Supplementary Information for

Direct interaction of a chaperone-bound type III secretion substrate with the export gate

Dominic Gilzer¹, Madeleine Schreiner¹, Hartmut H. Niemann^{1*}

¹ Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615 Bielefeld

* Corresponding author: <u>hartmut.niemann@uni-bielefeld.de</u>

Supplementary Tables

Supplementary Table 1. Data collection and refinement statistics. Values in parentheses are for the outer resolution shell.

	YscX ₅₀ :YscY	YscX ₃₂ :YscY	YscV _c X ₃₂ Y	
	(PDB: 7QIH)	(PDB: 7QII)	(PDB: 7QIJ)	
Diffraction images doi	10.15785/SBGRID/905	10.15785/SBGRID/907		
Data Collection				
Beamline	BESSY BL14.2	SLS X06SA	DESY P13	
Wavelength / Å	0.9184	1.0000	0.9762	
Space Group	P21212	14122	P2 ₁ 2 ₁ 2 ₁	
Unit Cell				
a, b, c / Å	41.55, 140.83, 59.88	179.27, 179.27, 41.07	143.46, 324.92, 369.38	
Resolution / Å	45.62-1.92 (2.03-1.92)	42.25-3.29 (3.49-3.29)	49.83-4.10 (4.21-4.10)	
R _{meas}	0.102 (2.941)	0.130 (1.255)	0.113 (1.166)	
Ι/σ(Ι)	16.40 (0.78)	14.55 (2.25)	11.15 (2.33)	
<i>CC</i> _{1/2}	1.000 (0.446)	0.999 (0.773)	0.999 (0.791)	
Completeness	0.997 (0.980)	0.998 (0.993)	0.996 (0.998)	
Multiplicity	12.78 (11.29)	12.72 (13.04)	5.20 (5.50)	
Wilson B-factor / Å ²	39.51	111.39	163.79	
Refinement				
No. reflections	26 281	5 357	135 236	
No. reflections in free	1 384	535	6 767	
R _{work}	0.2206	0.2296	0.3054	
R _{free}	0.2624	0.2831	0.3251	
No. atoms in AU				
Total	2 977	1 536	73 488	
Protein	2 907	1 535	73 488	
Water	70	1	0	
Average B-factor / Å ²				
Total	57.27	119.02	195.13	
Protein	57.46	119.05	195.13	
Water / Ions	49.37	65.33	-	
r.m.s.d.				
Bond lengths / Å	0.002	0.012	0.002	
Bond angles / °	0.39	1.77	1.77 0.60	
Ramachandran				
Favored / %	97.69	95.12	90.90	
Allowed / %	2.31	3.66	8.92	
Outlier / %	0.00	1.22	0.18	
Rotamer Outlier / %	0.32	0.65	2.63	

Supplementary Table 2. Retention volume and apparent molecular masses calculated from analytical gel filtration. Retention volumes of peaks in size exclusion chromatograms (Fig. 6b) were attributed to proteins or protein complexes based on the apparent molecular mass calculated using a calibration run. Theoretical molecular masses of potential species are listed as well.

Retention volume /	Apparent <i>M_r</i> / kDa	Assigned species	Theoretical <i>M</i> _r / kDa			
mL						
10 μM YscV _C						
14.93	57.7	YscV _c dynamic	40.5 per monomer			
10 μM YscX ₃₂ Y						
13.81	100.1	(YscX ₃₂) ₄ (YscY) ₄	99.2			
15.17	51.3	(YscX ₃₂) ₂ (YscY) ₂	49.6			
16.60	25.4	(YscX ₃₂) ₁ (YscY) ₁	24.8			
10 μM YscV _c + 10 μM YscX ₃₂ Y						
9.88	692.5	(YscV _C) ₉ (YscX ₃₂) ₉ (YscY) ₉	587.7			
13.72	104.6	YscV _C X ₃₂ Y dynamic				
14.93	57.7	YscV _c dynamic	40.5 per monomer			
		$(YscV_C)_1(YscX_{32})_1(YscY)_1$	65.3			
16.43	27.6	$(YscX_{32})_1(YscY)_1$	24.8			

Supplementary Table 3. Plasmids and constructs used in this study. All *Yersinia* genes were obtained by amplifying from the *Yersinia enterocolitica* pYVe227 virulence plasmid and sub-cloning using the denoted restriction sites. Mutations and deletions were generated via 'Round-the-horn (RTH) mutagenesis from previous plasmids. MBP = Maltose-binding protein; TEV = Tobacco etch virus protease cleavage site; fl = full-length.

