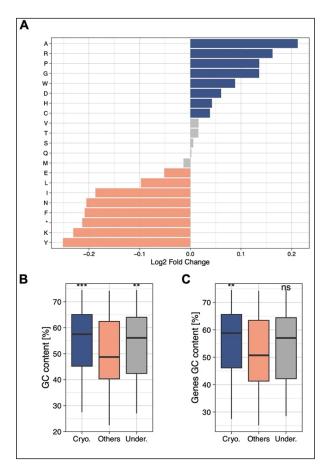
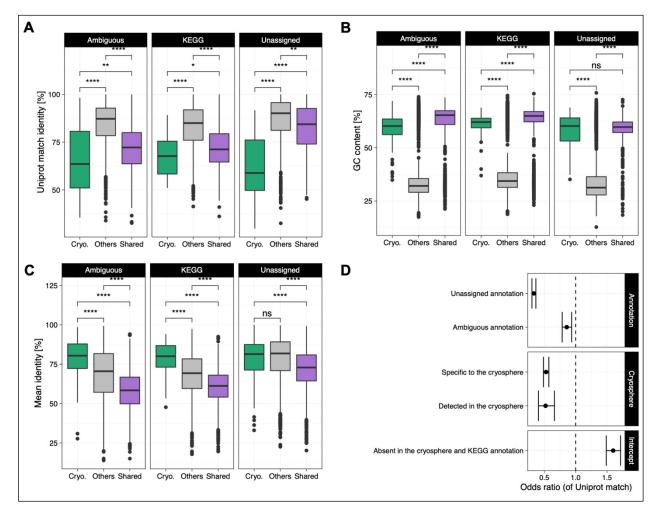

1

Supplementary information:

The microbiome of cryospheric ecosystems 2 Massimo Bourquin^{1,*, \$}, Susheel Bhanu Busi^{2,*}, Stilianos Fodelianakis¹, Hannes Peter¹, Alex 3 Washburne³, Tyler J. Kohler¹, Leïla Ezzat¹, Grégoire Michoud¹, Paul Wilmes², Tom J. Battin^{1,\$} 4 ¹River Ecosystems Laboratory, Centre for Alpine and Polar Environmental Research (ALPOLE), 5 6 École Polytechnique Fédérale de Lausanne, EPFL, Switzerland 7 ² Luxembourg Centre for Systems Biomedicine, University of Luxembourg, University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, 8 9 Luxembourg ³ Selva Analytics LLC, Bozeman, MT, 59718, USA 10 11 ⁴ Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, 12 University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, 13 Luxembourg 14 *Equal contributions 15 ^{\$}Correspondence to: MB (massimo.bourguin@epfl.ch) and TJB (tom.battin@epfl.ch) 16 17 **Content:** Page 2-5: Supplementary Figures 1-4 18 19 -Page 6-14: Supplementary Tables 1-8



Supplementary Figure 1. A) Phylogenetic tree based on the abundant ASVs (relative abundance > 0.5%) found in PP2, demonstrating the cryosphere microbiome diversity across the bacterial tree of life. The highlighted colors represent the ASVs detected in cryospheric ecosystems, and the barplot represents the coefficient for the logistic classification analysis. The number of ASVs at B) the phylum-level, and C) genus-level taxonomy with an odds-ratio greater than 1 in the logistic classification is shown for PP1 and PP2. Only taxa with the highest numbers are shown.



28 Supplementary Figure 2. A) Heat-tree showing the taxonomic classification of the 37 bacterial 29 genera representing the core microbiome of the cryosphere (out of the 2044 total bacterial genera). 30 They represent all bacterial genera with a probability of presence of 20% (calculated in the 31 binomial model analysis, abundance threshold of 0.1%) in the cryosphere, and present in all four ecosystem types. B) Line graphs depicting the probability of presence of a given bacterial genus 32 33 in the cryosphere and their respective abundance, to identify the 'core' (blue) and 'ancillary' (red) 34 genera. The dashed lines represent the chosen thresholds for the core microbiome definition. C) Upset plot showing the overlap across the ecosystem types core microbiome, defined at the genus-35 level, with a prevalence of 20% at an abundance threshold of 0.1% relative abundance. (D) Heat 36 37 plot showing the number of genera per group, highlighting the large overlap between the core microbiome and the cryospheric genera. 38

39

40 Supplementary Figure 3. A) The enriched abundance of aminoacids in the cryosphere (blue; 41 positive fold change) compared to those found in the non-cryospheric ecosystems are depicted. The "*" represents stop codons. B) The overall GC% of the genomes belonging to the cryospheric, 42 43 others and underrepresented genera are depicted (n = 660 total bacterial genera, 197 of which are 44 cryospheric genera, 198 are underrepresented in the cryosphere). C) The GC% of the genes predicted in the genomes belonging to the cryospheric, others and underrepresented genera are 45 46 depicted. The median, 25% and 75% quartiles are represented in the boxplots. Two-sided Wilcoxon tests were performed to assess significance in panels B and C; the Holm method was 47 used to correct for multiple testing (***: 0-0.001, **: 0.001-0.01). Boxplots depict the median 48 49 and the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile range, 50 and the remaining points are outliers. Exact p-values and medians are listed in Supplementary 51 Table 6.

