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1 Transfer function theory for diffraction tomography

1.1 Transfer function theory for holographic diffraction tomography
In optical diffraction tomography (ODT), the physical quantity of interest to be retrieved is the scattering
potential of a thick three-dimensional (3D) sample, which is defined as

O(r)=k2
0

[
n(r)2−n2

m

]
(S1)

where k0 = 2π
/

λ is the wave-number in free space, λ is the illumination wavelength, nm is the complex
refractive index (RI) of the surrounding medium, n(r) is the spatial RI distribution of the sample, and
r≡ (x,y,z)≡ (rT ,z) is a short-hand notation for the 3D spatial coordinate. When a 3D sample is illumi-
nated by a plane wave Uin (r), the scattered complex field Us (r) obeys the following inhomogeneous wave
equation:(

∇
2 + k2

m
)

Us (r) =−O(r)U (r) (S2)

where km = k0nm is the wave-number in the surrounding medium, ∇2= ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 is the 3D Laplacian
operator, and U (r) is the total field that is written as the superposition of the incident (un-scattered) field,
Uin (r), and the scattered field, Us (r) :

U (r) =Uin (r)+Us (r) (S3)

Using the Green’s function method, we obtain the following relation, known as the Fourier diffraction
theorem1, which relates the first-order scattered field at the detection plane (z = zD) to the scattering
potential in the Fourier space

Ô(u−uin) = 4π juze−i2πuzzDÛs1(uT ;z = zD)δ

(
uz−

√
u2

m−|uT |2
)

(S4)

where j is the imaginary unit, uin is the 3D frequency vector of the incident plane wave, Ô(u) and
Ûs1(uT ;z = zD) are the 3D and 2D Fourier transforms of Ô(r) and Ûs1(rT ;z = zD), respectively (we use
the “hat” to denote the signal spectrum in the 2D/3D Fourier domain). u−uin denotes the shifted spatial
frequency vector governed by the Lauer equation2. The exponential term in Eq. (S4), e−i2πuzzD , can be
interpreted as the angular spectrum propagation kernel for a coherent complex field, which accounts for
the coordinate shift in the z direction3. Note that this exponential term will automatically vanish if the
measurement is performed at the nominal ‘in-focus’ plane (z = 0), and we neglect this term for simplicity:

Ô(u−uin) = 4π juzÛs1(uT )δ

(
uz−

√
u2

m−|uT |2
)

(S5)

Because the 3D spatial-frequency vector, u = (uT ,uz), lies on the Ewald sphere under the constraint

uz =

√
u2

m−|uT |2, the information defined by Ûs1(uT ), is directly related to a particular semi-spherical
surface with a radius of the Ewald sphere um = nm/λ in the 3D Fourier space that is displaced by −uin.
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However, for a practical microscopic system, only forward propagating waves falling within the system
aperture can contribute to the image formation. For 2D imaging of a weakly scattering thin sample, the
effect of the lens aperture is usually described by the 2D complex pupil function [i.e., coherent transfer
function (CTF)] P(uT ), which ideally is a circ-function with a radius of NAob j/λ , determined by the NA
of the objective. Under oblique illuminations, the object spectrum is shifted and limited by the complex
pupil function, Ô(u−uin) = Ûs1(u)P(u)4, 5. For the case of 3D imaging of a thick sample, the complex

pupil function should be projected onto the spherical surface, i.e., P(u) = P(uT )δ

(
uz−

√
u2

m−|uT |2
)

,

resulting a subsection of the Ewald sphere called the generalized aperture (i.e., 3D CTF)5. Limited by the
generalized aperture, Eq. (S5) should be modified as

Ô(u−uin) = 4π juzÛs1(uT )P(uT )δ

(
uz−

√
u2

m−|uT |2
)

(S6)

Considering a practical imaging system with aberrations, the 3D CTF can be experimentally calibrated
by fabricating a nanoscale object to simulate a complex infinitesimal point source in the 3D space6. As is
clear here, the solution to the inverse scattering problem requires the first-order scattered field Us1(rT )

either to be a measurable quantity or can be obtained by other means. Two approximations are often used
to determine Us1(rT ): The first-order Born approximation assumes that the objects are weak scattering
[U (rT )≈Uin (rT )�Us (rT )] so that Us(rT )≈Us1(rT ). It is valid when the absorption and total phase
delay introduced by the object is small. The first-order Rytov approximation assumes that the total field
has a complex phase function related to the scattered field, i.e., U (rT ) =Uin (rT )exp [φs (rT )]. When the
phase gradient introduced by the object is small, Us1(rT ) =Uin(rT )φs (rT ). The two approximations for
Us1(rT ) are summarized in Eq. (S7)3.

Us1(rT )≈

{
Us(rT ) =U (rT )−Uin (rT ) Born approximation

Uin(rT ) ln
[

U(rT )
Uin(rT )

]
= Uin(rT ) ln

[
Us(rT )+Uin(rT )

Uin(rT )

]
Rytov approximation

(S7)

It should be noted that the Rytov approximation can be reduced to Born approximation when the scattered
field is weak or the total phase delay induced by the object is small5. Therefore, for weakly scattering
samples satisfying the Born approximation, Us ≈Us1�Uin, the complex phase representation is also
valid, resulting in the following unified relation to the first-order scattered field:

Us1 (r) =Uin (r)φs (r) (S8)

The Fourier diffraction theorem (Fig. S6) suggests that for each illumination angle, only partial spherical
cap bounded by the generalized aperture can be probed. Illuminating the object at different angles will
shift different frequency components of the object’s spectrum into the fixed microscope objective lens,
enlarging the accessible object frequency domain. For conventional holographic diffraction tomography,
the complex amplitude of the total field, U (rT ), is measured through interferometric or holographical
approaches. As illustrated in Fig. S1a, an off-axis hologram contains the information about the total
complex field, shifted by the oblique incident field in the Fourier domain. After converting the measured
the total complex field U (rT ) to the first-order scattered field Us1 (rT ) according to the Born or Rytov
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approximations [Eq. (S7)], the resultant 2D spectrum is projected onto the particular Ewald sphere in
the 3D Fourier space, according to the relations given by Eq. (S6). By changing the incident angle of
the illumination, the resultant first-order scattered field can access different regions of the 3D Fourier
spectrum of the object, and eventually, a certain portion of Ô(u) can be retrieved, which will allow us the
reconstruct the scattering potential of the 3D sample.

1.2 Transfer function theory for non-interferometric diffraction tomography
In this subsection, we establish transfer function theory for non-interferometric quantitative phase imaging
(QPI) and diffraction tomography. Note that the 3D imaging formation under partially coherent illumina-
tion is analyzed in N. Streibl’s work under the first-order Born approximation7. Here we extend it to the
case of first-order Rytov approximation. With loss of generality, we first assume that the 2D or 3D sample
is illuminated by a quasi-monochromatic plane wave with unit amplitude and imaged with a finite-aperture
imaging system. Based on Eq. (S8) and Eq. (2) of the main text, the complex phase function of the
first-order scattered field under the first-order Born or Rytov approximation can be expressed as

φs(r) =
1

Uin(r)
Us1(r)

=
1

Uin(r)
[O(r)Uin(r)]⊗g(r)

=
1

Uin(r)
[a(r)Uin(r)]⊗g(r)+

j
Uin(r)

[φ(r)Uin(r)]⊗g(r)

(S9)

where O(r) is the 2D or 3D object function with its real (absorption) component a(r) and imaginary
(phase) component φ(r); g(r) represents the complex point spread function (PSF) of the imaging system.
According to Eq. (3) of the main text, the logarithmic value of the measured intensity image (or intensity
stack for the 3D case) can be represented as

ln I(r) = 2Re[φs(r)]

= 2Re[
1

Uin(r)
[a(r)Uin(r)]⊗g(r)+

j
Uin(r)

[φ(r)Uin(r)]⊗g(r)]

= 2Re[a(r)⊗g′(r)]+2Re[ jφ(r)⊗g′(r)]

= a(r)⊗2Re[g′(r)]+φ(r)⊗2Re[ jg′(r)]

= a(r)⊗ [g′(r)+g′∗(r)]+φ(r)⊗ [ jg′(r)− jg′∗(r)]

= a(r)⊗ha(r)+φ(r)⊗hφ (r)

(S10)

where g′(r) represents the PSF modulated by the incident field Uin; ha(r) and hφ (r) represent the PSFs
corresponding to the real (absorption) and imaginary (phase) components, respectively. Taking Fourier
transform on both sides of Eq. (S9), we can get the logarithmic intensity spectrum

ˆln I(u) = â(u)Ha(u)+ φ̂(u)Hφ (u) (S11)

where ln Î(u), â(u), and φ̂(u) are the Fourier spectra of ln I(r), a(r), and φ(r), respectively. Ha(u) and
Hφ (u) are the transfer functions for absorption and phase components, respectively. Under the coherent
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illumination, Ha(u) and Hφ (u) can be represented as5

Ha(u) = P(u+uin)+P∗(u−uin)

Hφ (u) = P(u+uin)−P∗(u−uin)
(S12)

where P(u+uin) is the Fourier transforms of g′(r), in which the shifts property of the Fourier transform is
employed. P(u) and P∗(u) are the conjugated pair of the aperture function, where P(u) represents the
2D complex pupil or 3D generalized aperture function of the imaging system8. Note that for diffraction
tomographic imaging of 3D samples, the factor 4π juz of Eq. (S6) should be incorporated into the the 3D
generalized aperture5, 9.

