Supplemental Information for

Membrane curvature regulates the spatial distribution of bulky glycoproteins

Chih-Hao Lu^a, Kayvon Pedram^{a,b}, Ching-Ting Tsai^a, Taylor Jones IV^a, Xiao Li^{a,c}, Melissa Nakamoto^a, Carolyn R. Bertozzi^{a,d,e}, and Bianxiao Cui^{a,*}

^aDepartment of Chemistry, Stanford University, Stanford, CA, USA, 94305 ^bJanelia Research Campus, Howard Hughes Medical Institute, VA, USA, 20147 (Current address) ^cSchool of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China (Current address) ^dStanford ChEM-H, Stanford University, Stanford, CA, USA, 94305 ^eHoward Hughes Medical Institute, Stanford University, Stanford, USA, CA 94305

^{*} To whom should be addressed: Bianxiao Cui, E-mail: <u>bcui@stanford.edu</u>

	Normalized nanobar end-to-side ratio - U2OS cells on 200-nm nanobars									
Target	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	n (# nanobars)	Corresponding figure				
α-AP2	2.043	0.647	0.138	22	290					
F-actin	1.384	0.371	0.085	19	157					
CAAX	1.000	0.038	0.003	170	9092					
MUC1ΔCT-0TR	1.028	0.047	0.008	38	1757	Fig. 1J				
MUC1ΔCT-10TR	0.999	0.042	0.006	50	2097					
MUC1ΔCT-21TR	0.900	0.047	0.007	48	2202					
MUC1ΔCT-42TR	0.889	0.043	0.005	63	3415					

Supplementary Table 1. Statistical analysis of normalized nanobar end-to-side ratios on 200-nm nanobar arrays for U2OS cells.

	Normalized pillar-to-cytosolic background ratio - HeLa cells on 200-nm nanopillars									
Target	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	n (# nanopillars)	Corresponding figure				
α-MUC1	0.899	0.188	0.036	27	2705	Fig. 1N & Suppl.				
CellMask	1.000	0.158	0.032	25	3647	Fig. 4C				
α-AP2	1.624	0.315	0.067	22	1734	Fig. 1N				
F-actin	1.250	0.159	0.046	12	2943	Suppl. Fig. 4C				

В

Α

	Normali	Normalized pillar-to-cytosolic background ratio - U2OS cells on 200-nm nanopillars									
Target	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	n (# nanopillars)	Corresponding figure					
MUC1∆CT- 42TR	0.807	0.102	0.025	16	1576	Fig. 1O, 4G, 4I & Suppl. Fig. 5E					
MUC1ΔCT- 0TR	1.148	0.209	0.044	23	1853	Fig. 1O					
CAAX	1.000	0.196	0.026	59	5720	Fig. 1O, 4G, 4I & Suppl. Fig. 5E					
MUC1∆CT- 42TR mutant	0.909	0.141	0.039	13	728	Fig. 4G					
MUC1∆CT- 42TR +StcE	0.978	0.2054	0.044	22	2361	Fig. 4I					
α-AP2	1.351	0.175	0.044	16	1735	Fig. 1O					
F-actin	1.228	0.181	0.047	15	1252	Suppl. Fig. 5E					

Supplementary Table 2. Statistical analysis of normalized pillar-to-cytosolic background ratios on 200-nm nanopillar arrays. (A) HeLa cells; (B) U2OS cells.

Α

	Inner angle	Turpo of rotio		Normalize	d intensity rati	o - U2OS cells	s on gradient na	inoXs
Target	of NanoX (deg)	(Type of curvature)	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	n (# nanoXs)	Corresponding figure
		End-to-side (+)	0.885	0.064	0.017			
	30	Inner-to-side_1 (-)	0.986	0.112	0.029	15	77	Fig. 2F
		Inner-to-side_2 (-)	0.978	0.154	0.040			
		End-to-side (+)	0.910	0.117	0.029			
	45	Inner-to-side_1 (-)	1.083	0.194	0.048	16	78	Not shown
		Inner-to-side_2 (-)		0.088	0.022			
MUC1	60	End-to-side (+)	0.921	0.124	0.034		80	Fig. 2F
ΔCT-		Inner-to-side_1 (-)	1.072	0.131	0.036	13		
421R		Inner-to-side_2 (-)	1.107	0.193	0.053			
		End-to-side (+)	0.869	0.111	0.032			
	75	Inner-to-side_1 (-)	1.104	0.179	0.052	12	68	Not shown
		Inner-to-side_2 (-)	1.030	0.129	0.037			
		End-to-side (+)	0.821	0.138	0.038		70	Fig. 2F
	90	Inner-to-side_1 (-)	1.076	0.129	0.036	13		
		Inner-to-side_2 (-)	1.079	0.128	0.035			

В

-	Inner angle	Turne of ratio		Normalize	d intensity rati	o - U2OS cells	on gradient na	noXs
Target	of NanoX (deg)	(Type of curvature)	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	n (# nanoXs)	Corresponding figure
		End-to-side (+)	0.978	0.064	0.016			
30	30	Inner-to-side_1 (-)	0.975	0.064	0.016	17	89	Suppl. Fig. 8A
		Inner-to-side_2 (-)	0.998	0.108	0.026			
45		End-to-side (+)	0.985	0.118	0.026			
	45	Inner-to-side_1 (-)	1.066	0.111	0.025	20	103	Not shown
		Inner-to-side_2 (-)	1.058	0.095	0.021			
MUC1		End-to-side (+)		0.099	0.025			
	60	Inner-to-side_1 (-)	1.018	0.107	0.027	16	84	Suppl. Fig. 8A
UIR		Inner-to-side_2 (-)	0.971	0.098	0.024			
		End-to-side (+)	0.974	0.101	0.038			
	75	Inner-to-side_1 (-)	1.023	0.056	0.021	7	34	Not shown
		Inner-to-side_2 (-)	0.944	0.066	0.025			
	90	End-to-side (+)	1.047	0.071	0.029			Suppl. Fig. 8A
		Inner-to-side_1 (-)	1.007	0.054	0.022	6	29	
		Inner-to-side_2 (-)	1.028	0.109	0.044			

