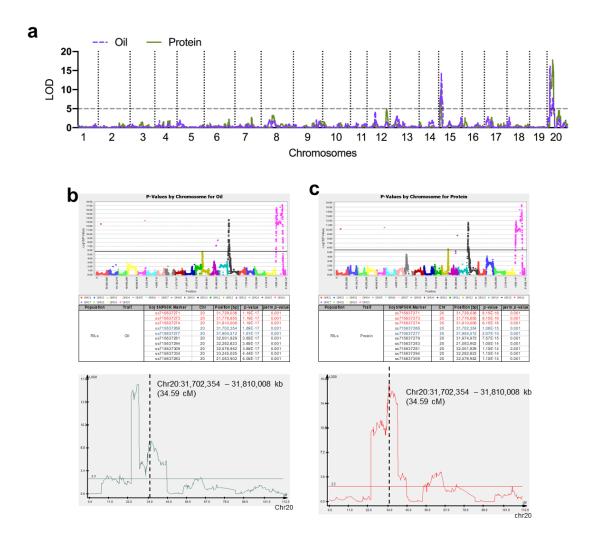
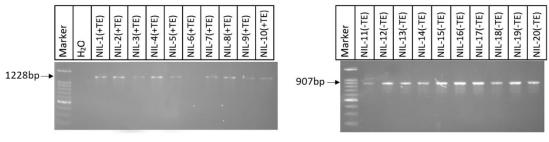

POWR1 is a domestication gene pleiotropically regulating seed

quality and yield in soybean


Goettel et al.


Supplementary Figure 1. Phenotype distribution of the seed traits used for the association studies. **a**, **b**, **and c**, illustrate the phenotypic distribution of seed oil content, protein content, and 100-seed weight, respectively.

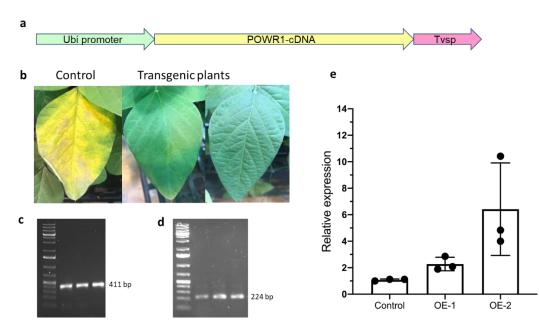
Supplementary Figure 2. GWAS of oil content in the 278 diverse accessions. **a**, GWAS of oil content with GLM model. **b**, GWAS of oil content with MLMM model.

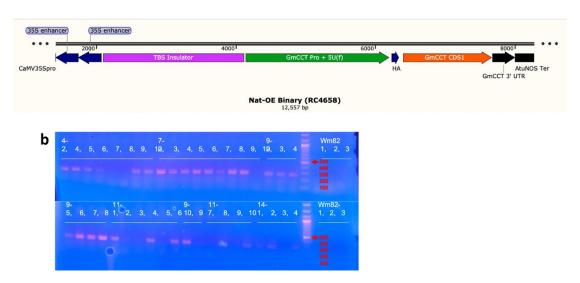
Supplementary Figure 3. GWAS and linkage mapping of oil content and protein content using 300 RILs. **a** Linkage mapping result of oil and protein content. **b-c**, Association and linkage mapping results of protein and oil content. The most significant associations for both traits are provided below the corresponding Manhattan plot.

With the insertion of 321-bp fragment

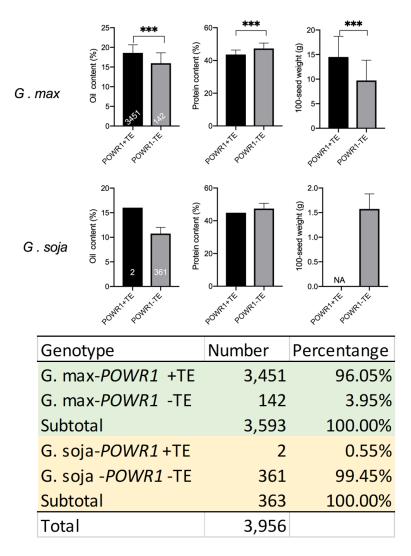
Without the insertion of 321-bp fragment

Supplementary Figure 4. PCR-based genotyping of the 321-bp TE in NILs for *POWR1*. NILs show a 1228-bp PCR amplicon with the 321-bp TE insertion while NILs show a 907-bp fragment without the 321-bp TE insertion. This assay was repeated twice.


2-kb promoter sequence


Supplementary Figure 5. Comparison of promoter sequences between two *POWR1* alleles. **a**, IGV visualization of read alignment in the 2-kb region upstream of the start codon of POWR1 in the parental lines of the RIL population, PI479752 and Williams 82. **b**, Sequence comparison reveals nearly identical promoter sequences between two groups carrying *POWR1*-TE (20 *G. soja* accessions) and *POWR1*+TE (51 *G. max* accessions). No correlation of seed traits with any DNA variants in their promoters.

Supplementary Figure 6. Phenotypic changes associated with the transfer of a $POWR1_{-TE}$ from *G. soja* into *G. max*. Seed oil content, seed protein content and 100-seed weight of *G. max-POWR1_{TE}* accessions are compared to their closest *G. soja* accessions and *G. max-POWR1_{+TE}* accessions based on local and global phylogenetic analyses (see Fig. 4). The average phenotype values for the Korean clusters 1.1 (C1.1) and 1.2 (C1.2) are given. Both S1.3 and S2 only contain one Japanese accession. A representative accession for S3 is shown. NA: data not available.