For a conventional microscope with the Köhler illumination configuration, the spatial coherence of
illumination needs to be explicitly taken into consideration. When the illumination is produced by an
incoherent extended source in the condenser aperture plane, the partially coherent image can be regarded
as an incoherent superposition of coherent sub-images arising from all points of the incoherent source5, 10:

Hφ (u) =
∫∫

[P(u+uin)−P∗(u−uin)]S (uinT )d2uin (S13)

where S is the intensity distribution of the incoherent source, uin = (uinT ,uinz) is the illumination wave-
vector of incident field. For partially coherent illumination with circular or annular sources, the distribution
of the 3D transfer functions can be calculated through analytical or numerical integration7, 9, 11. The
3D transfer function theory forms the basis of the 3D transport of intensity diffraction tomography
(TIDT), which is based on non-interferometric, intensity only measurement akin to the 2D transport of
intensity equation (TIE)5. By capturing the through-focus 3D intensity images, the scattering potential
can be recovered by the 3D deconvolution based on the 3D transfer functions under the corresponding
illumination condition5. The basic principle of non-interferometric diffraction tomography based on
transport of intensity is illustrated in Fig. S1b, in which an example of intensity stack acquired under
partially coherent circular illumination and its corresponding 3D Fourier spectrum are presented. The
shadow area indicates the partially overlapping region in the phase transfer function between the positive
and negative Ewald spheres. The amplitude of the phase transfer function is significantly attenuated due to
the spectral cancellation, resulting in low-quality reconstruction, especially for low-spatial frequencies.

When the source size is sufficiently small (the illumination is nearly spatially coherent), the partial
coherent phase transfer function reduces to the coherent one [Eq. (S12)], which contains two back-to-back
Ewald spherical caps intersecting at the origin. The arc of Ewald sphere is shifted by incident illumination
uin and limited by objective pupil function P(u), as illustrated in Fig. S1c. It can be seen that the object
information on the two Ewald spheres can be transferred with maximum contrast (the amplitude of the
phase transfer function is always one) without any spectral overlapping and cancellation. As detailed in the
main text, the proposed transport of intensity diffraction tomography with non-interferometric synthetic
aperture (TIDT-NSA) approach is based on 3D intensity-only measurements at various illumination angles.
TIDT-NSA synthesizes the Ewald spheres at different illumination angles in the Fourier space, and the
object spectrum can be filled by the extracted generalized apertures, allowing for the reconstruction
of the scattering potential of the 3D sample with both high coherent phase contrast and incoherent
diffraction-limited imaging resolution.
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1.3 Effect of source temporal and spatial coherence on transfer function
For an ideal coherent imaging system, the illumination source is usually treated as an ideal point source
with single wavelength emission. Nevertheless, in a practical microscopic imaging system, the effect of
source temporal coherence (source spectrum) and spatial coherence (source size) should be explicitly
considered for more accurate and realistic characterization of the transfer function. The temporal coherence
of a light source depends on its power spectral density (PSD), i.e., spectral distribution. In the previous
subsection, the light source is assumed to be a quasi-monochromatic extended source with an intensity
distribution of S (u). In this subsection, we assume that the light source has a certain spectral bandwidth
with a PSD of Sω (u). Since different wavelengths are uncorrelated, the total intensity distribution of the
source is the integral of the PSD over all wavelengths S (u) =

∫
Sω (u)dω . Consequently, the transfer

function can be obtained by the superposition of the power density produced by different wavelength
components5

Hφ (u) =
∫∫∫

[Pω(u+uin)−P∗ω(u−uin)]Sω (uinT )d2uindω (S14)

This conclusion seems straightforward because it only needs to integrate over all different wavelengths.
However, it should be stressed that the complex aperture function Pω(u) here is a wavelength-dependent
function. Therefore, polychromatic illuminations can be used to achieve broader spectral coverage by
synthesizing Ewald spheres of different radii12, 13. However, the wavelength-dependent sample phase or RI
induced sample dispersion and chromatic aberration often complicate accurate phase and RI determination.
Therefore, in our TIDT-NSA system, the sample is illuminated with narrow-band monochromatic LED
illumination, and the temporal coherence is considered here not to achieve broader spectral coverage but
to compensate for the slight wavelength dependence of the transfer function.

In Fig. S2a, we illustrate the transfer function synthesis of temporal coherence (polychromatic
source) and spatial coherence (extended source). The phase transfer function distribution of an ideal
monochromatic coherent source is shown in Fig. S2b, which contains two perfect conjugated caps
of Ewald spheres. The spatially coherent polychromatic transfer functions shown in Fig. S2c reveal
the spectral extension and blurring effect due to the finite illumination wavelengths. The inside and
outside boundaries of the transfer function are determined by the maximum and minimum illumination
wavelength, corresponding to the Ewald spheres of different radii. All wavelength-dependent spherical
caps are combined to build the full support of the polychromatic transfer function. On the other hand, the
spatial coherence also contributes to the spectral extension and blurring of the transfer function, arising
from the contributions of all source points, as shown in Fig. S2d. As indicated as the solid line, the
centroid of the transfer function is located on the Ewald cap that corresponds to the weighted averaged
illumination vector generated by an extended source, which is analogous to the ideal reflected by the
definition of the “generalized phase” for partially coherent fields14.

As a result, the spatiotemporal coherence of the illumination has significant effects on the imaging
performance of a diffraction tomography system. The phase transfer functions of different illuminations
with different spatiotemporal coherence are compared in Fig. S2e. It can be found that compared to the
temporal coherence (by using polychromatic illumination), spatial coherence modulation (by using high
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NA illumination from an extended source) is more effective in terms of expanding the spectral coverage
of the transfer function, which leads to higher imaging resolution and better depth sectioning. With the
increase in illumination aperture, the axial missing-cone problem is gradually alleviated, and the lateral
and axial resolution is improved. However, the cancellation of phase transfer function contribution in
the overlapping region (indicated by the gray shadow) becomes more prominent. Within the proposed
TIDT-NSA technique, the full donut-shaped incoherent-diffraction-limited phase transfer function support
can be intactly filled by the noninterferometic synthetic aperture of multi-angle coherent illuminations.
The sequential synthetic aperture procedure allows the transmission of all spatial frequencies within the
support without any overlapping, attenuation, or cancellation, endowing TIDT-NSA with capabilities of
high signal-to-noise ratio and high-sensitivity RI detection.

2 Kramers-Kronig relations in diffraction tomography

2.1 Basic principle of Kramers-Kronig relations
The Kramers-Kronig relations describe the mathematical connection of square-integrable function with
causality between its real and imaginary parts, and these relations have been widely applied in various
research fields since its derivation by Kronig15 and Kramers16. More specifically, the real and imaginary
parts of a square-integrable function f (x) that is analytic in the upper half-plane of x satisfies the following
equation

Re [ f (x)] =
1
π

p.v.
∫

∞

−∞

Im [ f (x′)]
x′− x

dx′

Im [ f (x)] =− 1
π

p.v.
∫

∞

−∞

Re [ f (x′)]
x′− x

dx′
(S15)

where p.v. indicates Cauchy principal value, and the corresponding integral region is formed by removing
the pole x′ of the integral function by a very small semicircle. That is the entire upper half complex plane
(with real axis) except for the pole of x′ in complex coordinate.

Recently, the Kramers–Kronig relations were introduced to the fields of QPI and ODT by Baek and
Park17. They reinterpret the asymmetric-illumination-based non-interferometric QPI from the perspective
of space-domain Kramers-Kronig relations. Since the Kramers-Kronig relations describe the connection
between the real and imaginary parts of a complex analytic function, if a complex field is analytic in the
upper half-plane, Kramers-Kronig relations hold between the real and imaginary parts of the complex
field, and the phase (imaginary) component can be recovered from the intensity (real) measurement of the
complex field.

