Supplementary Materials

Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide

derivatives as novel inhibitors of SARS-CoV-2 main protease

Xiaodong Dou^{a,#}, Qi Sun^{b,#}, Guofeng Xu^{a,#}, Yameng Liu^a, Caifang Zhang^a, Bingding Wang^a, Yangbin Lu^b, Zheng Guo^b, Lingyu Su^a, Tongyu Huo^a, Xinyi Zhao^a, Chen Wang^a, Zhongtian Yu^b, Song Song^a, Liangren Zhang^a, Zhenming Liu^a, Luhua Lai^{b, c,*}, Ning Jiao^{a,*}

^aState Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
^bBNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
^cCenter for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

[#] These authors contributed equally to this work.

^{*} To whom correspondence should be addressed.

L. Lai: lhlai@pku.edu.cn; N. Jiao: jiaoning@pku.edu.cn

Figure Legends

Figure S1. The concentration-activity relationship for identified SARS-CoV-2 M^{pro}	inhibitorsS2
Figure S2. Predicted binding mode of compound F8-S43.	S3
Figure S3. Dose-response curves of the inhibition activity of F8-B6	S4
Figure S4. The inhibition of compounds F8-B6 and F8-B22 against Cathepsin L	S5
Table S1. The chemical structures and enzymatic activities of the 27 analogs of F8	S6
Table S2. Enzymatic activity and chemical structures of the 22 analogs of F8-S43	S9
NMR Spectra	S11

Figure S1. The concentration-activity relationship for identified SARS-CoV-2 M^{pro} inhibitors.

Figure S2. Predicted binding mode of compound **F8-S43**. (A) Superimposition of the crystal structure of SARS-CoV-2 M^{pro} (PDB ID: 7JU7) with compound **F8-S43**. (B) The binding modes of compound **F8-S43** with SARS-CoV-2 M^{pro} in the cartoon. Hydrogen bonds are represented by yellow lines. Images depicting the proposed binding modes were generated using PyMOL software.

Figure S3. Dose-response curves of the inhibition activity of **F8-B6** under different incubation times 5 min (A), 30 min (B), 180 min (C). (D) Dose-response curves of the inhibition activity of **F8-B6** in the presence or absence of DTT.

Figure S4. (A) The inhibition of Cathepsin L inhibitor **FF-FMK**. (B) The concentration-activity relationship for compounds **F8-B6** and **F8-B22** against Cathepsin L. Data are presented as geometric mean values of at least two independent runs.

	Left moti	$f_{R^{1}} = 0$		≻–R² Right motif	
		Core A	Core B		
	F8	, F8-S44 to F8-S65	F8-S66 to F8	-\$70	
	_	_ 1	- 2	Inhibition%	$IC_{50}\pm SD$
Compounds	Core	R ¹	\mathbb{R}^2	(50 µM) ^a	$(\mu M)^{a}$
Tideglusib			T	98.6	0.30 ± 0.02
F8	A	H_2N	3-СООН	65.0	21.28 ± 0.89
F8-S44	А		3-COOH, 4-Cl	< 20.0	N.T. ^{<i>b</i>}
F8-S45	A		3-СООН	28.2	N.T.
F8-S46	А		3-СООН, 4-ОН	< 20.0	N.T.
F8-S47	A		3-СООН	34.6	N.T.
F8-S48	A		3-СООН, 4-ОН	45.9	N.T.
F8-S49	А		3-NO ₂	< 20.0	N.T.
F8-S50	A		3-СООН, 4-Сl	< 20.0	N.T.
F8-S51	A	N N Y	4-NO ₂	21.3	N.T.
F8-S52	A	S N N	3-СООН	30.0	N.T.

Table S1. The chemical structures and enzymatic activities of the 27 analogs of F8.