	Inner angle	Tupo of rotio		Normalized	d intensity rati	o - U2OS cells	on gradient na	noXs
Target	of NanoX (deg)	(Type of curvature)	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	n (# nanoXs)	Corresponding figure
		End-to-side (+)	1.164	0.209	0.036			
	30	Inner-to-side_1 (-)	0.882	0.125	0.021	34	232	Fig. 2G
45		Inner-to-side_2 (-)	0.969	0.155	0.027			
		End-to-side (+)	1.207	0.214	0.036		237	Not shown
	45	Inner-to-side_1 (-)	0.915	0.147	0.024	36		
		Inner-to-side_2 (-)	0.926	0.137	0.023			
		End-to-side (+)	1.315	0.287	0.047		240	Fig. 2G
F-actin	60	Inner-to-side_1 (-)	0.981	0.143	0.024	37		
		Inner-to-side_2 (-)	0.979	0.096	0.016			
		End-to-side (+)	1.329	0.398	0.078			
	75	Inner-to-side_1 (-)	1.012	0.135	0.026	26	174	Not shown
		Inner-to-side_2 (-)	1.015	0.137	0.027			
		End-to-side (+)	1.266	0.271	0.053			
	90	Inner-to-side_1 (-)	0.950	0.169	0.033	26	148	Fig. 2G
		Inner-to-side_2 (-)	0.961	0.172	0.034			

Supplementary Table 3. Statistical analysis of normalized intensity ratios on gradient nanoX arrays for U2OS cells. (A) $MUC1-\Delta CT_42TR$ -GFP; (B) $MUC1-\Delta CT_0TR$ -GFP; (C) F-actin.

	Colocalization analysis (Pearson's correlation coefficient) with IRSp53 - U2OS cells							
Target	Mean	SD	SEM (SD/√ <u>N</u>)	N (# cells)	Corresponding figure			
MUC1ΔCT-0TR	0.509	0.118	0.024	24	Fig. 3E			
MUC1ACT-10TR	0.475	0.124	0.030	17				
MUC1ΔCT-21TR	0.506	0.127	0.028	20	Fig. 3E & 4E			
MUC1ΔCT-42TR	0.418	0.089	0.022	16				
MUC1∆CT-10TR mutant	0.490	0.133	0.050	7				
MUC1∆CT-21TR mutant	0.437	0.127	0.042	9	Fig. 4E			
MUC1∆CT-42TR mutant	0.478	0.166	0.033	25				

В

	Colocaliza	tion analysis (P	earson's correlatio	on coefficient) with	n FBP17 - U2OS cells
Target	Mean	SD	SEM (SD/√ <u>N</u>)	N (# cells)	Corresponding figure
MUC1ΔCT-0TR	0.455	0.099	0.021	22	Fig. 3E
MUC1ΔCT-10TR	0.316	0.139	0.025	30	
MUC1ΔCT-21TR	0.221	0.096	0.019	25	Fig. 3E & 4F
MUC1ΔCT-42TR	0.252	0.086	0.017	27	
MUC1∆CT-10TR mutant	0.382	0.107	0.020	28	
MUC1∆CT-21TR mutant	0.417	0.113	0.025	20	Fig. 4F
MUC1∆CT-42TR mutant	0.340	0.122	0.021	33	

С

	Colocalization analysis (Pearson's correlation coefficient) with $\alpha\text{-MUC1}$ - HeLa cells								
Target	Mean	Mean SD		N (# cells)	Corresponding figure				
IRSp53	0.250	0.074	0.030	6	Eig 2E				
FBP17	0.115	0.049	0.013	14	- riy. 5r				

D _

	Colocalization analysis (Pearson's correlation coefficient) with MUC1(FL) - U2OS cells								
Target	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	Corresponding figure				
IRSp53	0.535	0.101	0.020	26	- Suppl Fig 12C				
FBP17	0.343	0.085	0.014	35	- Suppi. Fig. 12C				

A

Supplementary Table 4. Statistical analysis of degree of colocalization (Pearson's correlation coefficient). (A) between IRSp53-mCherry and 7 different MUC1- Δ CT-GFP in U2OS cells; (B) between mCherry-FBP17 and 7 different MUC1- Δ CT-GFP in U2OS cells; (C) between IRSp53-mCherry or mCherry-FBP17 with α -MUC1 in HeLa cells; (D) between IRSp53-mCherry or mCherry-FBP17 with full-length MUC1-GFP in U2OS cells.

