contain several parts, the parts should form a neat rectangle
when assembled. Choosing the right electronic format at this stage will speed up the processing of
your paper and give the best possible results in print. We would like the figures to be supplied as
vector files - EPS, PDF, Al or postscript (PS) file formats (not raster or bitmap files), preferably
generated with vector-graphics software (Adobe Illustrator for example). Please try to ensure that all
figures are non-flattened and fully editable. All images should be at least 300 dpi resolution (when
figures are scaled to approximately the size that they are to be printed at) and in RGB colour format.
Please do not submit Jpeg or flattened TIFF files. Please see also 'Guidelines for Electronic Submission
of Figures' at the end of this letter for further detail.

Figure legends must provide a brief description of the figure and the symbols used, within 350 words,
including definitions of any error bars employed in the figures.

When submitting the revised version of your manuscript, please pay close attention to our
href="https://www.nature.com/nature-research/editorial-policies/image-integrity">Digital Image
Integrity Guidelines.</a> and to the following points below:

-- that unprocessed scans are clearly labelled and match the gels and western blots presented in
figures.

-- that control panels for gels and western blots are appropriately described as loading on sample
processing controls

-- all images in the paper are checked for duplication of panels and for splicing of gel lanes.

10
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Finally, please ensure that you retain unprocessed data and metadata files after publication, ideally
archiving data in perpetuity, as these may be requested during the peer review and production
process or after publication if any issues arise.

Please include a statement before the acknowledgements naming the author to whom correspondence
and requests for materials should be addressed.

Finally, we require authors to include a statement of their individual contributions to the paper -- such
as experimental work, project planning, data analysis, etc. -- immediately after the
acknowledgements. The statement should be short, and refer to authors by their initials. For details
please see the Authorship section of our joint Editorial policies at
http://www.nature.com/authors/editorial_policies/authorship.html

When revising your paper:

* include a point-by-point response to any editorial suggestions and to our referees. Please include
your response to the editorial suggestions in your cover letter, and please upload your response to the
referees as a separate document.

* ensure it complies with our format requirements for Letters as set out in our guide to authors at
www.nature.com/nmicrobiol/info/gta/

* state in a cover note the length of the text, methods and legends; the number of references;
number and estimated final size of figures and tables

* resubmit electronically if possible using the link below to access your home page:
[Redacted]

*This url links to your confidential homepage and associated information about manuscripts you may
have submitted or be reviewing for us. If you wish to forward this e-mail to co-authors, please delete
this link to your homepage first.

Please ensure that all correspondence is marked with your Nature Microbiology reference number in
the subject line.

Nature Microbiology is committed to improving transparency in authorship. As part of our efforts in
this direction, we are now requesting that all authors identified as ‘corresponding author’ on published
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on
the Manuscript Tracking System (MTS), prior to acceptance. This applies to primary research papers
only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly
contributions. You can create and link your ORCID from the home page of the MTS by clicking on
‘Modify my Springer Nature account’. For more information please visit please visit <a
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>.

We hope to receive your revised paper within three weeks. If you cannot send it within this time,
please let us know.

We look forward to hearing from you soon.
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Yours sincerely,

[Redacted]
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Reviewer Expertise:

Referee #1: gut microbiome, computational biology
Referee #2: gut microbiome, machine learning, GI disease
Referee #3: microbiome, computational biology

Reviewers Comments:
Reviewer #1 (Remarks to the Author):
The authors have done a thorough job of addressing reviewer comments and concerns.