53

54 Supplementary Figure 4. A) Boxplots indicate the overall identity percentage for representative 55 sequences for each of the gene clusters that matched with UniProt sequences. The figures 56 demonstrate these values for the Cryosphere-only genes, non-cryosphere (Othersx) and those 57 'shared' between the two habitats. B) The GC content % of all the genes within each cluster is 58 shown. C) The pairwise identity of all sequences within each cluster is represented on the boxplots. 59 **D**) Odds-ratio estimations of the UniProt matches with respect to the annotation level, and the 60 presence/or not in the cryospheric metagenomes. Two-sided Wilcoxon tests were performed to assess significance in panels A, B and C; the Holm method was used to correct for multiple testing 61 (****: 0-0.0001, ***: 0.0001-0.001, **: 0.001-0.01, *: 0.01-0.05). Boxplots depict the median and 62 the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile range, and 63 64 the remaining points are outliers. Sample sizes are listed in Table 1. The exact p-values and test statistics are available in the Supplementary Table 8. 65

Dataset	Accuracy [%]	Precision [%]	Recall [%]	AUC [%]
PP1	96.04±1.93	99.99±0.05	92.08±3.86	99.93±0.02
PP2	97.95±1.35	99.93±0.14	95.96±2.71	99.93±0.02

Supplementary Table 1. Cryospheric bacterial communities' logistic classification models performance summary for each primer pair dataset. 67 68

			Sorensen's index			ß-MNTD		
Dataset	Group 1	Group 2	Corrected p- value	r	Median difference	Corrected p- value	r	Median difference
PP1	Cryo-Cryo	Cryo-Others	< 2e-16	0.185	0.038	< 2e-16	0.0821	0.012
	Cryo-Cryo	Other-Others	< 2e-16	0.140	0.042	< 2e-16	0.0639	0.01
	Cryo-Others	Other-Others	7.6e-13	0.0174	0.004	< 2e-16	0.144	0.022
PP2	Cryo-Cryo	Cryo-Others	< 2e-16	0.238	0.046	<2e-16	0.183	0.032
	Cryo-Cryo	Other-Others	< 2e-16	0.263	0.057	<2e-16	0.125	0.028
	Cryo-Others	Other-Others	< 2e-16	0.0501	0.011	<2e-16	0.0503	0.004

69 Supplementary Table 2. β-diversity phylogenetics (Sorensen's Index and β-MNTD) computed

70 for 50 iterations randomly drawing 50 cryospheric and 50 non-cryospheric samples (sample sizes

71 for each group: $N_{PP1-Sor} = 83583$, $N_{PP2-Sor} = 98142$, $N_{PP1-MNTD} = 77893$, $N_{PP2-MNTD} = 91398$). For

both datasets and primer pairs, the Kruskal-Wallis tests were highly significant (p-value < 2.2e-

16), post-hoc two-sided Wilcoxon tests results are reported in the table, the p-value was corrected

vising the Holm method. The effect size was computed as r with the *statix* R package.

		α-MPD (model p-value: < 2.2e-16)			
		Estimate	p-value	t-value	
Coefficients	Intercept	0.389±0.014	28.667	<2e-16	
	Cryosphere	0.077±0.005	13.933	<2e-16	
	log(SR)	0.062±0.004	15.973	<2e-16	
	DatasetPP2	-0.038±0.004	-9.129	<2e-16	
Model	Adj. R ²			0.108	
	df			4240	
		α-MNTD	(model p-value:	< 2.2e-16)	
		Estimate	t-value	p-value	
Coefficients	Intercept	0.307±0.006	48.933	<2e-16	
	Cryosphere	0.015±0.003	5.734	1.05e-08	
	log(SR)	-0.053±0.002	-29.399	<2e-16	
	DatasetPP2	0.020±0.002	10.302	<2e-16	
Model	Adj. R ²			0.191	
	df			4240	
		α-PD (r	nodel p-value: <	2.2e-16)	
		Estimate	t-value	p-value	
Coefficients	Intercept	0.450±0.047	9.483	<2e-16	
	Cryosphere	0.532±0.049	10.955	<2e-16	
	SR	0.110±0.001	89.696	<2e-16	
	DatasetPP2	0.398±0.037	10.887	<2e-16	
Model	Adj. R ²			0.664	
	df			4240	

75 **Supplementary Table 3.** α-diversity phylogenetics (MPD: mean phylogenetic distance, MNTD:

76 mean nearest taxon distance; PD: phylogenetic diversity) linear models testing the influence of the 77 cryosphere on the different metrics, with the species richness (SR, log-transformed) and the dataset

78 as fixed effects (Intercept = non-cryospheric, and PP1).