A

			Normal	ized intensit	y ratio – SLB	with 30% DGS	-Ni-NTA on gra	dient nanoXs
Target of NanoX (deg)	Type of ratio (Type of curvature)	Mean	SD	SEM (SD/√N)	N (# Fields of view)	n (# nanoXs)	Corresponding figure	
		End-to-side (-)	1.143	0.109	0.026			
	30	Inner-to-side_1 (+)	0.896	0.055	0.013	18	280	Fig. 5D
45		Inner-to-side_2 (+)	0.918	0.067	0.018			
		End-to-side (-)	1.115	0.088	0.020			
	45	Inner-to-side_1 (+)	0.874	0.062	0.014	19	288	Not shown
		Inner-to-side_2 (+)	0.899	0.093	0.021	•		
		End-to-side (-)	1.122	0.093	0.021		302	Fig. 5D
Podxl	60	Inner-to-side_1 (+)	0.874	0.061	0.014	19		
		Inner-to-side_2 (+)	0.848	0.083	0.019	•		
		End-to-side (-)	1.106	0.107	0.025			
	75	Inner-to-side_1 (+)	0.897	0.075	0.017	19	307	Not shown
-		Inner-to-side_2 (+)	0.864	0.081	0.019			
		End-to-side (-)	1.111	0.112	0.026			Fig. 5D
	90	Inner-to-side_1 (+)	0.858	0.069	0.016	18	263	
		Inner-to-side_2 (+)	0.895	0.071	0.017	•		

В__

			Normal	ized intensit	y ratio – SLB	with 30% DGS	-Ni-NTA on gra	dient nanoXs
Target of NanoX (deg)	Type of ratio (Type of curvature)	Mean	SD	SEM (SD/ \sqrt{N})	N (# Fields of view)	n (# nanoXs)	Corresponding figure	
		End-to-side (-)	1.009	0.080	0.021			
	30	Inner-to-side_1 (+)	1.054	0.172	0.044	15	210	Fig. 5E
		Inner-to-side_2 (+)	1.009	0.081	0.021			
		End-to-side (-)	1.007	0.096	0.025			
	45	Inner-to-side_1 (+)	1.023	0.145	0.037	15	245	Not shown
		Inner-to-side_2 (+)	1.003	0.082	0.021			
		End-to-side (-)	0.971	0.086	0.022			
Degly. Podxl	60	Inner-to-side_1 (+)	1.005	0.111	0.022	15	244	Fig. 5E
		Inner-to-side_2 (+)	1.005	0.086	0.020			
		End-to-side (-)	0.975	0.135	0.035			
	75	Inner-to-side_1 (+)	1.020	0.122	0.031	15	246	Not shown
		Inner-to-side_2 (+)	0.992	0.095	0.024			
		End-to-side (-)	0.961	0.078	0.020	_		
	90	Inner-to-side_1 (+)	0.985	0.164	0.042	15	247	Fig. 5E
		Inner-to-side_2 (+)	0.994	0.157	0.040	- 		

	Inner angle		Normal	ized intensit	y ratio – SLB	with 10% DGS	-Ni-NTA on gra	dient nanoXs
Target	of NanoX (deg)	Type of ratio (Type of curvature)	Mean	SD	SEM (SD/√N)	N (# Fields of view)	n (# nanoXs)	Corresponding figure
		End-to-side (-)	1.073	0.059	0.018			
	30	Inner-to-side_1 (+)	1.148	0.180	0.054	11	156	Fig. 5G
		Inner-to-side_2 (+)	1.010	0.102	0.031	-		
		End-to-side (-)	1.085	0.057	0.017	_	174	Not shown
	45	Inner-to-side_1 (+)	1.191	0.156	0.047	11		
		Inner-to-side_2 (+)	1.021	0.080	0.024	-		
		End-to-side (-)	1.092	0.095	0.029		184	Fig. 5G
Podxl	60	Inner-to-side_1 (+)	1.111	0.130	0.039	- 11		
		Inner-to-side_2 (+)	0.996	0.065	0.020	-		
		End-to-side (-)	1.082	0.149	0.045			
	75	Inner-to-side_1 (+)	1.153	0.106	0.032	11	176	Not shown
		Inner-to-side_2 (+)	1.050	0.074	0.022	-		
		End-to-side (-)	1.049	0.060	0.018			Fig. 5G
	90	Inner-to-side_1 (+)	1.102	0.093	0.028	11	180	
	-	Inner-to-side_2 (+)	1.133	0.082	0.025	-		

D

			Normal	ized intensit	y ratio – SLB	with 10% DGS	-Ni-NTA on gra	dient nanoXs
Target	of NanoX (deg)	Type of ratio (Type of curvature)	Mean	SD	SEM (SD/√N)	N (# Fields of view)	n (# nanoXs)	Corresponding figure
		End-to-side (-)	1.093	0.077	0.026			
	30	Inner-to-side_1 (+)	1.065	0.166	0.055	9	125	Fig. 5H
		Inner-to-side_2 (+)	1.021	0.055	0.018			
		End-to-side (-)	1.076	0.061	0.020			
	45	Inner-to-side_1 (+)	1.061	0.095	0.032	9	125	Not shown
		Inner-to-side_2 (+)	0.977	0.070	0.023			
		End-to-side (-)	1.079	0.080	0.027			
Degly. Podxl	60	Inner-to-side_1 (+)	0.999	0.125	0.042	9	130	Fig. 5H
		Inner-to-side_2 (+)	0.966	0.077	0.026			
		End-to-side (-)	1.115	0.061	0.020			
	75	Inner-to-side_1 (+)	0.983	0.133	0.044	9	145	Not shown
		Inner-to-side_2 (+)	0.951	0.111	0.037			
		End-to-side (-)	1.063	0.085	0.028	_	147	Fig. 5H
	90	Inner-to-side_1 (+)	1.009	0.171	0.057	9		
		Inner-to-side_2 (+)	1.012	0.202	0.067			

С

Supplementary Table 5. Statistical analysis of normalized intensity ratios on gradient nanoX arrays for the SLB experiments. (A) Podocalyxin on 30% DGS-Ni-NTA-doped lipid bilayers; (B) Deglycosylated podocalyxin on 30% DGS-Ni-NTA-doped lipid bilayers; (C) Podocalyxin on 10% DGS-Ni-NTA-doped lipid bilayers; (D) Deglycosylated podocalyxin on 10% DGS-Ni-NTA-doped lipid bilayers.