Supplementary Figure 7. Identification of positive transgenic plants by Basta leaf painting assay. **a**, Schematic illustration of the construct (*Ubi917::POWR1*) that was used for overexpression of *POWR1*-TE in soybean. **b**, Basta leaf painting assay showed basta resistance in two transgenic lines and yellowish wilting leaves in control plants. **c** and **d**, PCR verification of three positive transgenic plants using *bar*-specific and *POWR1*-cDNA-specific primers. This assay was repeated twice. **e**, Relative seed expression of *POWR1* in control and two transgenic plants (n=3). Error bars represent SD (standard derivation). Source data are provided as a Source Data file.

а

Supplementary Figure 8. Vector diagram and transgenic plant confirmation. **a**, Diagram for the vector used for transformation. **b**, PCR examination for selected lines containing native promoter-driven $POWR1_{-TE}$. PCR produced 266bp in transgenic plants, but not in non-transformed soybean. Wm82 plants is used as a negative control. This assay was repeated twice.

Supplementary Figure 9. Frequency of *POWR1* alleles in a diverse population consisting of 3,956 accessions and the allele effects on protein, oil and seed weight from analyzing their whole genome resequencing data.

Common Name	TE insertion	Oil content [%]	Protein content [%]
PI479752	no	9.6	44.4
I1376	no	11.3	46.0
I628	no	11.5	44.2
1976	no	11.5	48.0
I695	no	11.9	46.5
I1338	no	12.0	46.9
1828	no	12.1	46.8
I668	no	12.2	44.8
I1375	no	12.3	46.7
1680	no	12.3	44.2
I1530	no	12.5	45.6
I144	no	13.2	46.4
I1593	no	13.6	46.2
I665	no	13.6	46.1
I1630	no	13.7	46.4
I200	no	15.3	38.8
I306	yes	15.9	39.0
I646	yes	16.1	38.4
I1652	yes	16.3	38.8
I1342	yes	16.7	38.9
I1490	yes	17.1	38.7
I684	yes	17.5	41.2
I477	yes	17.6	39.9
I32	yes	17.6	40.6
I1234	yes	17.6	39.0
I347	yes	17.7	41.3
1333	yes	17.8	38.6
I1596	yes	18.2	37.9
1259	yes	18.3	39.4
I113	yes	18.3	39.7
1581	yes	18.6	37.6
Williams82	yes	20.5	39.3
Average	no	12.4	45.5
Average	yes	17.6	39.3
Difference between		5.2	60
average contents	-	5.2	6.2
<i>p</i> -value (T-test)	-	4.00E-13	3.53E-10

Supplementary Table 1. Genotyping analysis of the 321-bp InDel in 30 RILs and their parental lines.

Primer name	Forward (5'->3')	Reverse (5'->3')		
Bar gene	AAGCACGGTCAACTTCCGTA	AAGTCCAGCTGCCAGAAACC		
POWR1-PCR	TGGCACCAGAAATCTCACACT	TCCTTGTTTATGGCTCTCTCCA		
NIL-PCR	CACTTCAAGGGTGGCAGTGTT	CGGGATGGGAAAAGTGTCCTA		
AAP1_qRT	TGGTTGCCCTTGGGAATGTGTG	TGGTTGGGCAAGCACCTGATATG		
SUC2_qRT	AAAGGCTGCAGAACATGAACGC	GCAGCAGCTTTGACACCAAGTG		
SUS4_qRT	AATCTCCCAGGGTGGACTCAAG	GGCGTTCAAGATTGGTCACATGC		
GmWRI1a_qRT	ACTTGGTGGGCATGTTTGATAGTG	AGTCTCATCACCAGGTTGAGTGC		
GmABI3b_qRT	TGTACTGGCAGGCTATGATTGGC	TGACAATTCTGTGTCTGCATGGC		
ABI5_qRT	GGCTCATTATCTGTCCCTCCT	CCCAAGTGTTTGTTGCCTTT		
GmOLEO1_qRT	AGGCGCGTGAGATCAAGGACTATG	GCGTGCACACGATTAAGAAGCC		
GmDGAT1A_qRT	ACTGAAGGTGCACGTGGATAAGC	GGAAATCCTTCAGAGCAGCCACTG		
BCAT-2_qRT	GACTGGTGCCCAAAGAATGTGC	GGAACCCAACGCTTATTAGCCAAG		
AAE5_qRT	AGGAGGGTGTGTGATGTTAGGC	CCAACCGTTCTTGAAACAACTTGC		
GPAT9_qRT	GATCATGTCCTGGGAGCTAACAAC	TTGTGCAGCCAAGTTCAAACGC		

Supplementary Table 2. Primers used in this study.

	Common	Species	ТЕ		Average	
PI	name	subspecies	insertion	FPKM	FPKM	StDev
	Williams					
PI518671	82	Glycine max	yes	1.010692		
PI540556	Jack	Glycine max	yes	0.724321		
PI548348	Illini	Glycine max	yes	0.506646	0.6679555	0.18984621
PI548631	Williams	Glycine max	yes	0.673904		
PI548656	Lee	Glycine max	yes	0.589683		
PI598124	Maverick	Glycine max	yes	0.502487		
PI647962	R95-1705	Glycine max	no	0.847271		
-	JL275	Glycine max	no	0.632052		
-	LLL05-14	Glycine max	no	1.282608	0.9701485	0.28815252
	S09-2902-					
-	145	Glycine max	no	1.118663		

Supplementary Table 3. Information of accessions used for RNA-Seq and *POWR1* expression levels.