PERMANOVA	DF	Sum of squares	r ²	f-value	p-value
Ecosystem	3	55.774	0.18319	52.702	< 0.001
Dataset	1	5.633	0.01850	15.969	< 0.001
Residual	689	243.055	0.79831		
Total	693	304.462	1.00000		
Snow/Ice – Terr.	DF	Sum of squares	r^2	f-value	p-value
Ecosystem	1	18.859	0.11779	54.36	< 0.001
Dataset	1	4.906	0.03064	14.14	< 0.001
Residual	393	136.340	0.85157		
Total	395	160.105	1.00000		
Snow/Ice – Marine	DF	Sum of squares	r ²	f-value	p-value
Ecosystem	1	23.280	0.15758	66.918	< 0.001
Dataset	1	4.087	0.02767	11.749	< 0.001
Residual	346	120.370	0.81476		
Total	348	147.737	1.00000		
Snow/Ice – Fresh.	DF	Sum of squares	r ²	f-value	p-value
Ecosystem	1	10.991	0.06768	28.6254	< 0.001
Dataset	1	3.195	0.01967	8.3202	< 0.001
Residual	386	148.211	0.91265		
Total	388	162.397	1.00000		
Marine – Terr.	DF	Sum of squares	r ²	f-value	p-value
Ecosystem	1	25.402	0.20705	85.019	< 0.001
Dataset	1	7.052	0.05748	23.604	< 0.001
Residual	302	90.230	0.73547		
Total	304	122.684	1.00000		
Marine – Fresh.	DF	Sum of squares	r ²	f-value	p-value
Ecosystem	1	18.464	0.14665	53.295	< 0.001
Dataset	1	5.240	0.04162	15.125	< 0.001
Residual	295	102.202	0.81173		
Total	297	125.906	1.00000		
Terrestrial - Fresh.	DF	Sum of squares	r ²	f-value	p-value
Ecosystem	1	16.200	0.11536	47.332	< 0.001
Dataset	1	7.175	0.05109	20.963	< 0.001
Residual	342	117.056	0.83355		
Total	344	140.431	1.00000		

80 **Supplementary Table 4.** Model summaries for the PERMANOVA and all pairwise.adonis comparisons of cryospheric ecosystem types.

WTS model	Test statistic	df	p-value	WTPS
Ecosystem	112.0236	3	(
Interaction	103.1681	4		0
Ecosystem	Datastet	Ν	Mean	Variance
Freshwater	PP1	29	3.72	0.26
Freshwater	PP2	140	2.84	0.48
Ice/Snow	PP1	92	2.76	0.69
Ice/Snow	PP2	128	2.93	0.68
Marine	PP1	88	3.03	0.18
Marine	PP2	41	3.71	0.41
Terrestrial	PP1	92	3.69	0.80
Terrestrial	PP2	84	3.64	0.28

82 **Supplementary Table 5.** Shannon's index H α-diversity (calculated at the genus taxonomic level)

Wald-Type Statistic (WTS) summary. This test was chosen as a non-parametric alternative to
ANOVA for non-normally distributed data. "Interaction" represents the interaction between the

Ecosystem and Dataset parameters, "Ecosystem" the fixed effect of the ecosystem type. The

computed means weighted by sample sizes are 2.987, 2.856, 3.245, and 3.669 for freshwater, snow/ice, marine and terrestrial, respectively.

Metric	MedianOthers (n=265)	MedianCryo (n=197)	MedianUnder.(n=198)
GC content [%]	48.7	57.5 (corr. p = 0.0011)	56.1 (corr. p = 0.0086)
Genome size [mbp]	3.97	4.19 (corr. p = 0.17)	4.06 (corr. p = 0.28)
Growth doubling time [d]	4.48	4.12 (corr. p = 0.87)	4.55 (corr. p = 0.51)
Codon usage bias [CUBHE]	0.627	0.627 (corr. p = 1)	0.623 (corr. p = 1)
Consistency [HE]	0.527	0.519 (corr. p = 0.84)	0.529 (corr. p = 0.25)
Codon pair bias [CPB]	-0.375	-0.370 (corr. p = 0.92)	-0.380 (corr. p = 0.74)

89 Supplementary Table 6. RefSeq genomic properties summary. Corrected p-values were

- 90 computed using two-sided Wilcoxon tests implemented in the *compare_means* function of the
- 91 ggpubr R package, comparing the cryospheric and underrepresented genera against the others.