А											
		Timo	Endocytosis analysis (Anti- α -GFP intensity) - U2OS cells on flat surfaces								
	Target	(min)	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	Corresponding figure				
		15	182.3	94.8	8.58	122					
	MUC1ΔCT-0TR	30	273.5	198.7	19.0	110	_				
		60	500.1	207.6	22.9	82					
		15	179.4	69.3	8.34	69					
	MUC1ACT-10TR	30	215.2	111.2	11.4	95	Fig. 6D				
		60	269.1	133.8	10.9	150	_				
		15	166.2	81.7	9.19	79					
	MUC1ΔCT-42TR	30	132.4	65.7	4.71	195	_				
		60	153.3	85.6	5.77	220					

В

	Time (min)	e Endocytosis analysis (Anti-α-GFP intensity) - U2OS cells on 200-nm nanopillars								
Target		Mean	SD	SEM (SD/√N)	N (# cells)	Corresponding figure				
	15	270.3	101.5	13.0	61					
MUC1ΔCT-0TR	30	468.5	247.6	26.0	91					
	60	769.8	335.4	30.8	119	_				
	15	200.2	69.6	9.14	58	_				
MUC1ΔCT-10TR	30	320.8	162.7	21.0	60	Fig. 6E				
	60	432.2	208.5	15.9	171	_				
	15	176.2	88.3	9.87	80	_				
MUC1ΔCT-42TR	30	151.5	73.9	5.46	183					
	60	174.2	82.6	6.28	173	_				

С

Target		Endocytosis analysis (Anti-α-GFP intensity) - U2OS cells after 30 min								
	Substrate	Mean	SD	SEM (SD/ \sqrt{N})	N (# cells)	Corresponding figure				
MUC1ACT-	Flat	216.2	105.7	5.39	385					
+StcE	Nanopillar	303.1	117.2	9.73	145	Fig. 6E				
MUC1∆CT- 42TR mutant	Flat	258.9	180.9	11.0	271	- гіу. ог				
	Nanopillar	280.7	182.8	11.5	254	_				

Supplementary Table 6. Statistical analysis of MUC1 endocytosis levels in U2OS cells. (A) 3 different MUC1- Δ CT-GFP on flat surfaces; (B) 3 different MUC1- Δ CT-GFP on 200-nm nanopillar arrays; (C) StcE-treated MUC1_42TR-GFP or MUC1_42TR-GFP triple mutant on either flat surfaces or 200-nm nanopillar arrays.

1	٨
r	٦

	Nanobar	Normalized nanobar end-to-side intensity ratio - U2OS cells on gradient nanobars								
Target	width (nm)	Mean	SD	SEM (SD/√N)	N (# cells)	n (# nanobars)	Corresponding figure			
	200	1.055	0.091	0.019	23	180				
	300	1.074	0.108	0.026	17	120				
	400	1.083	0.108	0.019	32	262				
	500	1.042	0.105	0.023	20	171				
	600	1.058	0.120	0.023	27	217				
MUC1	700	1.054	0.101	0.022	21	181				
∆CT-0TR	800	1.060	0.133	0.027	24	189	Fig. 75			
	900	1.025	0.115	0.029	16	125				
	1000	1.073	0.138	0.026	28	242				
	1200	1.013	0.105	0.025	17	143				
	1600	1.001	0.054	0.014	16	136				
	2000	1.034	0.104	0.028	14	125				

В

Target	Nanobar	Normaliz	zed nanobar	end-to-side int	ensity ratio - U	2OS cells on grad	lient nanobars
	width (nm)	Mean	SD	SEM (SD/√N)	N (# cells)	n (# nanobars)	Corresponding figure
	200	1.043	0.109	0.029	14	127	
	300	1.017	0.107	0.048	5	39	
	400	1.054	0.199	0.041	24	221	
	500	1.048	0.128	0.036	13	153	0
	600	1.048	0.234	0.046	26	208	
MUC1	700	0.987	0.074	0.023	10	109	
<u>10</u> ТР	800	1.017	0.107	0.020	29	281	Suppl. Fig. 519A
	900	1.006	0.114	0.031	14	187	
	1000	1.029	0.097	0.018	30	292	
-	1200	1.020	0.144	0.032	20	138	
	1600	1.027	0.102	0.025	17	116	
	2000	1.024	0.085	0.027	10	82	