I only have a minor point to bring up about the authors' response to my 8th comment on CLR
transforms. I agree with the authors that it's not a great idea to CLR each taxonomic rank profile first
and then combine across ranks. Now that I think about it, my main point was that the combining of
different taxonomic ranks gives rise to a multiple-counting problem. That is, read abundances that
contribute to the relative abundance of the genus Bacteroides will also contribute to the family-level
relative abundance of Bacteroidaceae. I have a feeling that this kind of multi-counting could introduce
artifacts, where certain taxonomic groups with a large number of clades (e.g. the Bacteroides genus
has a much larger number of species in it than the Prevotella genus) swamp the abundance matrix
with quasi-redundant count data (i.e. a bunch of correlated features that are non-independent due to
taxonomic binning of counts). I doubt this will have a huge impact on the results, but I have a feeling
that restricting your analysis to a particular taxonomic stratum (i.e. OTU/ASV, species, or genus)
might be most appropriate. This kind of restriction in the number of features might actually help you
see more hits, as it might reduce the multi-test correction penalty.

Anyway, this is just a minor point, which I think is partially addressed by the additional analyses the
authors outline in their revision. I commend them on a highly responsive revision and a great paper.

Reviewer #2 (Remarks to the Author):

While I agree with the authors that uniform bioinformatic processing won't counteract the
experimental biases introduced by different in sample collection, DNA extraction, etc, there is really
not need to introduce additional biases with different bioinformatic processing pipelines. It's fine to
analyse each dataset separately, rather than combining the data, but again this should be done after
uniformly processing the reads. The two microbiome studies cited, did employ the same bioinformatic
pipeline for data processing in each study, respectively. The study by Duvallet et al. used an in-house
pipeline to re-process the reads, while Tierney et al. used profiles generated by the package
curatedMetagenomicData which supplies microbiome profiles of datasets which were all re-processed
using their pipeline. So, my concerns (previous comment 1) remain.

All other concerns were sufficiently addressed.
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Reviewer #3 (Remarks to the Author):

The authors should be commended for their extensive revisions based on the previous reviewer
comments. I remain highly enthusiastic about this work, as I think it serves as a novel framework for
the integration of -omics data in the microbiome context.

Most of my comments have been completely addressed, but two remain:

1. The analysis comparing taxa calling methodology raised more questions in my mind than it did to
quell them. A spearman rho of 0.6 at the genus does seem drastic when comparing compositional
differences between the same data processed different ways. A more robust analysis would be to
process the data as similarly as possible, even though there will be batch effects due to primer choice,
facility, etc. Barring that (which would require a complete redo of the whole paper), I think the
wording around the extent this could influence results should be strengthened in the discussion on
page 18. It's not appropriate to say the different analysis methodologies play a minor role compared
to other technical variables, given those variables can’t be quantified here.

2. I still have concerns about un-equal sample sizes raised in my original Comment 4. The response
from the authors is confusing to me, as they state there weren’t overlaps across diseases in the study.
In my original comment I was referring to the overlaps of shared pathways in the CCA (lines 212,
figure 2A) and lasso results (figure 4A), where there do appear to be pathways and associations
shared between diseases (and in such a way that lines up with sample size). I find the addition of the
paragraph on lines 1292 - 1297 to be confusing, as it’s not clear what this is referring to. This should
be clarified for the reader.

3K 3K 3k 3K 5K 3K 3k 3k K 5K >k >k k5K K >k koK ok

‘ Author Rebuttal, first revision:

13



Shared and disease-specific host gene-microbiome associations across human diseases

Editor comments:

Thank you for your patience while your manuscript "Shared and disease-specific host gene-
microbiome associations across human diseases" was under peer-review at Nature
Microbiology. It has now been seen by 3 referees, whose expertise and comments you will find
at the of this email. You will see from their comments below that while they find your work of
interest, some important points are raised. We are very interested in the possibility of publishing
your study in Nature Microbiology, but would like to consider your response to these concerns in
the form of a revised manuscript before we make a final decision on publication.

In particular, you will see that referees #2 and #3 both have ongoing concerns with the fact that
the datasets have been processed using different computational pipelines. In line with referee
#3's suggestion, please add a clear discussion of the limitations of this approach to the
discussion section. Please also clarify the remaining concerns from the referees, which are
clear and the remaining issues should be straightforward to address.