F8-S53	A		2-COOH	< 20.0	N.T.
F8-S54	А	S N N O N N N N N N N N N N N N N N N N N	3-СООН	< 20.0	N.T.
F8-S55	А		3-СООН	< 20.0	N.T.
F8-S56	А		3-СООН	< 20.0	N.T.
F8-S57	А		3-COOH, 4-Cl	27.1	N.T.
F8-S58	А	F N-CO HN O	3-СООН	33.8	N.T.
F8-S59	A	HO O N V	3-СООН	28.5	N.T.
F8-S60	А		4-COOH	< 20.0	N.T.
F8-S61	А		3-СООН	30.3	N.T.
F8-S62	А		3-СООН	< 20.0	N.T.
F8-S63	A		3-COOH, 4-Cl	53.4	N.T.
F8-S64	A		3-СООН	24.2	N.T.

F8-S65	А		3-NO ₂	28.8	N.T.
F8-S66	В	но	NO ₂	< 20.0	N.T.
F8-S67	В		NO ₂	< 20.0	N.T.
F8-S68	В	- C H A	NO ₂	< 20.0	N.T.
F8-S69	В	F O	NO ₂	< 20.0	N.T.
F8-S70	В	to~>	NO ₂	< 20.0	N.T.

^a Data are presented as geometric mean values of at least two independent runs. ^b Not tested.

Left motif N N N R^2 Left motif				
Compounds	\mathbf{R}^1	R ²	Inhibition% (50 μ M) ^{<i>a</i>}	$\frac{\text{IC}_{50} \pm \text{SD}}{(\mu M)^a}$
Tideglusib			98.6	0.30 ± 0.02
F8-S43	Н		95.0	10.76 ± 0.48
F8-S43-S11	Н	Н	< 20.0	N.T. ^{<i>b</i>}
F8-S43-S12	Н	\checkmark	< 20.0	N.T.
F8-S43-S13	Н	\checkmark	< 20.0	N.T.
F8-S43-S14	Ме	V~/ ^N	< 20.0	N.T.
F8-S43-S15	Н		< 20.0	N.T.
F8-S43-S16	Н	√~~^Ń	< 20.0	N.T.
F8-S43-S17	Н	K Co	< 20.0	N.T.
F8-S43-S18	Н		< 20.0	N.T.
F8-S43-S19	Н	, CP or	< 20.0	N.T.
F8-S43-S20	Н		< 20.0	N.T.
F8-S43-S21	Н	of	< 20.0	N.T.
F8-S43-S22	Н		< 20.0	N.T.
F8-S43-S23	Н	Br	< 20.0	N.T.
F8-S43-S24	Н	Br	< 20.0	N.T.

 Table S2. Enzymatic activity and chemical structures of the 22 analogs of F8-S43.

F8-S43-S25	Н	î,	< 20.0	N.T.
F8-S43-S26	Н	° C	< 20.0	N.T.
F8-S43-S27	Н	O F	< 20.0	N.T.
F8-S43-S28	Н	CI CI	< 20.0	N.T.
F8-S43-S29	Н		< 20.0	N.T.
F8-S43-S30	Н	YNY NO2	< 20.0	N.T.
F8-S43-S31	Н	° C	< 20.0	N.T.
F8-S43-S32	Н		21.2	N.T.

^a Data are presented as geometric mean values of at least two independent runs. ^b Not ter	sted.
---	-------

NMR Spectra

¹³C NMR of compound **F8-S43** (100 MHz, DMSO-*d*₆)

200 220 240 260 280 300 320 340 360 380 400 420 440 460 4 HRMS of compound **F8-A1** (ESI)

HRMS of compound **F8-A3** (ESI)

¹⁹F NMR of compound **F8-A7** (376 MHz, DMSO-*d*₆)

¹⁹F NMR of compound **F8-A8** (376 MHz, DMSO-*d*₆)

HRMS of compound F8-A9 (ESI)

¹H NMR of compound **F8-B4** (400 MHz, DMSO-*d*₆)

HRMS of compound F8-B11 (ESI)

HRMS of compound F8-B15 (ESI)

¹⁹F NMR of compound **F8-B17** (376 MHz, DMSO-*d*₆)

¹H NMR of compound **F8-B20** (400 MHz, DMSO-*d*₆)

HRMS of compound F8-B20 (ESI)

S57

HRMS of compound **F8-B22** (ESI)

¹³C NMR of compound **F8-C3** (100 MHz, DMSO- d_6)

HRMS of compound F8-C4 (ESI)