2.2 Connections between Kramers-Kronig relations and transfer function theory
Considering a sample illuminated by a quasi-monochromatic plane wave with unit amplitude, the sample
contribution can be represented as a complex phase function [see also Eq. (1) of the main text]

φs (r) = ln
[
U (r)

/
Uin (r)

]
= ln

[
1+Us (r)

/
Uin (r)

]
≡ a(r)+ jφ (r) (S16)
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where a(r) and φ (r) represent the real (absorption) and imaginary (phase) parts of the sample. The
intensity that can be directly measured is connected with the real part of the complex phase function

I (r) = |A(r)|2=exp [2Re[φs (r)]] (S17)

As derived in Supplementary Information 1.1, under either the first-order Born (Us ≈Us1�Uin) or Rytov
approximation (Us ≈Us1 =Uinφs), the complex phase can be represented as a normalized version of the
first-order scattered field [Eq. (S8)], which is repeated here for convenience

φs (r) =Us1 (r)/Uin (r) (S18)

The Fourier shift property suggests that dividing by Uin in the spatial domain is equivalent to a shift of the
signal spectrum in the frequency domain3. Considering Eq. (2) of the main text, the Fourier spectrum of
the complex phase function can be written as

φ̂s (u) = Ô(u)P(u+uin) (S19)

Note that for 3D imaging, the factor 4π juz should be incorporated into the generalized aperture function.
Eq. (S19) suggests that the support of the Fourier spectrum of the complex phase function is determined by
the single shifted pupil function (instead of two as in the intensity spectrum of Eq. (S11)). The Titschmarch
theorem states that a square-integrable function vanishing for a half-plane of the Fourier space results
in its analyticity in the half-plane of the spatial domain18. The asymmetric Fourier spectrum implies
the analyticity in the upper half-plane due to the interchangeability of causality and analyticity for the
Kramers–Kronig relations. For QPI of 2D thin specimens, it is plain to see that when the matched
illumination condition is satisfied, i.e., |uin|= NAob j

/
λ , the complex phase function is half-plane analytic.

Consequently, the Kramers-Kronig relations can be applied to infer the phase component (imaginary)
φ (r) from the intensity (real) measurement. The real part of complex phase function φs (r) is connected to
the measurable intensity:

Re [φs (r)] =
1
2

ln I (r) (S20)

It should be noted that, different from the single side-band Fourier spectrum of complex phase function
[Eq. (S19)], the logarithmic intensity spectrum [Eq. (S11)] contains two conjugated “twin” pupil functions
as a result of the loss of imaginary part (phase information). When the illumination angle is smaller
than that limited by NA of the objective lens, i.e., 0 < |uin|< NAob j

/
λ , the two pupil functions overlaps

and cancel each other out at low frequencies, as shown in Fig. 1d of the main text. The information
within the pupil function can be totally transferred if and only if the illumination angle matches the NA of
the objective lens, i.e., |uin|= NAob j

/
λ . It should be mentioned that the Kramers–Kronig relations are

essentially a special case of the Hilbert transform. It is also well-known that the Hilbert transform can be
concisely expressed as a half-plane ±π/2 phase filter in the Fourier domain19. Therefore, the imaginary
part of the complex phase function can be simply retrieved via applying half-plane Fourier filtering on the
logarithmic intensity spectrum (keep only one of the“twin” pupil functions and remove the other).
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To sum up, the matched illumination condition can be regarded as an equivalent of the analyticity
condition of the complex phase function. Nevertheless, the transfer function theory presented here gives
a more intuitive and complete physical picture behind the Kramers-Kronig relations, which is not only
valid when the matched illumination condition is satisfied, but can also be used for resolution and contrast
analysis under arbitrary illumination conditions, including partially coherent illuminations.

2.3 Analyticity analysis of the complex phase function in the 3D spatial domain
For QPI of 2D thin specimens, the analyticity of the complex phase function in the half-plane of the 2D
spatial domain depending on the incident angle of the illumination matches the cut-off angle allowed by
the objective pupil function. However, the matched illumination condition is difficult to strictly fulfill in
practice, especially for high-NA microscopic systems (e.g., with an oil-immersion objective lens).

The situation will be completely different if we extend the intensity measurement into the 3D space.
Similar to the 2D case, the Fourier spectrum of the 3D complex phase function contains a single shifted
generalized aperture (Ewald spherical cap) [Eq. (S19)]. Interestingly, the support of the Fourier spectrum
of the complex phase function is always vanishes for a half-plane of the 3D Fourier space, regardless of
the illumination angle:

φ̂s
(
uxuinx +uyuiny +uzuinz < 0

)
= 0,(ux,uy,uz) 6= 0 (S21)

where uin = (uinx ,uiny ,uinz) is the incident frequency vector.
Similarly, the logarithmic intensity spectrum [Eq. (S11)] also contains two conjugated generalized

apertures shifted according to the incident illumination angle, as illustrated in Fig. 1e of the main text.
The two generalized apertures in the logarithmic intensity spectrum are mirror-symmetrically shifted
in 3D space, and they never cancel each other out (except for the origin, which corresponds to the
trivial constant phase) under arbitrary-angled illuminations. These observations inspire us to extend the
Titschmarch theorem to the 3D case, exploiting 3D space-domain Kramers-Kronig relations to the 3D
intensity (stack) instead of 2D intensity (image) to circumvent the restriction imposed by the matched
illumination condition. Consequently, the Kramers-Kronig relations can be applied to retrieve the phase
component (imaginary) φ (r) from the intensity (real) measurement by simply taking 3D Hilbert transform
(or 3D Fourier domain half-space filtering equivalently) on the measured intensity stack. The 3D Fourier
domain half-space filter is expressed as:

HHT (u)=


− j ∏ > 0
0 ∏ = 0
+ j ∏ < 0

(S22)

where the 3D Fourier space is split in half with the 3D plane, which is perpendicular to the incident
frequency vector ∏(u) = uxuinx +uyuiny +uzuinz .

2.4 Comparison of different 2D QPI and 3D ODT techniques
To demonstrate the advantages of the proposed TIDT-NSA over the state-of-the-arts, we compared it
with interferometric/non-interferometric phase imaging (both 2D and 3D) and diffraction tomographic
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RI imaging methods in Table S1. It should be emphasized that when we talk about QPI, it is usually
assumed that the measured samples are 2D (thin) objects, which can be represented as a 2D complex
function composed of the absorption component and the phase component. However, the phase delay
induced by the object is only the axial projection (accumulation) of its 3D RI distribution. This problem
can be effectively overcome by diffraction tomographic techniques, which enables high-resolution real 3D
(lateral + axial) imaging of the 3D sample by recovering its 3D RI distribution.

As a classic interferometric approach for QPI, digital holographic microscopy (DHM) can measure the
phase delay introduced by the heterogeneous RI distribution within the specimen with a single off-axis
hologram. By combining DHM with ODT, 3D RI tomographic imaging can be achieved based on a set of
quantitative phase distributions obtained by rotating the object or changing the illumination directions.
Holographical ODT is the most classic ODT technique, which is compatible with both Born and Rytov
approximations. Typically, several hundreds of holograms are required to fill the object Fourier spectrum
sufficiently20, 21.

Transport of intensity equation (TIE) is a deterministic and non-interferometric phase retrieval approach
base on intensity propagation5. To solve TIE, the axial intensity derivative should be calculated, which
typically requires 3 intensity images taken at axially displaced planes (generally 3 frames). TIE can be
extended to partially coherent fields, and the phase definition and the image reconstruction algorithm
should be generalized by explicitly taking the partial coherence into account5, 14. Differential phase
contrast (DPC) is also a non-interferometric QPI method that utilizes a pair of images under asymmetric
illumination patterns22. Generally, four intensity images corresponding to asymmetric and complementary
illumination are required for quantitative phase reconstruction. Fourier ptychographic microscopy (FPM)
is a high spatial-bandwidth product iterative QPI method based on ptychographic phase retrieval and
coherent synthetic aperture23. Since FPM is also based on asymmetric illumination, DPC and FPM share
some common features, but the latter can surpass the incoherent diffraction limit of the imaging system at
the expense of acquiring a considerable number of darkfield images. The transfer function analysis of
DPC and FPM reveals that the low-frequency phase component can only be recovered when the incident
angle of the illumination matches the cut-off angle allowed by the objective pupil function4, 24. Thus, the
QPI technique based on Kramers-Kronig relations can be viewed as a special case of DPC or FPM under
the matched illumination condition. All these QPI approaches can be extended to 3D RI tomography by
simply incorporating the ODT principle, e.g. diffraction tomography based on Kramers-Kronig relations
demodulation (K-K DT)17, which is similar to the conventional holographical ODT except that QPI is
realized noninterferometically.

The intensity diffraction tomography (IDT)25, 26and Fourier ptychographic diffraction tomography
(FPDT)3, 27 are the 3D counterparts of DPC and FPM by extending them from 2D QPI to 3D non-
interferometric diffraction tomography. They are based on a similar optical setup, but FPDT can achieve
high spatial-bandwidth product RI imaging by incorporating darkfield intensity measurements. Note that
the matched illumination condition is also required for accurate reconstruction of low-frequency RI for
both IDT and FPDT. Phase retrieval instrument with super-resolution microscopy (PRISM) is based on
a noninterferometic multi-plane phase retrieval approach under partially spatial, and partially temporal
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(polychromatic) illumination13. It can be viewed as an extension of white-light diffraction tomography
(WDT) approach28 to partially spatial coherent illumination. Although the matched illumination condition
is not required in PRISM, this method can only be classified as 3D QPI rather than ODT because only the
phase stack of the 3D sample can be recovered.

Different from the above state-of-the-arts, TIDT-NSA combines through-focus scanning with the
illumination angle diversity. Compared with traditional ODT techniques, TIDT-NSA does not require
coherent illumination and interferometric measurement. The z-scanning eliminates the need for the
matched illumination condition, and the sequential synthetic aperture procedure allows for high signal-to-
noise ratio and high-sensitivity RI detection at incoherent diffraction-limited imaging resolution.