Plasmid	Protein	Construct	Construct after	Restriction sites
			TEV digest	used
pETM-40_ <i>yscx</i>	YscX _{fl}	MBP-TEV-YscX	GAMG-YscX	Ncol, Notl
pETM-40_ <i>yscx</i> 32-122	YscX ₃₂	MBP-TEV-YscX ₃₂₋₁₂₂	GAMG-YscX ₃₂₋₁₂₂	RTH
pETM-40_ <i>yscx</i> 50-122	YscX ₅₀	MBP-TEV-YscX ₅₀₋₁₂₂	GAMG-YscX ₅₀₋₁₂₂	RTH
pETM-40_ <i>yscx</i> 32-110	YscX ₃₂₋₁₁₀	MBP-TEV-YscX ₃₂₋₁₁₀	GAMG-YscX ₃₂₋₁₁₀	RTH
pETM-40_ <i>yscx</i> 50-110	YscX ₅₀₋₁₁₀	MBP-TEV-YscX ₅₀₋₁₁₀	GAMG-YscX ₅₀₋₁₁₀	RTH
pACYCDuet-1_yscy	YscY	MG-His ₆ -G-YscY ₂₋₁₁₄	-	Ncol, Notl
pACYCDuet-	YscY;	MG-His ₆ -G-YscY ₂₋₁₁₄	-	Ncol, Notl, Ndel,
1_yscy_yscv356	YscV _C	M-YscV ₃₅₆₋₇₀₄	-	Xhol
pACYCDuet-	YscY;	MG-His ₆ -G-YscY ₂₋₁₁₄	-	RTH
1_ <i>yscy_yscv</i> 356_R551A	$YscV_{C}^{R551A}$	M-YscV ₃₅₆₋₇₀₄ ^{R551A}	-	
pACYCDuet-	YscY;	MG-His ₆ -G-YscY ₂₋₁₁₄	-	RTH
1_ <i>yscy_yscv</i> 356_R551E	$YscVc^{R551E}$	M-YscV ₃₅₆₋₇₀₄ ^{R551E}	-	
pETM-11_ <i>yscv</i> 356	YscV _C	MK-His ₆ -TEV-	GAM-YscV ₃₅₆₋₇₀₄	Ncol, Notl
		YscV ₃₅₆₋₇₀₄		
pETM-11_ <i>yscv</i> 356-513	$YscV_{SD12}$	MK-His ₆ -TEV-	GAM-YscV ₃₅₆₋₅₁₃	RTH
		YscV ₃₅₆₋₅₁₃		

Supplementary Figures

Supplementary Fig. 1. Models of YscX and YscY predicted by different programs. a Models of YscX predicted by AlphaFold 2 (blue), RoseTTAfold (magenta), and tFold (orange) align well for helices $\alpha 2$ and $\alpha 3$. The binding helix was predicted to either fold back or point away. Note that for RoseTTAfold and tFold, residues 50-122 were used, while AlphaFold was given the sequence only to residue 110. The model generated by I-TASSER does not align with the other three (not shown). **b** Models of YscY predicted by AlphaFold 2 (blue), RoseTTAfold (magenta), tFold (orange), and I-TASSER (green) all exhibit the same tandem-TPR fold. **c** Superimposed model of the deposited YscX₅₀:YscY structure (chain A and B, red and cyan) with the full-length AlphaFold 2 prediction of the complex. The models align well, especially for YscY (r.m.s.d. of 1.308 Å), with minor differences in $\alpha 3$ of YscX (r.m.s.d. of 2.400 Å). The N-terminus of YscX does not adopt a discernable fold in the predicted structure.