С													
_		Nanobar	Normaliz	Normalized nanobar end-to-side intensity ratio - U2OS cells on gradient nanobars									
	Target	width (nm)	Mean	SD	SEM (SD/√N)	N (# cells)	n (# nanobars)	Corresponding figure					
		200	0.934	0.054	0.013	17	153						
		300	0.936	0.037	0.014	7	51						
		400	0.973	0.068	0.014	24	178	_					
		500	0.958	0.040	0.016	6	54						
		600	0.958	0.073	0.016	22	148	_					
	MUC1	700	0.963	0.076	0.029	7	65	- Suppl Eig S10P					
	21TR	800	0.962	0.075	0.016	22	175	- Suppi. Fig. S19B					
		900	0.963	0.091	0.029	10	96	_					
		1000	0.947	0.057	0.013	18	137						
		1200	0.976	0.070	0.017	17	117	_					
		1600	0.996	0.104	0.028	14	105	_					
_		2000	0.985	0.054	0.016	12	85	-					

D

	Nanobar	Normaliz	Normalized nanobar end-to-side intensity ratio - U2OS cells on gradient nanobars								
Target	width (nm)	Mean	SD	SEM (SD/√N)	N (# cells)	n (# nanobars)	Corresponding figure				
	200	0.895	0.115	0.018	38	407					
	300	0.945	0.062	0.015	18	165					
	400	0.941	0.131	0.023	34	286					
	500	0.922	0.081	0.023	13	109					
	600	0.916	0.103	0.016	41	341					
MUC1	700	0.928	0.065	0.017	14	125					
42TR	800	0.913	0.101	0.018	31	245	Fig. 71				
	900	0.932	0.070	0.015	21	177					
	1000	0.945	0.122	0.019	41	325					
	1200	0.946	0.128	0.027	23	210					
	1600	1.006	0.049	0.011	19	171					
	2000	1.010	0.085	0.019	19	166					

Е											
-		Nanobar width (nm)	Normalized nanobar end-to-side intensity ratio - U2OS cells on gradient nanobars								
	Target		Mean	SD	SEM (SD/√N)	N (# cells)	n (# nanobars)	Corresponding figure			
-		200	1.022	0.064	0.015	18	159				
		300	1.042	0.099	0.038	7	71	-			
		400	1.051	0.070	0.017	17	149				
		500	1.074	0.062	0.025	6	70	-			
		600	1.045	0.069	0.016	19	152	-			
	MUC1 ΔCT-	700	1.068	0.091	0.032	8	42	- Suppl Fig S10C			
	42TR +StcF	800	1.052	0.071	0.016	19	162	- Suppi. Fig. S19C			
	OloL	900	1.043	0.075	0.025	9	69	-			
		1000	1.041	0.066	0.015	18	146	-			
		1200	1.032	0.055	0.021	7	64	-			
		1600	1.024	0.047	0.015	10	86	-			
		2000	1.027	0.056	0.015	14	138	-			

F

	Nanobar	Normaliz	zed nanobar	end-to-side int	ensity ratio - U	2OS cells on grad	lient nanobars
Target	width (nm)	Mean	SD	SEM (SD/√N)	N (# cells)	n (# nanobars)	Corresponding figure
	200	0.986	0.075	0.013	36	235	
	300	1.022	0.118	0.025	23	138	-
	400	1.017	0.094	0.015	37	250	-
	500	0.991	0.086	0.018	23	129	-
	600	0.972	0.072	0.013	29	168	-
MUC1 ΔCT-	700	0.978	0.058	0.014	18	94	Suppl Fig 640D
42TR mutant	800	0.964	0.077	0.014	30	170	Suppl. Fig. S19D
matant	900	0.995	0.089	0.017	26	143	-
	1000	1.001	0.085	0.015	33	208	-
	1200	0.969	0.025	0.009	8	58	-
	1600	1.013	0.067	0.017	16	130	-
	2000	1.015	0.075	0.020	14	107	-

Supplementary Table 7. Statistical analysis of normalized nanobar end-to-side ratios on gradient nanobar arrays for U2OS cells.

14

Protein encoded	Type of DNA fragments	PCR Template	DNA primer sequence	PCR product length (bp)
(These three plasmids share the same vector)	LincorVector	pPB_Muc1_0	GACCGAGGTGACATCCTGTC	0454
	Linear vector	_IIIOXGPP_d CT_Blpl	GCCTCAGGCTCTGCATCAG	0401
MUC1∆CT-42TR- mOxGFP Triple Mutant	Incort 1		GCAGGTCTTGCATCAGGGCCTGAGGCAGCAGCCGTA	- 1304
	Insent 1		CAGGATGTCACCTCGGTCC	
	Insert 2		CCTGATGCAAGACCTGCCCCTGGTGCGACAGCACCA	1079
		pPB_Tet_Sum oStar_Muc1_ 21T_rtTAsM2 _IRES_NeoR	TGATGCAGAGCCTGAGGCAGCAGCCGTA	- 12/8
MUC1∆CT-21TR- mOxGFP Triple Mutant	Insert		CAGGATGTCACCTCGGTCC	1206
			TGATGCAGAGCCTGAGGCAGCAGCCGTA	- 1296
MUC1∆CT-10TR- mOxGFP Triple Mutant	Insert		CAGGATGTCACCTCGGTCC	626
			TGATGCAGAGCCTGAGGCTGCAGCTGTCACACCATGC	030

Supplementary Table 8. DNA sequences of primers used for MUC1ΔCT-mOxGFP Triple Mutant plasmid construction.

The PCR products were then subject to Gibson Assembly. Two PCR templates are kind gifts from Matthew Paszek Lab at Cornell University. All DNA primers were purchased from Integrated DNA Technologies (IDT).

Supplementary Figure 1. Flow cytometric results show comparable cell surface expression levels of various MUC1-∆CT-GFP in U2OS cells.