Dataset	Study ID	Sample n.	Ecosystem type	Description	
PP1	Bergk2019	12	Ice/Snow	Snow samples, Svalbard	
PP1	NOMIS	10	Freshwater	Glacier-fed stream sediment samples, Russia an New Zealand	
PP1	PRJDB9246	11	Freshwater	Microbial mat and water, Antarctica	
PP1	PRJEB12640	41	Terrestrial	Soil chronosequence samples, Svalbard	
PP1	PRJEB26163	62	Marine	Marine water, Arctic Ocean	
PP1	PRJEB29215	32	Ice/Snow	Snow samples, Antarctica	
PP1	PRJEB31938	26	Marine	Sea ice, snow, water and sediment, Greenland and the Arctic Ocean	
PP1	PRJEB40467	18	Terrestrial	Alpine permafrost, Italy	
PP1	PRJNA296475	3	Ice/Snow	Cryoconite hole, Svalbard	
PP1	PRJNA320505	1	Ice/Snow	Cryoconite hole, Antarctica	
PP1	PRJNA380676	1	Terrestrial	Arctic rock, Svalbard	
PP1	PRJNA418054	32	Terrestrial	Permafrost, Alaska	
PP1	PRJNA430179	11	Ice/Snow	Glacier Ice/snow, Spain	
PP1	PRJNA436954	8	Frehshwater	High-arctic microbial mat	
PP1	PRJNA529498	33	Ice/Snow	Cryoconite hole, Antarctica	
PP2	PRJEB11496	24	Marine	Marine sediment, Antarctica	
PP2	PRJEB23054	59	Terrestrial	Permafrost, Alaska	
PP2	PRJNA244335	31	Freshwater	Sediment and water from subglacial lake, Antarctica	
PP2	PRJNA255432	70	Freshwater	Arctic lake, Canada	
PP2	PRJNA278982	4	Marine	Ice-shelf water cavity, Antarctica	
PP2	PRJNA321351	9	Freshwater	Arctic lake, Greenland	
PP2	PRJNA324626	9	Terrestrial	Frozen soil, China	
PP2	PRJNA430887	26	Ice/Snow	Glacier ice and weather crust, USA	
PP2	PRJNA431087	1	Terrestrial	Microbial mat, Antarctica	
PP2	PRJNA432743	7	Freshwater	Subglacial aquifer brine, Antarctica	
PP2	PRJNA471245	51	Ice/Snow	Water, ice, soil, sediment and microbial mat, Antarctica	
PP2	PRJNA480849	1	Ice/Snow	Cryoconite hole, Antarctica	

PP2	PRJNA554442	11	Terrestrial	Permafrost, Alaska
PP2	PRJNA593264	13	Marine	Water, sediments and snow, Antarctica
PP2	PRJNA629965	6	Freshwater, Ice/Snow	Snow and glacier melt
PP2	PRJNA744712	72	Ice/Snow	Cryoconite hole, Antarctica

Supplementary Table 7. Summary of the cryospheric samples included in the two 16s rRNA amplicon datasets (primer pair 1 = PP1, and primer pair 2 = PP2). 94

Metric	Group	Comparison	Corr. p-value
		Cryo.–Shared	2.9e-2
	KEGG	Cryo.–Others	5.7e-10
		Shared-Others	1.2e-101
		CryoShared	4.2e-3
Uniprot identity [%]	Ambiguous	Cryo.–Others	2.6e-12
		Shared-Others	2.7e-87
		CryoShared	2.6e-7
	Unassigned	Cryo.–Others	2.1e-13
		Shared-Others	2.6e-3
		CryoShared	2.7 e-5
	KEGG	Cryo.–Others	1.1e-17
		Shared-Others	5.50e-292
	Ambiguous	CryoShared	7.8e-9
Mean GC [%]		Cryo.–Others	1.1e-50
		Shared-Others	4.20e-297
		CryoShared	8.6e-1
	Unassigned	Cryo.–Others	1.1e-68
		Shared-Others	0
		CryoShared	4.3e-19
	KEGG	Cryo.–Others	2.1e-7
		Shared-Others	3.9e-81
		CryoShared	3e-39
Mean Cluster Identity [%]	Ambiguous	Cryo.–Others	1.9e-11
		Shared-Others	3.9e-78
		Cryo.–Shared	8.8e-12
	Unassigned	Cryo.–Others	5.4e-1
		Shared-Others	5.4e-63

- **Supplementary Table 8.** Unassigned functional clusters exact p-values for the pairwise two-sided Wilcoxon tests. Corrected p-values were adjusted using the Holm method. Sample sizes are listed in Table 1.