Response to editor:

We thank the editor and reviewers for these important comments and suggestions. We agree
that differences in data processing pipelines could potentially contribute to differences across
disease cohorts, and we have now updated the manuscript with a discussion on the limitations
of this approach and potential impact on downstream results. Specifically, we acknowledge that
it is hard to disentangle and compare the bias due to differences in data processing pipelines
with those due to differences in experimental factors, and that these biases could potentially
affect the integrative analysis of taxonomic composition and gene expression profiles across
disease cohorts.

Additionally, to address the comment from Reviewer 1 regarding the issue of multi-counting
reads when using combined taxa matrix, we have updated the manuscript to clarify how our
approach overcomes this issue and allows us to identify signals found at any taxonomic level
without missing potentially relevant associations. We have also addressed the comment from
Reviewer 3 regarding unequal sample sizes across cohorts by updating discussion text to clarify
the potential impact of sample size on identification of associations and their overlaps across
diseases.



Reviewer #1 (Remarks to the Author):
The authors have done a thorough job of addressing reviewer comments and concerns.
Reviewer 1, Comment 1

| only have a minor point to bring up about the authors' response to my 8th comment on CLR
transforms. | agree with the authors that it's not a great idea to CLR each taxonomic rank profile
first and then combine across ranks. Now that | think about it, my main point was that the
combining of different taxonomic ranks gives rise to a multiple-counting problem. That is, read
abundances that contribute to the relative abundance of the genus Bacteroides will also
contribute to the family-level relative abundance of Bacteroidaceae. | have a feeling that this
kind of multi-counting could introduce artifacts, where certain taxonomic groups with a large
number of clades (e.g. the Bacteroides genus has a much larger number of species in it than
the Prevotella genus) swamp the abundance matrix with quasi-redundant count data (i.e. a
bunch of correlated features that are non-independent due to taxonomic binning of counts). |
doubt this will have a huge impact on the results, but | have a feeling that restricting your
analysis to a particular taxonomic stratum (i.e. OTU/ASV, species, or genus) might be most
appropriate. This kind of restriction in the number of features might actually help you see more
hits, as it might reduce the multi-test correction penalty.

Anyway, this is just a minor point, which | think is partially addressed by the additional analyses
the authors outline in their revision. | commend them on a highly responsive revision and a great
paper.

Response:

We thank the reviewer for their positive feedback and constructive suggestions. We agree that
combining taxonomic ranks introduces the issue of multi-counting reads within a taxonomic
group, leading to addition of correlated features in the taxa abundance matrix. We note that this
issue is mitigated by our penalization approach using lasso with stability selection, which,
instead of picking multiple correlated taxa from a given taxonomic clade, only selects the
microbial taxon from a group of correlated taxa for which the abundance is most robustly
associated with the expression of a host gene 2. This approach allows us to identify signals
found at any taxonomic level and avoid missing potentially relevant associations by limiting the
analysis to a single taxonomic level. At the same time, given the large number of features in
high-dimensional datasets like gene expression and microbiome data, this approach
circumvents the computationally intensive analysis that would be required if each taxonomic
level was analyzed separately. Our assumption is that if we repeated our integration analyses
separately at different taxonomic levels, we would likely identify the same set of taxa as our
current approach that uses a combined taxonomic profile. We have added a new paragraph that
clarifies this in the manuscript (Methods, page 24):



“To allow for identification of associations at any taxonomic level without repeating the
analyses at each taxonomic rank, we combined summarized taxa matrices at different
ranks into a combined taxa matrix. This approach could potentially lead to multi-counting
of reads within a taxonomic group, leading to addition of correlated features in the taxa
abundance matrix. This issue is mitigated by our penalization approach using lasso with
stability selection (see Method sections on “Lasso regression analysis” and “Stability
selection for lasso model”). Specifically, instead of picking multiple correlated microbial
taxa from a given taxonomic clade, this approach only selects the microbial taxon out of
a group of correlated taxa for which the abundance is most robustly associated with the
expression of a host gene *'"'"2, This approach allows us to identify signals found at any
taxonomic level and avoid missing potentially relevant associations by limiting the
analysis to a single taxonomic level. At the same time, given the large number of
features in high-dimensional datasets like gene expression and microbiome data, our
approach circumvents the computationally intensive analysis that would be required if
each taxonomic level was analyzed separately.”