3 Hardware implementation for TIDT-NSA

3.1 Optical platform for TIDT-NSA
To conduct both configurations at the front-end illumination and back-end acquisition, we built TIDT-NSA
platform based on a commercial microscope (IX83, Olympus) assisted with angle-varied LED illumination
and motorized focus drive scanning mechanism. The illumination set consisting five LED rings (Adafruit)
with different diameter sizes are stitched together as the source, and the LED set is placed 25 mm away
from the sample to provide illuminations from different angles with the maximum illumination NA of 0.95
(∼ 72 degrees, red arrow in Fig. S3b), whose center is aligned with the optical axis of imaging system.
Each LED (WS2812B, SMD-5050) approximately consumes 200 mW of power and provides spatially
coherent quasi-monochromatic illumination for three individual channels (central wavelength Red 629
nm, Green 520 nm, Blue 483 nm, and ∼20 nm bandwidth). The photos of multi-annular programmable
LED source and single LED device are both illustrated in Fig. S3a. The illuminating beam of each
LED element is controlled to turn on sequentially by an ARM board controller (MIMXRT1062, ARM
Cortex-M7 @Core clock 600 MHz, Teensy 4.1, NXP Semiconductors) and it passes through the sample
with arbitrary tilted angles. An sCMOS camera with 82% peak quantum efficiency (ORCA Flash 4.0 V3
C13440, Hamamatsu, pixel resolution 2048 × 2048, pixel pitch 6.5 µm) is employed for 3D intensity
stacks recording under detection objective (40×/0.95 UPlanSApo, Olympus) for unstained cell (including
MCF-7, RAW 264.7, C2C12, C. elegans, and HeLa cells) under red LED illumination channel and another
objective (100×/1.4 Oil, UPlanSApo, Olympus) for samples of polystyrene beads and HepG2 cells
blue LED illumination channel. Software in data acquisition computer (Intel Core i7-7820X processor
operating at 3.6 GHz with eight cores and 16 threads, 128 GB of 2133 MHz DDR4 RAM, and NVIDIA
GeForce RTX 2080Ti 11GB) communicates with the camera and focus stage drive via the µManager-API
and Java programs. The camera is synchronized with the LED array by the controller via two coaxial
cables that provide the trigger and monitor the exposure status, and ARM controller board delivers a series
of deterministic transistor–transistor logic (TTL) triggers for camera frame-grabber. As illustrated in
Fig. S3c, the triggers including the control of motorized focus drive positioning, LED illumination data
transmission and blanking, and external camera fire and frame grabber are both tightly synchronized with
each other through the hardware trigger single.
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3.2 Electromechanical system synchronization
We designed a synchronization paradigm which efficiently coordinated the LED illumination pattern
switch, focus stage movement, and camera readout interval. For example, in the process of TIDT-NSA
cycle, a set of 128 raw intensity stacks containing 201 axial displaced frames under different illumination
angles are captured to reconstruct a RI volume image. The imaging protocol can be described in detail
as follows: the first and the last intensity stack of each stacks group are set as the start and end markers
located on the 1st and 5th LED rings to provide the maximum and minimal NA of illumination, respectively.
Under a certain illumination angle, the high-precision focus-drive is controlled to scan the different focal
planes by the µManager software, and this software is synchronized to the ARM board through USB
slave device mode for the transfer of drive signal and step done flag. To minimize the exposure time,
we use delicate time sequence to synchronize the movement of focus drive and the exposure of the
sCMOS camera, and the time sequences for the camera acquisition are shown in the top inset of Fig. S4.
Moreover, we use the external trigger mode of sCMOS camera together with ARM board to control the
LED illumination switching synchronously during exposures of rows. Due to the accurate synchronization
between the sequence of each intensity stack exposure and angled-LED illumination, this acquisition
mode is equivalent to the use of a global-shutter mode. Moreover, to minimize the vibrational noise and
time-dependent motion artifacts, we reduce the exposure time to 50 ms, as shown by the focus drive state
signal in the lower inset in Fig. S4. Notably, while the sCMOS camera is working in the external trigger
mode, we delay a short time before the intensity stacks acquisition of new frame group data in order to
avoid variations in actual exposure time and unstable initial state of focus scanning stage.

To eliminate the high-order residue background in reconstruction and homogenize the illumination
amplitude, we capture a series of extra group of background intensity stacks under each illumination angle
with only the coverslip under the microscope objecitve. For the acquisition of fixed sample, total 25728
intensity frames are acquired within a 4D stack (2048×2048×201×128) for 201 axial slices and 128 LED
illuminations under 40× 0.95 NA objective, and the whole cycle of TIDT-NSA requires over 1.5 hour
acquisition time (200 ms exposure time for each frame). While for dynamic HeLa time lapses imaging,
we adjust the resistance value of current output limiting resistor to provide sufficient total photon flux
within 50 ms of exposure time. Besides, the number of z-step slices at different planes and illuminations
are both down-sampled to achieve the speed limit of system, and the 4D intensity stack contains 204
intensity frames (2048×2048×17×12) for each 3D stack are captured within 20 secs (50 ms for each
frame). We implement the proposed TIDT-NSA reconstruction algorithm on a workstation computer with
128 GB DDR4 RAM, and the time-lapse intensity stack and background stack are parallel feeded into the
program as TIFF-stack files. The result is also saved as TIFF-stack files and can be easily analyzed using
ImageJ. The µManager-API, Java programs, C++ Microsoft Foundation Classes (MFC) framework, and
C language programs are used for software and hardware data I/O and efficient computation during image
acquisition and reconstruction.
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4 TIDT-NSA reconstruction algorithm
Following the pipeline of TIDT-NSA reconstruction algorithm in Fig. S5, the detailed working flow
can be schematically described as follows: 1) We calibrate the illumination angles, which results in
the shift of Ewald sphere spectrum, and the background intensity stacks under each LED illuminations
without samples are taken for the background artifact removing initially. 2) The intensity stacks of
object are captured under the precise synchronization of an imaging system, and 3D Fourier transform
is implemented on the background normalized stacks. By applying 3D half-space Fourier filtering
(space-domain Kramers–Kronig relations equivalently) on each logarithmic 3D intensity spectrum, the
corresponding 3D phase distributions (the imaginary part of the complex phase function) under different
incident illuminations can be retrieved. 3) 3D deconvolution is further performed on the preliminary
synthesized spectrum based on the incoherent transfer function, and 3D RI tomographic reconstruction
can be realized finally.

Step 1: Illumination angle calibration and intensity background normalization
For the LED illumination calibration process, we reorder 128 intensity images of pure phase object on the
in-focus plane, and the numerical self-calibration procedure of LED rings are performed in the frequency
domain29. The algorithm imposed here follows two geometric constraints. First, the distribution of our
LED ring set is expected to obey multi-concentric circular geometry. Second, the LEDs on each ring
arrangement board are expected to be equally spaced. Correspondingly, each ring of LEDs contains 2π

radian angular space, and each pair of neighboring LEDs occupies a 2π/N radian, where N is the LED
number on each ring. Our LED position calibration algorithm starts with an initial guess (blue star in
Step1 of Fig. S5), and the initial estimated LED positions are often contaminated by noise. Accordingly,
the final calibrated LED positions are parameterized as a nonlinear fitting between the raw calibration
results and circular geometry constraint of LED ring set. By solving the optimization problem, the LED
portion can be accurately calibrated and the calibrated results are shown in Step 1 of Fig. S5.

As to the background normalization process, 128 raw intensity stacks of object IB under tomographic
illumination angles identical to the background data acquisition IRaw are recorded within the same exposure
time, and the background processed object intensity stacks are obtained by the normalization between
raw intensity stack and background intensity distribution I(r) = IRaw(r)

/
IB(r). Note that the background

normalization is a mandatory step to compensate the illumination inhomogeneities and ensure that the
normalized illuminations from all LED elements are uniform and of unit amplitude.