(A) Representative flow cytometric gating strategy for determining various MUC1- Δ CT-GFP expressions in U2OS cells. Briefly, (1) Cell debris were first excluded and (2) U2OS cells were then gated for single cells. Subsequently, (3) live single U2OS cells were gated based on Sytox Blue staining. (4) Cell surface expression levels of various MUC1- Δ CT-GFP were then determined. (B) Histograms of cell surface expression levels of various MUC1- Δ CT-GFP were labeled with rabbit anti-GFP antibodies and goat anti-rabbit IgG Alexa Fluor 647 (AF647). After applying the gating strategy, there are ~3500-18000 cells included per population.

Step 1

Step 3

mCherry-CAAX channel

MUC1-42TR-GFP channel

Bright Field channel

Step 4

mCherry-CAAX channel

MUC1-42TR-GFP channel

Bright Field channel

Step 5

000	(Fiji Is Just) ImageJ								
(Fiji Is Just) ImageJ 2.3.0/1.53f51; Java 1.8.0_202 [64-bit]; Click here to search									
MaskAverage-C2-211027_C	MaskAverage-C1-211027_C	ROI Ma	anager						
41x41 pixels; 16-bit; 3K	41x41 pixels; 16-bit; 3K	0020-0012	Add [t]						
	Contraction of the second	0020-0028	Update Delete Rename Measure Deselect						
	And the second se	0024-0020							
	Contraction of the local division of the loc								
	and the second se								
	8 8								
· 0 ·	0		Properties						
	and the second se		Flatten [F]						
			More »						
	the second s		Show All						
			Labels						

Supplementary Figure 2. A detailed description for the quantification of fluorescence signals of proteins on nanostructured substrates. The confocal fluorescence images were processed and analyzed using ImageJ and customized MATLAB programs. To quantify the curvature preference of a protein of interest, the intensity can be normalized by the membrane intensity at the same location (for nanopillars experiments), or nanostructures with internal references (such as the sidewalls of nanobars or nanoXs) can be used.

Procedure (use nanobar experiment as an example):

- 1. Load three-channel (GFP, mCherry, and bright field) images taken from the same field.
- Manually click on the center of three nanobars (red arrows) in the mCherry-CAAX channel. Since the distance between nanobars is fixed, the software automatically locates all the nanobars in a rectangular array (yellow circles). Next, the software automatically propagates the nanopillar locations to all three color channels (GFP, mCherry, and bright field).
- 3. By intensity thresholding in the mCherry channel, the software removes nanobars that are located outside the cell of interest. In some cases, a nanobar outside the cell needs to be manually removed by clicking anywhere inside its yellow circle.
- 4. Based on the nanobar locations, the software automatically creates an averaged nanobar image from all the nanobars inside a cell. The cell in the example image interacts with 100 nanobars. In general, each cell contacts ~30-150 nanobars. An average nanobar image is created for each color channel for the selected cell.
- 5. Four ROIs, two located at the ends of the nanobar and two located at the side walls of the nanobar, are created on the membrane mCherry channel of the averaged nanobar image. The same ROI locations are re-created on the GFP channel. The same ROIs are used for all cells.
- 6. From the ROIs, the nanobar end-to-side ratios are independently calculated for mCherry and GFP channels. Then, the ratio for the MUC1_42TR-GFP channel (green) is divided by the ratio for the mCherry-CAAX channel (red). This step normalizes the protein ratio to the membrane ratio, which helps to distinguish whether the protein truly has a curvature preference vs. whether there is a higher protein signal due to more membranes at curved locations.
- Repeat the step 1-3 for nanobars of other sizes if necessary.
- For nanopillar experiments, create a small circular ROI to cover the fluorescence signal at nanopillars. The region surrounding the nanopillar ROI is used for assessing cytosolic background. Calculate the intensity ratio by dividing the fluorescence signal at nanopillars by that of the surrounding.
- For nanoX experiments, create 16 small ROIs to cover the centers of 4 ends, 8 side walls (2 for each arm) and 4 inner faces. Measure the fluorescence intensities in the 16 ROIs and compute the end-to-side, two inner-to-side intensity ratios.

Supplementary Figure 3. MUC1-∆CT-GFP-transfected U2OS cells on the 200-nm nanobar arrays.

Zoom-in confocal images of (A) mCherry-CAAX-transfected, (B) MUC1- Δ CT_0TR-GFP-transfected, (C) MUC1- Δ CT_10TR-GFP-transfected, and (D) MUC1- Δ CT_21TR-GFP-transfected U2OS cells cultured on the 200-nm nanobar arrays. Bright field images of the nanobar in the merge subsets were converted into blue color for visualization purposes. Scale bars represent 5 µm. Arrows were drawn for guidance purposes.

Supplementary Figure 4. AP2 and F-actin staining in U2OS or Hela cells on the 200-nm nanopillar arrays.

(A-B) Confocal images show accumulation of (A) α -AP2 and (B) F-actin on the 200-nm-diameter nanopillars in Hela cells. The square inset is the averaged images of proteins distributed on the nanopillars. (C) Quantification of α -MUC1, CellMask and F-actin signals on Hela cells plated on the 200-nm nanopillar arrays (see Supplementary Table 2A for the detailed statistics). The ratios for α -MUC1 and CellMask are from Fig. 1N. All ratios have been normalized against the CellMask signals. The spacing and height of the 200-nm nanopillar arrays are 2.5 μ m and 1 μ m, respectively. Scale bars represent 10 μ m. F-actin was stained with phalloidin. Welch's t tests (unpaired, two-tailed, not assuming equal variance) are applied for all statistical analyses in this figure. Error bars represent SEM.