Reviewer #2 (Remarks to the Author):
Reviewer 2, Comment 1

While | agree with the authors that uniform bioinformatic processing won't counteract the
experimental biases introduced by different in sample collection, DNA extraction, etc, there is
really not need to introduce additional biases with different bioinformatic processing pipelines.
It's fine to analyse each dataset separately, rather than combining the data, but again this
should be done after uniformly processing the reads. The two microbiome studies cited, did
employ the same bioinformatic pipeline for data processing in each study, respectively. The
study by Duvallet et al. used an in-house pipeline to re-process the reads, while Tierney et al.
used profiles generated by the package curatedMetagenomicData which supplies microbiome
profiles of datasets which were all re-processed using their pipeline. So, my concerns (previous
comment 1) remain.

All other concerns were sufficiently addressed.
Response:

We agree with the reviewer that differences in data processing pipelines could potentially add to
the biases introduced by differences in experimental protocols across the disease cohorts.
While a re-analysis of a few representative samples in our dataset using different processing
pipelines showed correlated taxonomic profiles (Methods, page 26), it is hard to quantify the
overall influence of these differences on downstream analyses and disentangle these biases
from batch effects due to experimental factors. We have now updated our manuscript with
discussion on limitations of our approach (Discussion, page 18; new and edited text in green):



“Another caveat of our study is that it includes three different disease cohorts with
disparate protocols for sample collection, preparation, sequencing, and data processing,
which may lead to batch effects '*°'52, While a re-analysis of a few representative
samples in our dataset using different data processing pipelines showed fairly correlated
taxonomic profiles (see Methods), it is hard to assess the overall bias due to differences
in data processing on the downstream analyses. Additionally, it is difficult to disentangle
the biases introduced due to differences in data analysis factors from those introduced
due to differences in experimental factors, as the latter variables cannot be quantified in
our study. These combined differences could potentially influence the assignment of
taxonomic composition and gene expression profiles across disease cohorts, which, in
turn, may impact downstream integration analyses. While it is difficult to fully eliminate
these biases, we tried to minimize the overall batch effect across disease cohorts in our
study by adopting a meta-analysis approach, where we performed our integration
analysis and compared disease to control samples within each cohort separately, and
combined the results across cohorts at the last analysis step. While meta-analysis
approaches have disadvantages, like reduced statistical power, they have been
extensively used to minimize batch effects when integrating genomic data from multiple
studies 2, and have recently proven useful in microbiome studies %3154

Reviewer #3 (Remarks to the Author):

The authors should be commended for their extensive revisions based on the previous reviewer
comments. | remain highly enthusiastic about this work, as | think it serves as a novel
framework for the integration of -omics data in the microbiome context.

Most of my comments have been completely addressed, but two remain:
Reviewer 3, Comment 1

1. The analysis comparing taxa calling methodology raised more questions in my mind than it
did to quell them. A spearman rho of 0.6 at the genus does seem drastic when comparing
compositional differences between the same data processed different ways. A more robust
analysis would be to process the data as similarly as possible, even though there will be batch
effects due to primer choice, facility, etc. Barring that (which would require a complete redo of
the whole paper), | think the wording around the extent this could influence results should be
strengthened in the discussion on page 18. It's not appropriate to say the different analysis
methodologies play a minor role compared to other technical variables, given those variables
can’t be quantified here.