Step 2: Image stacks acquisition and spectrum separation in Fourier space
After background normalization, the 3D logarithmic intensity spectrum could be calculated by taking 3D
Fourier transform on each processed intensity stack, ln Î(u). Then, the corresponding 3D phase distri-
butions (the imaginary part of the complex phase function), φ(r), under different incident illuminations
can be obtained by applying 3D half-space Fourier filtering based on [Eq. (S22)], which is equivalent to
applying the 3D space-domain Kramers-Kronig relations to each 3D intensity stack (see Step 2 in Fig.
S5).
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Step 3: Synthetic aperture and scattering potential reconstruction
After implementing the 3D half-space Fourier filtering on each dual sideband 3D spectrum, the resultant
spectra of 3D scattered field both containing real and imaginary parts of complex phase function are
synthesized together in the Fourier space to get a preliminary estimate of the 3D object spectrum Ôsyn(u)
(see Step 3 in Fig. S5). To further compensate the effects of LED elements discretization and the partially
coherence (both temporal and spatial) of the illumination, a simple regularized 3D deconvolution is further
performed on the preliminary synthesized spectrum based on a synthesized transfer function taking the
LED discrete sampling, partial coherence of the illumination, and the correction factor [the 4π juz factor in
Eq. (S5)] into accounts. The synthesized transfer function is calculated by numerical integration according
to Eq. (S14), as discussed in Subsection 1.3 of the Supplementary Information. The regularized 3D
deconvolution can be represented as

Ô(u) =
Ôsyn(u)H∗syn(u)

Hsyn(u)H∗syn(u)+ ε
(S23)

where Ô and Ôsyn are the finally deconvolved spectrum of object scattering potential and preliminary
synthesized spectrum, respectively. Hsyn is the synthesized 3D transfer function of the system, and ε is a
small regularization parameter to prevent the over-amplification of noise. It should be noted that, when
the illumination angles are sufficiently diverse and uniformly distributed within the objective pupil, the
synthesized 3D transfer function Hsyn should approach an ideal 3D incoherent optical transfer function
(OTF) of a conventional incoherent microscope. Different from the conventional 3D incoherent OTF
where the high spatial frequencies are strongly attenuated, the sequential synthetic aperture procedure in
TIDT-NSA allows the transmission of all spatial frequencies within the support without any attenuation.
After deconvolution, a hybrid iterative constraint algorithm combining non-negative constraint and total
variation regularization is further applied to computationally fill the missing cone information. Finally, the
scattering potential of the object is reconstructed after 3D inverse Fourier transform, and the corresponding
3D volumetric RI distribution can be used for the label-free 3D imaging of biological samples, as shown
in the Step 3 of Fig. S5.

5 Validation of TIDT-NSA on both simulations and experiments

5.1 Simulations on 2D numerical propagation and 3D scattering
We first simulate a pure phase sphere as the test sample, and the optical parameters are the same with the
bead experiments in the main text. The bead diameter is 5 µm with pixel sampling rate of 0.065 µm in
lateral direction and 0.65 µm in axial direction. Figures S6a and b illustrate the 2D spectra projection of
3D complex phase function of an ideal phase bead φs on in-focus plane from two different illumination
directions, respectively, and the real and imaginary parts of 2D complex total field U =Uin exp(φs) can be
obtained by implementing inverse Fourier transform. By further invoking the numerical propagation of 2D
complex field under the corresponding illumination angle, the resultant 3D complex field of object both
containing intensity and phase stacks are acquired, as shown in Figs. S6c and d. Because the intensity
information can only be captured in bright-field imaging system, and the phase component in complex
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amplitude is lost as a result. As illustrated in Figs. S6e and f, the propagated 3D intensity stack corresponds
the actually captured intensity stack in an actual imaging system, and the distribution of 3D intensity
spectrum still exhibits dual side-band features of Ewald sphere arcs. Also, we can observe the spectrum
leakage both in the logarithmic intensity spectrum of Figs. S6e and f, and the reason for this phenomenon
is the energy leakage in the propagation of 2D complex amplitude along z-axis induced by the unsatisfied
boundary conditions for Fourier transform. By performing 3D half-plane Fourier filtering on each dual
side-band 3D spectrum, analyticity interpretation of 3D Kramers–Kronig relations in frequency space
equivalently, the preliminary estimate of the 3D object function can be obtained by the process of synthetic
aperture of each resultant spectra of 3D scattered field. The purpose of simulations on 3D scattering and
2D numerical propagation is to reveal the reversible relations between the forward and inverse model of
2D complex phase function and 3D complex scattering field retrieval.

5.2 Experimental results on polystyrene beads
Additionally, we provide more information about the experimental tomographic result of single phase bead
and the comparison for the enhancement of low-frequency components within various non-interferometric
tomography approaches in Fig. S7. Figure S7a illustrates the raw synthetic spectrum of bead, and the
slight Gibbs rings distribution in the raw spectrum verify the validity and accuracy of the proposed
synthetic aperture method. The iterative reconstruction algorithms with non-negative and total variation
regularization are applied to the final RI stack for accurate 3D RI reconstructions, and the dense concentric
ring pattern (sinc function) can be distinguished and resolved in the constrained lateral spectrum cross
section (Fig. S7b, arrows). The iterative constraint algorithm generally generates reasonably accurate
predictions for the missing angle region which cannot be covered by the direct deconvolution of transfer
function. After iterations of constraint, the negative RI bias is removed and the missing cone effect is
significantly alleviated. The final RI distributions of reconstructed micro bead with 3 µm diameter are
presented in Fig. S7c with sampling rate of 0.065 µm in all directions. Due to the missing cone issue as
well as the isotropic coverage of the Fourier spectrum in lateral and axial directions, the recovered bead
still suffers from slight elongation and RI underestimation along the axial direction, as shown in Fig. S7d.

We implement 2D TIE phase reconstruction utilizing a set of three intensity images on the cluster
of phase beads, and the recovered phase distribution of these beads along lateral and axial directions
is illustrated in Fig. S7e. However, this phase distribution of bead cluster only represents the 3D
coherent scattered field along axial direction and does not contain any optical sectioning information of
object. Figures S7f-h illustrate the tomographic results of polystyrene beads utilizing intensity diffraction
tomography (IDT), Fourier ptychographic diffraction tomography (FPDT), and TIDT-NSA under non-
matched illumination condition (0.95 NAill to 1.4 NAob j). For the cases of IDT and FPDT, the low-
frequency phase components (near zero frequency) in the 2D in-focus intensity images are overlapped
with each other, and the low-frequency spectral overlapping region can never be recovered due to the
violation of analyticity of corresponding complex phase function. While under the situation of TIDT-NSA,
the two conjugated Ewald spheres hardly ever intersect except for the origin and the low frequency
components can be totally recovered under arbitrary illumination conditions. Existed TIE-based phase
retrieval is more suitable for quantitative phase reconstitution of 2D thin object rather than 3D object, and
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the benchmark with the reconstruction from 2D TIE is essential to demonstrate the advance of 3D intensity
transport of TIDT-NSA. Also, the tomographic RI results based on this monolayer cluster of beads are
presented to verify the enhanced ability of 3D RI low frequency recovery of TIDT-NSA compared with
other non-interferometric diffraction tomography. It could be observed from the experimental comparison
results that the low-frequency phase component of sphere are almost lost for the approaches of IDT and
FPDT, while TIDT-NSA is more beneficial to the recovery of low-frequency, demonstrating the advantages
of proposed TIDT-NSA in low-frequency enhancement.

5.3 Benchmarking of TIDT-NSA against with other diffraction tomographic methods
In order to verify the performance of TIDT-NSA among other diffraction tomographic imaging approaches,
we proposed the benchmarking results of TIDT-NSA against other 3D phase imaging methods (IDT and
FPDT). Figure S8 shows the comparison results on unicellular diatom microalgae fixed in glycerin gelatin
imaged with both 0.95 NAill and NAob j (matched illumination condition), and the whole view of both 3D
RI and absorption measurements are illustrated in Figs. S8a and b, respectively. Moreover, an example
region of interest image at two different planes is shown in Figs. S8c and d. The “phase” features of pores
and spines are visible in both three diffraction tomographic methods (Z plane1), but the RI distribution
of proposed TIDT-NSA is sharper and more vivid than the distribution of IDT and FPDT (indicated by
the white circles) and the structure of ridge and context with relatively high absorption are clear and
distinguishable. Moreover, both the lateral resolution and contrast are preserved in TIDT-NSA while
recovered absorption diatom structure is lost in IDT and FPDT at large defocus from the results of RI
and absorption on another farther plane (Z plane2). Line profiles in Figs. S8e and f provide intuitive
quantification of 3D tomographic reconstruction at different planes. Despite the lack of ground truth of
these 3D biological objects, which is challenging to measure experimentally, the reconstructed comparison
results shown in Fig. S8 demonstrates the tomographic quality improvement and difference (significantly
for large defocusing plane) over the existed method back-to-back.

6 Quantification and analysis of TIDT-NSA

6.1 Resolution characterization with USAF target and nano-sphere
We use the UASF and star target to benchmark the resolution limit of TIDT-NSA, and the imaging
resolution analysis and characterization are provided as well. By invoking Abbe’s diffraction limit
criterion, the imaging resolution for a coherent imaging system is given by ∆d ∼= λ

nsinα
= λ

NA , where λ is
the illumination wavelength and NA is the optical system numerical aperture.