Supplementary Figure 5. MUC1-ACT-GFP-transfected U2OS cells on the 200-nm nanopillar arrays.

Confocal images of **(A)** MUC1- Δ CT_42TR-GFP- and mCherry-CAAX-cotransfected U2OS cells, **(B)** MUC1- Δ CT_0TR-GFP- and mCherry-CAAX-cotransfected U2OS cells, **(C)** U2OS cells stained with anti-AP2 antibodies and **(D)** U2OS cells stained with phalloidin cultured on the 200-nm nanopillar arrays. The square insets are the averaged images of proteins distributed on the nanopillars. **(E)** Quantification of MUC1- Δ CT_42TR-GFP, CellMask and F-actin signals in U2OS cells plated on the 200-nm nanopillar arrays (see Supplementary Table 2B for the detailed statistics). The ratios for α -MUC1 and CAAX are from Fig. 10. All ratios have been normalized against the mCherry-CAAX signals. The spacing and height of the 200-nm nanopillar arrays are 2.5 µm and 1 µm, respectively. Scale bars represent 10 µm; Scale bars in the zoom-in images represent 5 µm. Welch's t tests (unpaired, two-tailed, not assuming equal variance) are applied for all statistical analyses in this figure.

Supplementary Figure 6. MUC1-∆CT_0TR-GFP-transfected U2OS cells on the gradient nanoX arrays.

Confocal images of **(A)** MUC1- Δ CT_0TR-GFP-transfected U2OS cells and **(B)** mCherry-CAAX-transfected U2OS cells cultured on the gradient nanoX arrays. All nanoX are 350 nm in width, 2 µm in height and 10 µm in spacing. NanoX inner angle (θ) increment: 15°. Scale bars represent 10 µm.

Supplementary Figure 7. Heatmaps depicting the intensity distribution of mCherry-CAAX, two MUC1- Δ CT-GFP, and F-actin signals in U2OS cells plated on the gradient nanoX arrays (Cell-based experiments).

All nanoX are 350 nm in width, 2 μm in height and 10 μm in spacing. NanoX inner angle (θ) increment: 15°.

U2OS - MUC1-0TR

Supplementary Figure 8. Quantification of MUC1-∆CT-0TR-GFP signals in U2OS cells plated on the gradient nanoX arrays. (Cell-based experiments).

All ratios have been normalized against the mCherry-CAAX signals (see Supplementary Table 3B for the detailed statistics). Welch's t tests (unpaired, two-tailed, not assuming equal variance) are applied for all statistical analyses in this figure. Error bars represent SEM.

Supplementary Figure 9. Confocal images of Hela cells plated on the nanopillar substrates of various spacings.

(A) A SEM image of the 1- μ m-diameter, 1- μ m-height, 2.5- μ m-spaced nanopillar arrays. The images were taken with a stage tilt of 45°. Scale bar represents 2 μ m. (B) A SEM image of the 1- μ m-diameter, 1- μ m-height, 5- μ m-spaced nanopillar arrays. The images were taken with a stage tilt of 45°. Scale bar represents 2 μ m. (C) Confocal images of Hela cells plated on the nanopillar arrays of various spacings. MUC1 was immunostained with mouse anti-MUC1/episialin antibody (214D4) and fluorescently-labeled goat anti-mouse antibody, sequentially; Nuclei were visualized via Hoechst stain. Scale bars=10 μ m for the whole-cell images; 5 μ m for the zoom-in images. The bright field channel in the merge image is background-subtracted and converted into magenta color for visualization purposes.

Supplementary Figure 10. Co-transfection of MUC1-∆CT-GFP of varying lengths and mCherry-CAAX in U2OS cells.

Cells were all cultured on flat surfaces. Nuclei were visualized via Hoechst stain. Scale bars represent 10 µm.

Supplementary Figure 11. MUC1 avoids positively-curved membranes induced by membrane-sculpturing proteins.

(A-B) Confocal images of U2OS cells transfected with either MUC1- Δ CT_10TR-GFP or MUC1- Δ CT_21TR-GFP and co-transfected with (A) IRSp53-mCherry to induce membrane protrusions with negative curvature; or (B) mCherry-FBP17- Δ SH3 to generate membrane invaginations with positive curvature. Scale bars represent 10 µm. (C-D) MUC1 immunostaining on the (C) IRSp53-mCherry- (D) mCherry-FBP17- Δ SH3-transfected Hela cells. Scale bars represent 10 µm. In (C) and (D), MUC1 was immunostained with mouse anti-MUC1/episialin antibody (214D4) and fluorescently-labeled goat anti-mouse antibody, sequentially. All cells were cultured on flat surfaces. Arrows were drawn for guidance purposes.

Supplementary Figure 12. Full-length MUC1 also avoids positively-curved membranes and prefers negatively-curved ones induced by membrane-sculpturing proteins.

