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1 Results

1.1 Oscillatory components

For time-frequency representations of the behavioural data, the signals are first detrended. Then,
the wavelet transform is applied using the lognormal wavelet [1] and a frequency resolution
parameter of 1.8, for frequencies with periods between 2 minutes and 30.3 hours. A cone
of influence is applied. Figs. S1–S3 show the time-frequency representations of behavioural
data from mouse 1–5, and the corresponding time-averaged power spectra. The y-axis are
in logarithmic scale. Four oscillatory components emerge for all mice. The wavelet power is
the squared amplitude of the wavelet, and has, along with the average power, units (wheel
revolutions/min)2.

Figure S1: Time-frequency representation (left) and time-averaged wavelet power (right) of the
behavioural data for mouse 1.
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Figure S2: Time-frequency representation of the behavioural data for mice 2 and 3.

2



Figure S3: Time-frequency representation of the behavioural data for mice 4 and 5.
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1.2 Ridges

The method for extracting ridges from a time-frequency representation introduced by Iatsenko
et al [2] is used, and the extracted ridges are shown in Figs. S4–S6. The wavelet transform is
performed on the behavioural data of all 5 mice. For ridge extraction, the chosen boundaries
must contain the entirety of, and only, the oscillatory component under investigation. Both the
time-frequency representation and the average power spectrum are used to determine the correct
boundaries. The units for wavelet power and the average power are (wheel revolutions/min)2.

Figure S4: Time-frequency representation of the behavioural data along with the boundaries for
ridge extraction, and the extracted ridges for mouse 1.
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Figure S5: Time-frequency representation of the behavioural data along with the boundaries for
ridge extraction, and the extracted ridges for mice 2 and 3.
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Figure S6: Time-frequency representation of the behavioural data along with the boundaries for
ridge extraction, and the extracted ridges for mice 4 and 5.
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1.3 Harmonics

The phase time-series of each frequency component are extracted using the wavelet transform,
and are compared pairwise. The algorithm, introduced by Sheppard et al [3], calculates the
mutual information between the pair to determine whether a harmonic relationship exists.
The parameters for harmonic algorithm are specified such that harmonics are identified in the
frequency-interval of interest, which is in our case from 2 minutes to 27.8 hours. Thus, all
previously identified oscillatory components are included in the investigation. The wavelet
transform with a time-resolution of 360 minutes is performed to extract phase time-series of each
frequency component. 19 amplitude-adjusted Fourier transform (AAFT) surrogates are used.
For further detail about methods for hypothesis testing of dynamical systems using surrogate
data see [4].

Figures S7–S9 show detected harmonics within the behavioural data of all 5 mice. The plot
is a frequency-frequency representation showing which oscillations are in harmonic relationships.
The image is symmetric over the diagonal, therefore only half of the figure need to be considered.
The frequency boundaries used during ridge extraction for each oscillation detected in the
time-frequency representation (oscillation 1, 2, 3 and 4) form the outlines of the dashed boxes in
the figure. All of the different combinations of frequencies are investigated, and the boxes are
plotted over the harmonic results. The colour-code shows a dimensionless quantity obtained from
the actual value, minus the mean of the surrogate distribution, divided by the standard deviation
of the surrogate distribution. Negative values correspond to results with values lower than the
surrogate mean, therefore significant results are those above 0. For oscillation combinations which
overlap with higher-valued areas, the two frequencies are more likely in a harmonic relationship.

Figure S7: Harmonics analysis of the behavioural data for mouse 1.
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Figure S8: Harmonics analysis of the behavioural data for mice 2 and 3.
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Figure S9: Harmonics analysis of the behavioural data for mice 4 and 5.
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1.4 Coupling

The interactions between all combinations of phases of pairs of oscillators for the same animal are
investigated. The instantaneous frequencies of an individual oscillatory component are obtained
from the time-frequency representation using ridge extraction. The width of the time-windows
to determine the time-independent coupling strength are 15880 minutes, and time-windows
overlap by 75%. A Fourier order of 2 and a propagation constant of 0.2 is used. 19 cyclic
phase permutation (CPP) surrogates are used, and the significance test is performed with a
significance level of α = 0.05. Figures S10–S14 show the coupling strengths over time between
four oscillations (oscillation 1, 2, 3 and 4), within the behavioural data of mouse 1, 2, 3, 4 and
5. The solid lines denote the coupling strength over time, obtained from dynamical Bayesian
inference [5]. The dotted lines are the surrogate significance tests. Only results above the
surrogate lines are significant. The arrow in the legend denotes the direction of coupling.
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Figure S10: Time-evolution of the coupling strength calculated for mouse 1.
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Figure S11: Coupling strength over time calculated for mouse 2.
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Figure S12: Coupling strength over time calculated for mouse 3.
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Figure S13: Coupling strength over time calculated for mouse 4.
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Figure S14: Coupling strength over time calculated for mouse 5.
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1.5 Relationship with temperature and humidity

The temperature (oC) and relative humidity (%) over the time of the experiment, which began
in mid-June 2018 and ended in mid-March 2019 in Dallas (Texas) are presented below. Humidity
is relatively stable all year around in Dallas, however the large fluctuation in humidity in the
last half of recording corresponds to switching air conditioner to heater.

Figure S15: Time -evolution of the ambient temperature during the study

Figure S16: Time-evolution of the relative humidity during the study.

For time-frequency representations of the temperature and relative humidity data, the signals
are first detrended. Then, the wavelet transform is applied using the lognormal wavelet and
a frequency resolution of 1, for all possible frequencies (2 minutes to ∼45 days). A cone of
influence illustrates logarithmic resolution, i.e. the window within which the wavelet is stretched
or contracted changes logarithmically. Hence, for lower frequencies longer windows are used and
exponentially longer parts are not included at the beginning and the end of the spectrum. Figures
S17 and S18 show the time-frequency representations of temperature and relative humidity, and
the corresponding time-averaged power spectrum. The y-axis are presented on a logarithmic
scale.
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Figure S17: Time-frequency representation (left) and time-averaged wavelet power (right) for
room temperature data recorded every 5 min during the study. Note that the extent of fluctuation
is very small, as the temperature fluctuation is minimal (22.4±0.4 0C).

Figure S18: Time-frequency representation of the humidity data (left) and time-averaged wavelet
power (right).

17



Figure S19: Phase coherence between room temperature fluctuations and mice behavioural data.
Mouse 5 is nearest to the sensor.

Figure S20: Phase coherence between room humidity fluctuations and mice behavioural data.
Mouse 5 is nearest to the sensor.

Wavelet phase coherence was performed between the temperature and humidity data and
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each mouse signal, using a lognormal wavelet and a frequency resolution parameter of 1, and
over all possible frequencies (2 minutes to ∼45 days). 60 AAFT surrogates are used. For
each mouse for both temperature and humidity, the absolute coherence was calculated by
subtracting the surrogate data. All of the significant results are plotted on the same figure, where
significant peaks correspond to coherence between the mice and the temperature (Fig. S19) and
humidity (Fig. S20). Mouse 5 has significant coherence with temperature and humidity at a
range of frequencies, and this may be due to the smaller distance between mouse 5 and the
temperature/humidity sensor, which may pick up the temperature and humidity of mouse 5.
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