The Abbe limit represents the highest spatial frequency which is corresponding to the half width
of incoherent diffraction limitation for bright-field measurements. In this work, more commonly used
Nyquist–Shannon sampling limit is utilized for full period limit of resolution characterization. In the
diffraction tomography imaging system, the oblique illumination extends the transverse spatial frequency
limit, as demonstrated by the two mirrored Ewald spheres along with the maximum NA of illumination in
Fig. S1. In theory, the scattered field essentially poses a frequency shift in the detection frequency domain,
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which extends the bandwidth in the transverse frequency domain by the following equation:

usyn = uob j +uin (S24)

where uob j and uin indicate the transverse frequency projections of the maximum NA of the detection
objective and illumination spatial frequency, respectively. As a result, the effective numerical aperture of
the TIDT-NSA system can be given as

NAsyn = NAob j +NAill (S25)

We use dry and another oil-immersion objectives for different experiments, and the source unit of
LED ring set is fixed to provide NA = 0.95 illumination. Respectively, the red LED illumination with
629 nm wavelength is employed for dry objective lens experiments, while the blue channel with 483 nm
illumination is used in oil-immersion experiments. Note that the maximum NA detected by the objective is
also limited by the RI of immerse medium, and there are different immerse mediums used in experiments
as well. For example, the live cells are maintained in culture medium (nm = 1.33), while the polystyrene
bead is immersed in Cargille matching oil (nm = 1.58). When we use 0.95 NA with both of detection and
illumination (λ = 629 nm), the theoretical transverse resolution of TIDT-NSA system is about 330 nm,
which is far beyond than the minimum bar in USAF phase target (Minimum 10-6, 548 nm full period
width). The related resolution benchmark experiments are illustrated in Fig. S9a-d on phase resolution
target both on USAF pattern and Siemens star pattern. Due to the missing of low-frequency components
partially induced by missing cone issue, the phase values inside the patterns is missing but high-frequency
features of retrieved phase pattern are still preserved, and the post-process constraint algorithm might
alleviate this artifact.

For the case of oil-immersion objective under NAill = 0.95 LED illumination @483 nm wavelength,
the resolution target is immersed in objective matching oil (nm = 1.518), thus the theoretical lateral
resolution λ/(NAill +NAob j) is about 206 nm. The absorption USAF resolution target elements with line
pitch of 137 nm are chosen as the observed region (Minimum bar 11-6, 274 nm full period width), as
illustrated in Figs. S9e-g. The axial resolution of TIDT-NSA system is complicated by the nonuniform
axial distribution of Fourier spectrum in the spatial frequency (Fig. S1b, right panel). The missing cone
issue near the low zero frequency area results in the prolongation of system PSF in the longitudinal
direction. As for the axial resolution of diffraction tomography, the maximum resolution is given by the
theory of λ/(nm−

√
n2

m−NA2
ob j), and the full width at half maxima of line profiles across the single

layer of USAF target in Fig. S9g demonstrate the near diffraction-limited axial resolution of 0.52 µm,
confirming a depth resolution within the 0.55 µm range (in accordance with the theoretical prediction
0.52 µm). The double-headed arrows indicate the measured full-width at half-maximum of monolayer of
USAF target akin to the PSF in the axial direction.

Besides, we use 100 nm diameter nano-sphere, satisfying sub-diffraction sized object, to demonstrate
the ability of 3D RI tomography and characterize the achievable imaging resolution of proposed method.
The beads are embedded in RI heterogeneous matching oil nm = 1.58. As shown in Fig. S9h, the
experimental and simulated PSFs indicate the recovered RI distribution of sub-diffraction sized pure phase
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bead. Axial and lateral line profiles across the phase PSF are also plotted in Fig. S9i. The RI distributions
of experimental and simulated results are basically consistent with each other, supporting the claimed
resolution of ∼206 nm laterally and ∼520 nm axially. Overall, the experimental results based on USAF
target and nano-sphere for the characterization of resolution are sufficient to demonstrate the feasibility
and capability of the proposed TIDT-NSA for non-interferometric, accurate 3D RI reconstruction from
intensity-only measurements.

6.2 Analysis on the measurement accuracy and sensitivity of TIDT-NSA
Although the experimentally recovered volumes exhibit RI ranges matching expected biological values,
the inherent variability of these specimens prevents quantitative analysis of the system’s accuracy and
sensitivity for recovering the true RI distribution and detecting small RI variations, respectively. Similar to
the resolution benchmarking of RI, we further evaluate the modality’s accuracy and sensitivity. Following
the recent works about sensitivity analysis30, 31, it is possible to explore such experimental sensitivity
analyses in quantitative phase systems with rigorous testing using expensive hardware which is not readily
available for the TIDT-NSA system. Due to the lack of manufactured and well-characterized structures,
thus, determining TIDT-NSA’s accuracy and sensitivity is a challenging task. Here, we instead evaluate
TIDT-NSA in simulation to determine its theoretical accuracy and sensitivity over the RI range present in
our experimental data. Our simulations are performed with three primary components: 1) a ground-truth
object, 2) a rigorous forward model generating intensity stacks under different illumination angles, and 3)
our proposed TIDT-NSA reconstruction algorithm.

For the simulated object, we generate 3×3 sphere arrays with variable RI inside a volume of 33 ×
33 × 33 µm3, and each phase sphere is spatially separated in lateral and axial dimensions. (Fig. S10a).
For the RI of phase bead, we assume a homogeneous imaging medium (nm = 1.58) and generate arrays
with RI range ∆n = [0.01, 0.02, 0.03, 0.04, 0.05] following the equation RI = nm + ∆n. Other optical
parameters are consistent with the actual experiments, and these parameters allow the evaluation of both
TIDT-NSA’s accuracy and its sensitivity to small RI changes across a large contrast range. According to
the simulation approach of forward model in subsection 5.2, we propagate the final field through a 0.95
NA, 40× objective lens under different LED illumination angles and generate 128 intensity image stacks
of the simulated sphere array. Furthermore, we added white Gaussian noise to the intensity images to
generate SNR ranging from 1 to 10 and 20 realizations for each SNR level, as shown in Fig. S10b. The
SNR is quantified by the ratio between the signal contrast and noise level as SNR = δSignal/δNoise, where δ

denotes the standard deviation. This forward model with noise addition efficiently simulates 3D scattering
of object, making it ideal for evaluating TIDT-NSA’s recovery capabilities.

We repeat this simulation process on sphere array with differing RI and reconstruct the object volume
using the proposed TIDT-NSA algorithm. We then compare the median recovered RI over the sphere area
with the ground truth object to determine the reconstruction accuracy. For the reconstruction sensitivity, we
evaluate the separation between the small RI variations ∆n from the central RI value nm. The simulation
results for accuracy and sensitivity are summarized in Fig. S10c, and the left panel of Fig. S10c shows the
average RI mismatch between our reconstruction and the ground truth across RI over the 20 realizations
simulated under SNR matching our experimental condition. The error bars show the standard deviation in
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this mismatch over these realizations, and the underestimations for large RI contrast objects are expected
due to the presence of multiple-scattering invalidating the scattering assumption of the TIDT-NSA model.
Right panel of Fig. S10c shows theoretical sensitivity range across multiple SNR conditions for different
cases of RI contrast ∆n. These results indicate that TIDT-NSA exhibits high sensitivity to RI variations
across the full reconstructed volume under low-contrast imaging conditions. Our simulation shows that
TIDT-NSA provides high-accuracy and high-sensitivity RI recovery of volumetric biological samples under
the proper conditions. Given the assumption of more weakly scattering samples within our model’s validity
range, TIDT-NSA can recover correct accurate RI values and detect small fluctuations to variations in the
object’s RI. This analysis is promising for biological sample evaluation where these small RI variations is
corresponding to the presence of pathogens in cells32. Although the evaluation of accuracy and sensitivity
will suffer from experimental factors, including objective aberrations and illumination misalignments, our
simulations shown here indicate TIDT-NSA provides accurate, highly sensitive volumetric recoveries of
biological samples.

Moreover, we intend to provide the quantitative comparison about the reconstructed RI accuracy
between the cases of 128 LED elements for fixed samples and 12 LED elements for live samples (10-fold
less illumination number). Figures S10d and e illustrate the recovered Fourier spectrums and 3D RI slices
of a cluster of polystyrene beads. It can be found that the sparse sampling of spectrum results in the slight
degradation in RI value of 3D beads, and two line profiles are plotted to illustrate the RI value distribution
of beads, as illustrated in Figs. S10f and g. In summary, the full LED illumination angles corresponding
to the denser sampling in frequency spectrum enhance the value and accuracy of RI distribution. Even
though the missing of low frequency effects the reconstruction accuracy, the issues of frequency missing
can be relieved through the post-processing algorithm.

7 Supplementary experimental results of biological cells

7.1 Label-free 3D RI tomography on fixed cell clusters
Figure S11 illustrates the RI tomography on fixed cell clusters of murine skeletal myoblasts C2C12 cells.
The RI change at different axial planes and the views in three orientations simultaneously at different
lateral positions show the ability of 3D RI depth sectioning of TIDT-NSA. Also, four regions of the
reconstructed C2C12 cells RI in Fig. S11 are expanded, highlighting our depth sectioning reconstructions.
Figure S12a shows the reconstructed central RI slice of unstained RAW 264.7 cells using a 40× objective
with a full field of view (FOV) of (333 × 333 µm2), and three representative regions of interests, labeled
as ROI1, ROI2, and ROI3, are further enlarged in Fig. S12b for better demonstration of cell morphology
details at different axial planes. The cells are attached to the coverslip substrate, and fiber filopodial
structures are observed at different depths due to the small tilt of the sample plane. In addition, other
subcellular features, like the high-RI nucleus and some parts of the cytoplasm, are distributed over a
limited depth range of ∼6 µm. Figure S12c and Supplementary Video 4 show two volume-rendered
3D RI distributions of one single cell from ROI3 and the small cell cluster from ROI2, in which the 3D
structures of cytoplasm, cytoskeleton, microfilaments, and their interconnections are clearly resolved and
comprehensively revealed. The unstained HepG2 liver carcinoma cells are imaged with a 100× objective,
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and the reconstructed central RI slice is presented in Fig. S12d. From the two ROIs of the tomogram, cell
membrane wrinkle, cell boundaries, and other high-RI cellular organelles, including the nucleoli, nucleus
border cytoskeleton, and lipid droplets, are highlighted at different axial positions (Fig. S12e, arrows and
circles). As illustrated in Fig. S12f, the line profiles across two cells at two different axial planes in Fig.
S12e indicate that the RI distribution inside the nucleus is highly inhomogeneous.