(A-B) Confocal images of U2OS cells transfected with MUC1(FL)_42TR-GFP and co-transfected with (A) IRSp53-mCherry to induce membrane protrusions with negative curvature; or (B) mCherry-FBP17- Δ SH3 to generate membrane invaginations with positive curvature. Scale bars represent 10 µm. **(C)** Colocalization analysis of MUC1(FL)_42TR-GFP and two mCherry-BAR-family proteins in U2OS cells (see Supplementary Table 4D for the detailed statistics). Arrows were drawn for guidance purposes. **(D-E)** Confocal images of U2OS cells co-transfected with (D) MUC1(FL)_42TR-GFP and IRSp53-mCherry or (E) MUC1(FL)_42TR-GFP and mCherry-FBP17- Δ SH3 and stained with phalloidin to visualize F-actin. Scale bars represent 10 µm. All cells were cultured on flat surfaces. Welch's t tests (unpaired, two-tailed, not assuming equal variance) are applied for all statistical analyses in this figure. Error bars represent SEM. Arrows were drawn for guidance purposes.

Supplementary Figure 13. Reduced glycosylation of MUC1 causes reduced sensitivity toward curvatures induced by membrane-sculpturing proteins.

(A) Confocal images of U2OS cells co-transfected with IRSp53-mCherry and either MUC1- Δ CT-T_10TR-GFP or MUC1- Δ CT-T_21TR-GFP. Scale bars represent 10 µm. (B) Confocal images of U2OS cells co-transfected with mCherry-FBP17- Δ SH3 and either either MUC1- Δ CT-T_10TR-GFP or MUC1- Δ CT-T_21TR-GFP. Scale bars represent 10 µm. All cells were cultured on the flat surface. Arrows were drawn for guidance purposes.

Supplementary Figure 14. Lipid bilayer fluidity on the gradient nanoX arrays was measured by Fluorescence Recovery After Photobleaching (FRAP) assay (SLB experiments).

(A) Fluorescence images of the lipid bilayers on the gradient nanoX arrays at 1 sec and 196 sec after photobleaching. The bilayers were doped with 30% DGS-Ni-NTA and ~1 mol.% of Texas Red-tagged DHPE for visualization. White-dashed circles indicate the bleached regions. (B) A plot of the time trace of fluorescence recovery signals shows that the lipid fluidity on nanoXs is comparable to that on flat surfaces. Each data point is averaged from 5 fields of view. Error bars represent SD.

Supplementary Figure 15. Confocal images of fluorescently-labeled Podocalyxin and deglycosylated Podocalyxin on the SLB-coated gradient nanoX arrays doped with 10% DGS-Ni-NTA.

(A-B) Confocal images of fluorescently-labeled (A) Podocalyxin (Podxl) and (B) deglycosylated Podocalyxin on the SLB-coated gradient nanoX arrays. The lipid mixture was doped with 30% DGS-Ni-NTA and ~1 mol.% of Texas Red-tagged DHPE as a lipid bilayer marker. The inner angle of nanoX ranges from 30° (left) to 90° (right). All nanoX are 350 nm in width, 2 μ m in height and 10 μ m in spacing. NanoX inner angle (θ) increment: 15°. Scale bars represent 10 μ m. **(C-D)** Confocal images of fluorescently-labeled (C) Podxl and (D) deglycosylated Podxl on the SLB-coated gradient nanoX arrays. The lipid mixture was doped with 10% DGS-Ni-NTA and ~1 mol.% of Texas Red-tagged DHPE as a lipid bilayer marker. Scale bars represent 10 μ m.

Supplementary Figure 16. Polyacrylamide gel images of native and deglycosylated recombinant Podocalyxin protein with a His-tag.

The protein was labeled with Alexa Fluor 647. The imaging was resolved at the excitation wavelength of 700 nm. The uncut gels are provided in the Source Data. (Abbreviations: 'M.W. for molecular weight; 'M' for markers)

U2OS - mCherry-CAAX on gradient nanobars

Supplementary Figure 17. Quantification of mCherry-CAAX signals in U2OS cells cultured on the gradient nanobar arrays. Error bars represent SEM.

Bar Width (nm)	200	300	400	500	600	700	800	900	1000	1200	1600	2000
α -AP2	-	•	-	¢	0	6	C	0	0	0	0	0
F-actin	0	0	0	0	0	0	0	0	0	0	0	0
CAAX	-	0	0	0	0	0	0	0	0	0	0	0
MUC1 0TR	-	-	•	0	0	0	0	O	0	0	0	0
MUC1 10TR	-	-	0	0	0	0	0	0	0	0	Q	0
MUC1 21TR	Cb	C D	0	\sim	0	0	0	0	0	0	0	\bigcirc
MUC1 42TR		-	0	C D	0	0	0	0	0	0	0	0
MUC1 42TR + StcE	-	675	0	(3)	0	0	0	0	0	0	0	0
MUC1-T 42TR	-	0	0	0	0	0	0	0	0	0	0	0

Supplementary Figure 18. Averaged fluorescence images of α -AP2, F-actin, mCherry-CAAX and 6 different MUC1- Δ CT-GFP signals in U2OS cells plated on the gradient nanobar arrays.

Supplementary Figure 19. Quantification of MUC1-∆CT-GFP signals in U2OS cells cultured on the gradient nanobar arrays.

Quantification of (A) MUC1- Δ CT_10TR-GFP, (B) MUC1- Δ CT_21TR-GFP, (C) StcE-treated MUC1- Δ CT_42TR-GFP and (D) MUC1- Δ CT_42TR-GFP triple mutants on the gradient nanobar arrays. All ratios have been normalized against mCherry-CAAX signals (see Supplementary Table 7 for the detailed statistics). Both Welch's t tests (unpaired, two-tailed, not assuming equal variance) and one-way Welch's ANOVA are applied for the statistical analyses in this figure. Error bars represent SEM.