Supplementary Fig. 2. Comparison of B-factors in the two YscX:YscY structures. Blue color and thin tubes represent small B-factors, red and large tubes high B-factors. **a** YscX₅₀:YscY chain A and chain B. **b** YscX₅₀:YscY chain C and chain D. **c** YscX₃₂:YscY.

Supplementary Fig. 3. Electron density for the ternary YscV_cX₃₂Y complex. The $2mF_0$ -D F_c (1 σ , blue) and mF_0 -D F_c (3 σ , green) shown were calculated after refinement with the placed YscV_c model but

prior to placement of any of the 18 YscXY complexes. The final model is superimposed as ribbon. Density is presented around (a) SD1 (red), (b) SD2 (yellow), (c) SD3 (green), (d) SD4 (blue), and (e+f) the YscXY complex (cyan and dark red). The TPRs of YscY and the helices of YscX show clear density supporting their placement on the outside of the nonameric $YscV_c$ ring.

Supplementary Fig. 4. Packing of the YscV_cX₃₂Y crystal. Views along the (a) shortest, (b) middle and (c) longest axes of the unit cell are shown with the molecules portrayed as their C α backbone. Almost all contact outside the double nonamer takes place on the outside of the ring with large solvent channels separating the membrane-proximal faces of adjacent rings.

Supplementary Fig. 5. Anomalous difference density of a selenomethionine derivative of YscV_cX₃₂Y. The anomalous difference density (opaque green, 3 σ) of selenomethionine was employed to verify the sequence register of YscV_c in the ternary complex structure. Due to a lack of non-start Met residues, this approach could not be employed for YscX and YscY. Exemplary density for (a) M525, M562, M545, and M569 (all SD3) and (b) M420 of SD1, which folds onto the central β -sheet.

Supplementary Fig. 6. Superposition of chains in the YscV_cX₃₂Y structure. All chains were aligned using (a-c) YscV_c, (d-e) YscX₃₂, or (f-g) His₆-YscY. For simplicity, the protein chains in the model were arranged so that every chain xA is a YscV_c molecule, xB is YscX₃₂, and xC is YscY with x being a letter between A and R. Furthermore, chains xA, xB, and xC always produce a heterotrimeric complex. Chains Ay to Jy (y = A, B, or C for each protein species) constitute one nonameric ring, and chains Ky to Ry make up the second.

Supplementary Fig. 7. Minor movements within YscV_c upon YscX:YscY binding. The structures of YscV_c (grey shades, PDB: 7ALW) and YscV_cX₃₂Y (orange shades, cyan, and red) are superimposed with an r.m.s.d. of 1.4 Å using the nonameric ring. **a** Binding of YscY TPR1 to SD4 of YscV induces a shift of the loop between α 12 and β 9 away from YscY, possibly for steric reasons. **b** Binding of the α 3 helix of YscX between YscV protomers induces only small rearrangements.

Supplementary Fig. 8. Analytical size exclusion chromatography of YscV_c, YscX₃₂Y, and all three proteins mixed. a A replicate of the three runs shown in Fig. 6b, where 10 μM YscV_c (blue), YscX₃₂Y (black), or both (red) combined were loaded. **b** The three runs are shown separately with analyzed fractions highlighted as grey boxes. Silver-stained SDS-PAGE was used to identify contents of the individual peaks. For comparison, the two proteins were also loaded as references. The contamination appearing as a band at roughly 66 kDa was introduced during the gel filtration runs, as it does not appear in the reference lanes of purified protein taken from the same aliquot as the gel filtration sample. Due to the low protein concentration in collected fractions, YscX₃₂ and YscY cannot be seen on the gel but the latter was detected via anti-His Western blot (lower panel) using mouse monoclonal anti polyHistidine-Peroxidase antibody A7058 (Sigma-Aldrich; RRID:AB_258326). The figure consists of

the lighter chemiluminescence image used to visualize the peroxidase-coupled antibody and the darker incident light (epi-white) image used to visualize the prestained marker bands in the middle. Source data are provided as a Source Data file. The results of the size exclusion chromatography were reproduced independently four times. An accompanying Western blot was carried out three times to validate the presence of His₆-YscY.