7.2 Time-lapse tomographic imaging of apoptotic process of HeLa cell
For the dynamic experiments of HeLa cell, the full frame intensity stacks are down-sampled to 12 intensity
stacks (204 intensity images), and these intensity images are captured within 22 secs, to minimize the
vibrational noise and time-dependent motion artifacts. Thus, this time interval is basically enough for
the 3D imaging of live cell with negligible motion blur artifacts. Moreover, the power of a single LED
illumination source used in experiments is about 200 mW and the max illumination angle is about 150
degrees. Therefore, the lower density of LED illumination with so large divergence angle is far smaller
than laser source resulting in the negligible photodamage in the dynamic experiments. We implement the
3D imaging of live HeLa cells under dry objective with 0.95 NA, and the full donut-shaped phase transfer
function region is filled by the coherent illumination synthetic aperture, which corresponds to the 3D
incoherent diffraction limit. The claim of lateral and axial imaging resolution of HeLa cells is consistent
with characterization of resolution in subsection 6.1, showing the same imaging resolution with control
sample of incoherent diffraction limit in the frequency domain. Moreover, Figure S13 illustrates the
dynamic 3D RI results over hour-long time-lapse containing cell movement in the apoptosis process. This
non-interferometric 3D label-free technique enables the monitoring of structures and dynamics in cellular
processes that are prone to phototoxicity over a prolonged period of time, and the dynamic tomographic
results demonstrate the high volumetric and high resolution imaging capacity of the proposed TIDT-NSA.

20/41



References
1. Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic

data. Opt. Commun. 1, 153–156 (1969).

2. Lauer, V. New approach to optical diffraction tomography yielding a vector equation of diffraction
tomography and a novel tomographic microscope. J. Microsc. 205, 165–176 (2002).

3. Zuo, C. et al. Wide-field high-resolution 3d microscopy with fourier ptychographic diffraction
tomography. Opt. Lasers Eng. 128, 106003 (2020).

4. Sun, J. et al. Single-shot quantitative phase microscopy based on color-multiplexed fourier ptychogra-
phy. Opt. Lett. 43, 3365–3368 (2018).

5. Zuo, C. et al. Transport of intensity equation: a tutorial. Opt. Lasers Eng. 106187 (2020).

6. Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics (2013).

7. Streibl, N. Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A 2, 121–127 (1985).

8. Noda, T., Kawata, S. & Minami, S. Three-dimensional phase contrast imaging by an annular
illumination microscope. Appl. Opt. 29, 3810–3815 (1990).

9. Bao, Y. & Gaylord, T. K. Quantitative phase imaging method based on an analytical nonparaxial
partially coherent phase optical transfer function. J. Opt. Soc. Am. A 33, 2125–2136 (2016).

10. Zuo, C. et al. High-resolution transport-of-intensity quantitative phase microscopy with annular
illumination. Sci. Rep. 7, 7654 (2017).

11. Li, J. et al. Three-dimensional tomographic microscopy technique with multi-frequency combination
with partially coherent illuminations. Biomed. Opt. Express 9, 2526–2542 (2018).

12. Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256–263
(2014).

13. Descloux, A. et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation
imaging for 4d cell microscopy. Nat. Photonics 12, 165–172 (2018).

14. Zuo, C. et al. Transport of intensity phase retrieval and computational imaging for partially coherent
fields: The phase space perspective. Opt. Lasers Eng. 71, 20–32 (2015).

15. Kronig, R. d. L. On the theory of dispersion of x-rays. J. Opt. Soc. Am. A 12, 547–557 (1926).

16. Kramers, H. A. La diffusion de la lumiere par les atomes. In Atti Cong. Intern. Fisica (Transactions
of Volta Centenary Congress) Como, 2, 545–557 (1927).

17. Baek, Y. & Park, Y. Intensity-based holographic imaging via space-domain kramers–kronig relations.
Nat. Photonics 15, 354–360 (2021).

18. Titchmarsh, E. C. Introduction to the theory of Fourier integrals, 2 (Clarendon Press Oxford, 1948).

19. Diaz, R. E. & Alexopoulos, N. G. An analytic continuation method for the analysis and design of
dispersive materials. IEEE Trans. Antennas Propag. 45, 1602–1610 (1997).

21/41



20. https://www.nanolive.ch/.

21. https://www.tomocube.com/.

22. Tian, L. & Waller, L. Quantitative differential phase contrast imaging in an led array microscope. Opt.
Express 23, 11394–11403 (2015).

23. Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier Ptychographic microscopy.
Nat. Photonics 7, 739–745 (2013).

24. Sun, J. et al. High-speed fourier ptychographic microscopy based on programmable annular illumina-
tions. Sci. Rep. 8, 1–12 (2018).

25. Ling, R. et al. High-throughput intensity diffraction tomography with a computational microscope.
Biomed. Opt. Express 9, 2130 (2018).

26. Li, J. et al. High-speed in vitro intensity diffraction tomography. Adv. Photonics 1, 066004 (2019).

27. Horstmeyer, R. et al. Diffraction tomography with fourier ptychography. Optica 3, 827–835 (2016).

28. Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256–263
(2014).

29. Eckert, R., Phillips, Z. F. & Waller, L. Efficient illumination angle self-calibration in Fourier
ptychography. Appl. Opt. 57, 5434 (2018).

30. Hosseini, P. et al. Pushing phase and amplitude sensitivity limits in interferometric microscopy. Opt.
Lett. 41, 1656–1659 (2016).

31. Juffmann, T., de los Rı́os Sommer, A. & Gigan, S. Local optimization of wave-fronts for optimal
sensitivity phase imaging (lowphi). Opt. Commun. 454, 124484 (2020).

32. Chandramohanadas, R. et al. Biophysics of malarial parasite exit from infected erythrocytes. PloS
One 6, e20869 (2011).

33. Baek, Y., Lee, K., Shin, S. & Park, Y. Kramers–kronig holographic imaging for high-space-bandwidth
product. Optica 6, 45–51 (2019).

34. Li, J. et al. Efficient quantitative phase microscopy using programmable annular led illumination.
Biomed. Opt. Express 8, 4687–4705 (2017).

35. Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution fourier ptychographic microscopy.
Nat. photonics 7, 739–745 (2013).

36. Chowdhury, S. et al. High-resolution 3d refractive index microscopy of multiple-scattering samples
from intensity images. Optica 6, 1211–1219 (2019).

37. Zhou, S. et al. Accelerated fourier ptychographic diffraction tomography with sparse annular led
illuminations. J. Biophotonics e202100272 (2021).

22/41

https://www.nanolive.ch/
https://www.tomocube.com/


Table S1. Comparison of different QPI and ODT techniques.

Techniques
Terms Data

formulation Raw data type Imaging
dimension

Source coherence and
optical configuration

Scattering
approximation Key issues

DHM Interferometric Hologram
(1 frame for off-axis) 2D Phase

High (laser);
Interferometric system
(off-axis or on-axis)

Speckle noise;
Need phase unwrapping;
K-K phase demodulation33

ODT Interferometric Hologram
(∼ 200 frames) 3D RI

High (laser);
Interferometric system
(off-axis or on-axis)

1st order
Born or Rytov
approximation

Mechanical angle scanning6

TIE
Non-

interferometric

Through-focus
intensity stack
(3 frames)

2D Phase

Low (LED);
Can be partially coherent;
Bright-field imaging
system

Carefully tuning of defocus
distance and design of illumination
pattern for robust phase TFs10, 34

DPC
Non-

interferometric

Diverse illumination
intensity stack
(4 frames)

2D Phase

Low (LED);
Can be partially coherent;
Bright-field imaging
system

Need matched illumination
condition and design of illumination
pattern for robust phase TFs22

K-K QPI
Non-

interferometric

Diverse illumination
intensity stack
(∼ 6 frames)

2D Phase
Low (LED);
Bright-field imaging
system

Need matched illumination
condition;
2D K-K phase demodulation17

FPM
Non-

interferometric

Diverse illumination
intensity stack
(∼ 200 frames)

2D Phase
Low (LED);
Bright-field imaging
system

Need matched illumination
condition and iterations for phase
reconstruction; Large amount of
darkfield dataset4, 35

IDT
Non-

interferometric

Diverse illumination
intensity stack
(∼ 200 frames)

3D RI
Low (LED);
Bright-field imaging
system

1st order Born
approximation or
multiple scattering

Need matched illumination
condition17; Iterative algorithm
for multiple scattered situation36

FPDT
Non-

interferometric

Diverse illumination
intensity stack
(∼ 3,000 frames)