Response:
We thank the reviewer for their positive feedback and constructive comments. We agree that

differences in data processing pipelines could potentially introduce additional biases contributing
to batch effects due to differences in experimental protocols. We also agree that it is hard to



disentangle and compare the bias due to differences in data processing pipelines with those
due to differences in experimental factors, as the latter cannot be quantified in our study. Thus,
these combined differences could potentially influence the assignment of taxonomic
composition and gene expression profiles across disease cohorts, which in turn may impact
downstream integration analyses. We have now updated our discussion text to clarify these
limitations of our approach and how it impacts our results — please refer to our response to
Reviewer 2’s comment above to see the updated text (Discussion, page 18). We have also
edited the wording in the section in Methods describing correlations between different
processing pipelines to reflect this potential issue (Methods, page 26).

Reviewer 3, Comment 2

2. | still have concerns about un-equal sample sizes raised in my original Comment 4. The
response from the authors is confusing to me, as they state there weren’t overlaps across
diseases in the study. In my original comment | was referring to the overlaps of shared
pathways in the CCA (lines 212, figure 2A) and lasso results (figure 4A), where there do appear
to be pathways and associations shared between diseases (and in such a way that lines up with
sample size). | find the addition of the paragraph on lines 1292 — 1297 to be confusing, as it’s
not clear what this is referring to. This should be clarified for the reader.

Response:

We apologize for the confusion, which stemmed from our misunderstanding of the reviewer’s
original comment. Indeed, the differences in sample size across disease cohorts could
potentially influence the overlapping associations and pathways we identified across diseases
using the sparse CCA and lasso approaches. We have now removed the text in lines 1292 —
1297 from the manuscript, which was added as a result of our misunderstanding of the
reviewer’s original comment. The discussion section already included a discussion on unequal
sample sizes, which we edited further to address this comment and clarify this as a limitation of
our study (Discussion, page 18):

“Another potential issue is the difference in sample size across disease cohorts and
between the case and control groups within each cohort. These sample size differences
can result in differences in statistical power when applying sparse CCA and lasso
regression. This can impact the number of host gene-microbe associations and
pathways identified in each disease cohort, and the number of overlapping associations
and pathways identified across cohorts. We attempted to minimize this effect by applying
a differential enrichment analysis that is more robust to different levels of statistical
power due to sample size (see Methods)”.

References:

1. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Series B



Stat. Methodol. 58, 267—288 (1996).
2. Meinshausen, N. & Buhlmann, P. Stability selection. J. R. Stat. Soc. Series B Stat.

Methodol. 72, 417-473 (2010).



natureresearch

Decision Letter, second revision:

Our ref: NMICROBIOL-21030565B

16th February 2022

Dear Ran,

Thank you for submitting your revised manuscript "Shared and disease-specific host gene-microbiome
associations across human diseases" (NMICROBIOL-21030565B). It has now been seen by the original
referees and their comments are below. The reviewers find that the paper has improved in revision,
and therefore we'll be happy in principle to publish it in Nature Microbiology, pending minor revisions

to satisfy the referees' final requests and to comply with our editorial and formatting guidelines.

If the current version of your manuscript is in a PDF format, please email us a copy of the file in an
editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage.

We are now performing detailed checks on your paper and will send you a checklist detailing our
editorial and formatting requirements in about a week. Please do not upload the final materials and

make any revisions until you receive this additional information from us.

Thank you again for your interest in Nature Microbiology Please do not hesitate to contact me if you
have any questions.

Sincerely,

[Redacted]

‘ Decision Letter, final checks:

Our ref: NMICROBIOL-21030565B
8th March 2022
Dear Ran,

Thank you for your patience as we've prepared the guidelines for final submission of your Nature
Microbiology manuscript, "Shared and disease-specific host gene-microbiome associations across
human diseases" (NMICROBIOL-21030565B). Please carefully follow the step-by-step instructions
provided in the attached file, and add a response in each row of the table to indicate the changes that
you have made. Please also check and comment on any additional marked-up edits we have proposed
within the text. Ensuring that each point is addressed will help to ensure that your revised manuscript
can be swiftly handed over to our production team.

14



natureresearch

We would like to start working on your revised paper, with all of the requested files and forms, as
soon as possible (preferably within two weeks). Please get in contact with us if you anticipate delays.

When you upload your final materials, please include a point-by-point response to any remaining
reviewer comments.

If you have not done so already, please alert us to any related manuscripts from your group that are
under consideration or in press at other journals, or are being written up for submission to other
journals (see: https://www.nature.com/nature-research/editorial-policies/plagiarism#policy-on-
duplicate-publication for details).

In recognition of the time and expertise our reviewers provide to Nature Microbiology’s editorial
process, we would like to formally acknowledge their contribution to the external peer review of your
manuscript entitled "Shared and disease-specific host gene-microbiome associations across human
diseases". For those reviewers who give their assent, we will be publishing their names alongside the
published article.

Nature Microbiology offers a Transparent Peer Review option for new original research manuscripts
submitted after December 1st, 2019. As part of this initiative, we encourage our authors to support
increased transparency into the peer review process by agreeing to have the reviewer comments,
author rebuttal letters, and editorial decision letters published as a Supplementary item. When you
submit your final files please clearly state in your cover letter whether or not you would like to
participate in this initiative. Please note that failure to state your preference will result in delays in
accepting your manuscript for publication.

Cover suggestions

As you prepare your final files we encourage you to consider whether you have any images or
illustrations that may be appropriate for use on the cover of Nature Microbiology.

Covers should be both aesthetically appealing and scientifically relevant, and should be supplied at the
best quality available. Due to the prominence of these images, we do not generally select images
featuring faces, children, text, graphs, schematic drawings, or collages on our covers.

We accept TIFF, JPEG, PNG or PSD file formats (a layered PSD file would be ideal), and the image
should be at least 300ppi resolution (preferably 600-1200 ppi), in CMYK colour mode.

If your image is selected, we may also use it on the journal website as a banner image, and may need
to make artistic alterations to fit our journal style.

Please submit your suggestions, clearly labeled, along with your final files. We'll be in touch if more
information is needed.

Nature Microbiology has now transitioned to a unified Rights Collection system which will allow our
Author Services team to quickly and easily collect the rights and permissions required to publish your
work. Approximately 10 days after your paper is formally accepted, you will receive an email in
providing you with a link to complete the grant of rights. If your paper is eligible for Open Access, our

15



natureresearch

Author Services team will also be in touch regarding any additional information that may be required
to arrange payment for your article.

Please note that you will not receive your proofs until the publishing agreement has been received
through our system.

Please note that <i>Nature Microbiology</i> is a Transformative Journal (TJ). Authors may publish
their research with us through the traditional subscription access route or make their paper
immediately open access through payment of an article-processing charge (APC). Authors will not be
required to make a final decision about access to their article until it has been accepted. <a
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more
about Transformative Journals</a>

Authors may need to take specific actions to achieve <a
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-
faqs"> compliance</a> with funder and institutional open access mandates. If your research
is supported by a funder that requires immediate open access (e.g. according to <a
href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>)
then you should select the gold OA route, and we will direct you to the compliant route where
possible. For authors selecting the subscription publication route, the journal’s standard licensing
terms will need to be accepted, including <a href="https://www.springernature.com/gp/open-
research/policies/journal-policies">self-archiving policies</a>. Those licensing terms will supersede
any other terms that the author or any third party may assert apply to any version of the manuscript.

For information regarding our different publishing models please see our <a
href="https://www.springernature.com/gp/open-research/transformative-journals"> Transformative
Journals </a> page. If you have any questions about costs, Open Access requirements, or our legal
forms, please contact ASJournals@springernature.com.

Please use the following link for uploading these materials:
[Redacted]
If you have any further questions, please feel free to contact me.

With best wishes,
[Redacted]

‘ Final Decision Letter:

6th April 2022
Dear Ran,

I am pleased to accept your Article "Identification of shared and disease-specific host gene-
microbiome associations across human diseases using multi-omic integration" for publication in Nature
Microbiology. Thank you for having chosen to submit your work to us and many congratulations.
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Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature
Microbiology style. We look particularly carefully at the titles of all papers to ensure that they are
relatively brief and understandable.