3D RI
Low (LED);
Bright-field imaging
system

1st order
Born or Rytov
approximation

Need matched illumination
condition and iterations for 3D
reconstruction37; Large amount of
darkfield dataset3

PRISM
Non-

interferometric

Through-focus
intensity stack
(∼ 8 frames)

3D Phase

Low (LED);
Polychromatic coherent;
Bright-field imaging
system

1st order Born
approximation

No matched illumination
condition required; Non-incoherent
diffraction limit13

K-K DT
Non-

interferometric

Diverse illumination
intensity stack
(∼ 30 frames)

3D RI
Low (LED);
Bright-field imaging
system

1st order
Born or Rytov
approximation

Need matched illumination
condition;
2D K-K phase demodulation17

TIDT-NSA
Non-

interferometric

Both diverse
illumination and
through-focus
intensity stack
(204 frames)

3D RI
Low (LED);
Bright-field imaging
system

1st order
Born or Rytov
approximation

No matched illumination
condition required;
3D K-K phase demodulation
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Figure S1. Illustration of basic principles of holographic diffraction tomography and noninterferometic
transport of intensity diffraction tomography. a. Holographic measurement with coherent illumination.
b,c. 3D intensity measurement with partially coherent illumination and coherent illumination.
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Figure S2. Effect of source temporal and spatial coherence on phase transfer function. a. Transfer
function synthesis of temporal coherence (polychromatic source) and spatial coherence (extended source).
b. Phase transfer function corresponding to a quasi-monochromatic (λ = 630 nm), spatially coherent
source. c. Phase transfer function distributions corresponding to spatially coherent polychromatic
illuminations of different spectrum width. d. Phase transfer function distributions corresponding to
quasi-monochromatic extended sources of different sizes. e. Comparison of phase transfer functions of
different types of illuminations with different spatiotemporal coherence.
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Figure S3. Hardware platform for TIDT-NSA and the diagram of electromechanical system
synchronization. a. Photos of multi-annular programmable LED source and single LED element. b.
Viewing angle and relative luminosity of LED illumination. LED can provide ∼ 40% illuminance
intensity at the illumination NA 0.95 (∼ 72 ◦). c. Diagram of electromechanical system synchronization
and instruction flow.
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Figure S4. Time sequence of synchronization for one cycle of TIDT-NSA data acquisition. In the
acquisition cycle, 128 intensity stacks are recorded during the on state of LED enable signal, and the
acquisition of each intensity stack followed by the flag trigger of illumination ready. Top inset: Z-stage
driving signals to scan the object along z direction from low position to high position during the
acquisition of intensity stack at 201 different axial planes, and the step done signal indicate the acquisition
complete of each stack. Bottom inset: Camera exposure sequence in each stack synchronized with stage
movement containing 201 camera rising edge trigger, as illustrated in the red circle.
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Figure S5. Pipeline of TIDT-NSA reconstruction algorithm. We calibrated the illumination angles with
algorithmic self-calibration method for finely tuning the LED positions and recorded one set of
background stacks in the absence of sample. After the intensity stack background removing, we perform
the 3D half-space filtering on the captured Fourier spectrum and the single side-band spectrum, both
containing real and imaginary parts of complex function. Implementing synthesized 3D transfer function
deconvolution and iterative constraint algorithm to the 3D synthetic spectrum for final 3D RI distribution
and rendering.
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Figure S6. Simulations of a pure phase bead on 3D scattering and 2D numerical propagation under
different illumination conditions. a,b. Distribution of 2D complex phase function spectrum φ̂s (u) from 3D
Ewald sphere and real and imaginary parts of complex amplitude function U (r). c,d. Propagated 3D
intensity and phase stacks of complex amplitude through numerical propagation. e,f. Simulated captured
3D intensity stack due to the phase loss of intensity detection. Scale bars: 5 µm.
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Figure S7. Experimental results of 3D tomographic RI of single polystyrene bead. a,b. Raw synthetic
lateral and axial sections of spectrum and the constrained spectrum after the algorithms with non-negative
and total variation regularization. c. RI tomograms of a single polystyrene bead with iterative constraint in
the x− y and y− z planes. d. Two line profiles across the bead are indicated the lateral and axial
reconstruction. e. Quantitative phase distributions of bead cluster along lateral and axial directions
retrieved by TIE. f-h. Tomographic results of polystyrene beads utilizing IDT, FPDT, and TIDT-NSA
under non-matched illumination condition (0.95 NAill to 1.4 NAob j). Scale bars: 5 µm.
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Figure S8. Benchmarking results of TIDT-NSA against other 3D phase imaging methods (IDT and
FPDT) based on unicellular diatom microalgae under matched illumination condition (both 0.95 NAill and
NAob j). a,b. Whole view of both 3D RI and absorption recovered by TIDT-NSA. c,d. Raw intensity,
absorption, and RI distributions of an example region of interest image at two different planes. e,f. Two
comparison line profiles across the diatom are indicated the lateral complex RI reconstruction by different
tomographic methods. Scale bars: (a, b) 50 µm and (c, d) 10 µm.
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Figure S9. Resolution benchmarking of TIDT-NSA with both phase and absorption resolution target
and nano-sphere. a-d. Experimental results of phase resolution target both on USAF pattern (minimal bar
10-6) and Siemens star pattern utilizing NA 0.95 objective and red light (wavelength λ = 629 nm). e-g.
Tomographic RI reconstruction of absorption positive USAF target which provides the maximum
theoretical lateral resolution 274 nm (minimal bar 11-6 in USAF target) and axial resolution 0.55 µm in
accordance with the theoretical resolution prediction. h,i. Experimental and simulated PSF of 100 nm
diameter nano-sphere satisfying sub-diffraction sized object for characterization of 3D RI tomographic
ability and imaging resolution. Scale bars: Full FOV of (a, c, e) 20 µm and ROI of (a, c, e), f, and h 3 µm.
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Figure S10. Simulation for quantifying TIDT-NSA accuracy and sensitivity, and quantitative
comparison about the reconstructed RI results between the cases of full sampled and down-sampled LED
illumination. a. Top: The object consists of a sphere array occupying a 33 × 33 × 33 µm3 volume.
Bottom: An example TIDT-NSA reconstruction. b. Simulated intensity images with different SNR at the
in-fucus plane and in-focus RI slice reconstructions of TIDT-NSA. The median recovered RI over the
sphere area compared with the ground truth object to determine the reconstruction accuracy and
sensitivity. c. TIDT-NSA accuracy evaluations across the object RI and sensitivity analysis as a function
of SNR. d-g. Quantitative comparison about the recovered Fourier spectrums and 3D RI slices of a cluster
of polystyrene beads between the cases of 128 LED elements and 12 LED elements (10-fold less
illumination number). Scale bars: 5 µm.
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Figure S11. RI tomography of fixed C2C12 cell clusters imaged with 40× NA 0.95 objective, and x− y
cross-sectional views of four different tomogram ROIs at different axial planes. Scale bars: 15 µm.
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Figure S12. RI tomography of fixed RAW 264.7 and HepG2 cell clusters with different objective lenses.
a-b. Fixed RAW 264.7 cells imaged with 40× objective over full FOV of 333 × 333 µm2 and three
enlarged x− y ROIs of RI images at different axial planes. c. Maximum intensity projections
volume-rendered 3D RI distributions of one single cell from ROI3 and the small cell cluster from ROI2 of
RAW 264.7. d-e. Full FOV of HepG2 cells imaged with 100× NA 1.4 oil-immersion objective, and x− y
cross-sectional view of the tomogram ROIs at different axial planes. f. RI line profiles across two cells at
two different axial planes in (e). Scale bars: (a) 50 µm and (b, c, d, e) 15 µm.
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Figure S13. Cross-sectional view of the RI tomogram of HeLa cell apoptosis process. a. Recovered RI
slices of HeLa cells at different time points and axial positions before cell volume shrinkage and structural
collapse. b. RI distribution of HeLa cells at late stage of apoptosis. The volume of cell shrunk, fragments
fall off from the surrounding structure, and the structure similar to bubbles and fine fibers indicated by
arrows and circles. Scale bars: 20 µm.
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Video S1. RI change at different axial planes and 3D rotation of MCF-7 cell RI rendering.

Δn 0.015-0.01

Video S2. RI views in three orientations simultaneously at different lateral positions of MCF-7 cells.

Video S3. 3D RI stack of beads and RI views in x− y− z orientations.
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Video S4. Tomographic RI and 3D RI rotation rendering of RAW 264.7 cell.

Video S5. 3D RI rendering of RAW 264.7 cell within two different ROIs.
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Video S6. Reconstructed RI stack of HepG2 cell.

Video S7. 3D ROIs RI stack of C2C12 cell.
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Video S8. 3D tomographic RI reconstruction and 3D RI rendering of C. elegans worm.

Video S9. Time-lapse tomographic RI and 3D time-lapse RI rendering of live HeLa cell.
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Video S10. Time-lapse 3D ROI RI stack and rendering of live HeLa cell.

Video S11. RI tomography and 3D RI rendering of HeLa cell apoptosis.
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