Once your paper is typeset, you will receive an email with a link to choose the appropriate publishing
options for your paper and our Author Services team will be in touch regarding any additional
information that may be required. Once your paper has been scheduled for online publication, the
Nature press office will be in touch to confirm the details.

After the grant of rights is completed, you will receive a link to your electronic proof via email with a
request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet
this deadline, please inform us at rjsproduction@springernature.com immediately. You will not receive
your proofs until the publishing agreement has been received through our system

Due to the importance of these deadlines, we ask you please us know now whether you will be difficult
to contact over the next month. If this is the case, we ask you provide us with the contact information
(email, phone and fax) of someone who will be able to check the proofs on your behalf, and who will
be available to address any last-minute problems.

Acceptance of your manuscript is conditional on all authors' agreement with our publication policies
(see https://www.nature.com/nmicrobiol/editorial-policies). In particular your manuscript must not be
published elsewhere and there must be no announcement of the work to any media outlet until the
publication date (the day on which it is uploaded onto our website).

Please note that <i>Nature Microbiology</i> is a Transformative Journal (TJ). Authors may publish
their research with us through the traditional subscription access route or make their paper
immediately open access through payment of an article-processing charge (APC). Authors will not be
required to make a final decision about access to their article until it has been accepted. <a
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more
about Transformative Journals</a>

Authors may need to take specific actions to achieve <a
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-
fags"> compliance</a> with funder and institutional open access mandates. If your research
is supported by a funder that requires immediate open access (e.g. according to <a
href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>)
then you should select the gold OA route, and we will direct you to the compliant route where
possible. For authors selecting the subscription publication route, the journal’s standard licensing
terms will need to be accepted, including <a href="https://www.springernature.com/gp/open-
research/policies/journal-policies">self-archiving policies</a>. Those licensing terms will supersede
any other terms that the author or any third party may assert apply to any version of the manuscript.

If you have any questions about our publishing options, costs, Open Access requirements, or our legal
forms, please contact ASJournals@springernature.com

An online order form for reprints of your paper is available at <a
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href="https://www.nature.com/reprints/author-
reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. All co-authors, authors'
institutions and authors' funding agencies can order reprints using the form appropriate to their
geographical region.

We welcome the submission of potential cover material (including a short caption of around 40 words)
related to your manuscript; suggestions should be sent to Nature Microbiology as electronic files (the
image should be 300 dpi at 210 x 297 mm in either TIFF or JPEG format). Please note that such
pictures should be selected more for their aesthetic appeal than for their scientific content, and that
colour images work better than black and white or grayscale images. Please do not try to design a
cover with the Nature Microbiology logo etc., and please do not submit composites of images related
to your work. I am sure you will understand that we cannot make any promise as to whether any of
your suggestions might be selected for the cover of the journal.

You can now use a single sign-on for all your accounts, view the status of all your manuscript
submissions and reviews, access usage statistics for your published articles and download a record of
your refereeing activity for the Nature journals.

To assist our authors in disseminating their research to the broader community, our SharedlIt initiative
provides you with a unique shareable link that will allow anyone (with or without a subscription) to
read the published article. Recipients of the link with a subscription will also be able to download and
print the PDF.

As soon as your article is published, you will receive an automated email with your shareable link.

With kind regards,

[Redacted]

P.S. Click on the following link if you would like to recommend Nature Microbiology to your librarian
http://www.nature.com/subscriptions/recommend.html#forms

** Visit the Springer Nature Editorial and Publishing website at <a href="http://editorial-
jobs.springernature.com?utm_source=ejP_NMicro_email&utm_medium=ejP_NMicro_email&utm_camp
aign=ejp_NMicro">www.springernature.com/editorial-and-publishing-jobs</a> for more information
about our career opportunities. If you have any questions please click <a
href="mailto:editorial.publishing.jobs@springernature.com">here</a>.**
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